Merge branch 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad...
[linux-2.6-microblaze.git] / arch / mips / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Kernel Probes (KProbes)
4  *  arch/mips/kernel/kprobes.c
5  *
6  *  Copyright 2006 Sony Corp.
7  *  Copyright 2010 Cavium Networks
8  *
9  *  Some portions copied from the powerpc version.
10  *
11  *   Copyright (C) IBM Corporation, 2002, 2004
12  */
13
14 #include <linux/kprobes.h>
15 #include <linux/preempt.h>
16 #include <linux/uaccess.h>
17 #include <linux/kdebug.h>
18 #include <linux/slab.h>
19
20 #include <asm/ptrace.h>
21 #include <asm/branch.h>
22 #include <asm/break.h>
23
24 #include "probes-common.h"
25
26 static const union mips_instruction breakpoint_insn = {
27         .b_format = {
28                 .opcode = spec_op,
29                 .code = BRK_KPROBE_BP,
30                 .func = break_op
31         }
32 };
33
34 static const union mips_instruction breakpoint2_insn = {
35         .b_format = {
36                 .opcode = spec_op,
37                 .code = BRK_KPROBE_SSTEPBP,
38                 .func = break_op
39         }
40 };
41
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
43 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44
45 static int __kprobes insn_has_delayslot(union mips_instruction insn)
46 {
47         return __insn_has_delay_slot(insn);
48 }
49
50 /*
51  * insn_has_ll_or_sc function checks whether instruction is ll or sc
52  * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
53  * so we need to prevent it and refuse kprobes insertion for such
54  * instructions; cannot do much about breakpoint in the middle of
55  * ll/sc pair; it is upto user to avoid those places
56  */
57 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
58 {
59         int ret = 0;
60
61         switch (insn.i_format.opcode) {
62         case ll_op:
63         case lld_op:
64         case sc_op:
65         case scd_op:
66                 ret = 1;
67                 break;
68         default:
69                 break;
70         }
71         return ret;
72 }
73
74 int __kprobes arch_prepare_kprobe(struct kprobe *p)
75 {
76         union mips_instruction insn;
77         union mips_instruction prev_insn;
78         int ret = 0;
79
80         insn = p->addr[0];
81
82         if (insn_has_ll_or_sc(insn)) {
83                 pr_notice("Kprobes for ll and sc instructions are not"
84                           "supported\n");
85                 ret = -EINVAL;
86                 goto out;
87         }
88
89         if (copy_from_kernel_nofault(&prev_insn, p->addr - 1,
90                         sizeof(mips_instruction)) == 0 &&
91             insn_has_delayslot(prev_insn)) {
92                 pr_notice("Kprobes for branch delayslot are not supported\n");
93                 ret = -EINVAL;
94                 goto out;
95         }
96
97         if (__insn_is_compact_branch(insn)) {
98                 pr_notice("Kprobes for compact branches are not supported\n");
99                 ret = -EINVAL;
100                 goto out;
101         }
102
103         /* insn: must be on special executable page on mips. */
104         p->ainsn.insn = get_insn_slot();
105         if (!p->ainsn.insn) {
106                 ret = -ENOMEM;
107                 goto out;
108         }
109
110         /*
111          * In the kprobe->ainsn.insn[] array we store the original
112          * instruction at index zero and a break trap instruction at
113          * index one.
114          *
115          * On MIPS arch if the instruction at probed address is a
116          * branch instruction, we need to execute the instruction at
117          * Branch Delayslot (BD) at the time of probe hit. As MIPS also
118          * doesn't have single stepping support, the BD instruction can
119          * not be executed in-line and it would be executed on SSOL slot
120          * using a normal breakpoint instruction in the next slot.
121          * So, read the instruction and save it for later execution.
122          */
123         if (insn_has_delayslot(insn))
124                 memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
125         else
126                 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
127
128         p->ainsn.insn[1] = breakpoint2_insn;
129         p->opcode = *p->addr;
130
131 out:
132         return ret;
133 }
134
135 void __kprobes arch_arm_kprobe(struct kprobe *p)
136 {
137         *p->addr = breakpoint_insn;
138         flush_insn_slot(p);
139 }
140
141 void __kprobes arch_disarm_kprobe(struct kprobe *p)
142 {
143         *p->addr = p->opcode;
144         flush_insn_slot(p);
145 }
146
147 void __kprobes arch_remove_kprobe(struct kprobe *p)
148 {
149         if (p->ainsn.insn) {
150                 free_insn_slot(p->ainsn.insn, 0);
151                 p->ainsn.insn = NULL;
152         }
153 }
154
155 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
156 {
157         kcb->prev_kprobe.kp = kprobe_running();
158         kcb->prev_kprobe.status = kcb->kprobe_status;
159         kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
160         kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
161         kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
162 }
163
164 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
165 {
166         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
167         kcb->kprobe_status = kcb->prev_kprobe.status;
168         kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
169         kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
170         kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
171 }
172
173 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
174                                struct kprobe_ctlblk *kcb)
175 {
176         __this_cpu_write(current_kprobe, p);
177         kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
178         kcb->kprobe_saved_epc = regs->cp0_epc;
179 }
180
181 /**
182  * evaluate_branch_instrucion -
183  *
184  * Evaluate the branch instruction at probed address during probe hit. The
185  * result of evaluation would be the updated epc. The insturction in delayslot
186  * would actually be single stepped using a normal breakpoint) on SSOL slot.
187  *
188  * The result is also saved in the kprobe control block for later use,
189  * in case we need to execute the delayslot instruction. The latter will be
190  * false for NOP instruction in dealyslot and the branch-likely instructions
191  * when the branch is taken. And for those cases we set a flag as
192  * SKIP_DELAYSLOT in the kprobe control block
193  */
194 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
195                                         struct kprobe_ctlblk *kcb)
196 {
197         union mips_instruction insn = p->opcode;
198         long epc;
199         int ret = 0;
200
201         epc = regs->cp0_epc;
202         if (epc & 3)
203                 goto unaligned;
204
205         if (p->ainsn.insn->word == 0)
206                 kcb->flags |= SKIP_DELAYSLOT;
207         else
208                 kcb->flags &= ~SKIP_DELAYSLOT;
209
210         ret = __compute_return_epc_for_insn(regs, insn);
211         if (ret < 0)
212                 return ret;
213
214         if (ret == BRANCH_LIKELY_TAKEN)
215                 kcb->flags |= SKIP_DELAYSLOT;
216
217         kcb->target_epc = regs->cp0_epc;
218
219         return 0;
220
221 unaligned:
222         pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
223         force_sig(SIGBUS);
224         return -EFAULT;
225
226 }
227
228 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
229                                                 struct kprobe_ctlblk *kcb)
230 {
231         int ret = 0;
232
233         regs->cp0_status &= ~ST0_IE;
234
235         /* single step inline if the instruction is a break */
236         if (p->opcode.word == breakpoint_insn.word ||
237             p->opcode.word == breakpoint2_insn.word)
238                 regs->cp0_epc = (unsigned long)p->addr;
239         else if (insn_has_delayslot(p->opcode)) {
240                 ret = evaluate_branch_instruction(p, regs, kcb);
241                 if (ret < 0) {
242                         pr_notice("Kprobes: Error in evaluating branch\n");
243                         return;
244                 }
245         }
246         regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
247 }
248
249 /*
250  * Called after single-stepping.  p->addr is the address of the
251  * instruction whose first byte has been replaced by the "break 0"
252  * instruction.  To avoid the SMP problems that can occur when we
253  * temporarily put back the original opcode to single-step, we
254  * single-stepped a copy of the instruction.  The address of this
255  * copy is p->ainsn.insn.
256  *
257  * This function prepares to return from the post-single-step
258  * breakpoint trap. In case of branch instructions, the target
259  * epc to be restored.
260  */
261 static void __kprobes resume_execution(struct kprobe *p,
262                                        struct pt_regs *regs,
263                                        struct kprobe_ctlblk *kcb)
264 {
265         if (insn_has_delayslot(p->opcode))
266                 regs->cp0_epc = kcb->target_epc;
267         else {
268                 unsigned long orig_epc = kcb->kprobe_saved_epc;
269                 regs->cp0_epc = orig_epc + 4;
270         }
271 }
272
273 static int __kprobes kprobe_handler(struct pt_regs *regs)
274 {
275         struct kprobe *p;
276         int ret = 0;
277         kprobe_opcode_t *addr;
278         struct kprobe_ctlblk *kcb;
279
280         addr = (kprobe_opcode_t *) regs->cp0_epc;
281
282         /*
283          * We don't want to be preempted for the entire
284          * duration of kprobe processing
285          */
286         preempt_disable();
287         kcb = get_kprobe_ctlblk();
288
289         /* Check we're not actually recursing */
290         if (kprobe_running()) {
291                 p = get_kprobe(addr);
292                 if (p) {
293                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
294                             p->ainsn.insn->word == breakpoint_insn.word) {
295                                 regs->cp0_status &= ~ST0_IE;
296                                 regs->cp0_status |= kcb->kprobe_saved_SR;
297                                 goto no_kprobe;
298                         }
299                         /*
300                          * We have reentered the kprobe_handler(), since
301                          * another probe was hit while within the handler.
302                          * We here save the original kprobes variables and
303                          * just single step on the instruction of the new probe
304                          * without calling any user handlers.
305                          */
306                         save_previous_kprobe(kcb);
307                         set_current_kprobe(p, regs, kcb);
308                         kprobes_inc_nmissed_count(p);
309                         prepare_singlestep(p, regs, kcb);
310                         kcb->kprobe_status = KPROBE_REENTER;
311                         if (kcb->flags & SKIP_DELAYSLOT) {
312                                 resume_execution(p, regs, kcb);
313                                 restore_previous_kprobe(kcb);
314                                 preempt_enable_no_resched();
315                         }
316                         return 1;
317                 } else if (addr->word != breakpoint_insn.word) {
318                         /*
319                          * The breakpoint instruction was removed by
320                          * another cpu right after we hit, no further
321                          * handling of this interrupt is appropriate
322                          */
323                         ret = 1;
324                 }
325                 goto no_kprobe;
326         }
327
328         p = get_kprobe(addr);
329         if (!p) {
330                 if (addr->word != breakpoint_insn.word) {
331                         /*
332                          * The breakpoint instruction was removed right
333                          * after we hit it.  Another cpu has removed
334                          * either a probepoint or a debugger breakpoint
335                          * at this address.  In either case, no further
336                          * handling of this interrupt is appropriate.
337                          */
338                         ret = 1;
339                 }
340                 /* Not one of ours: let kernel handle it */
341                 goto no_kprobe;
342         }
343
344         set_current_kprobe(p, regs, kcb);
345         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
346
347         if (p->pre_handler && p->pre_handler(p, regs)) {
348                 /* handler has already set things up, so skip ss setup */
349                 reset_current_kprobe();
350                 preempt_enable_no_resched();
351                 return 1;
352         }
353
354         prepare_singlestep(p, regs, kcb);
355         if (kcb->flags & SKIP_DELAYSLOT) {
356                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
357                 if (p->post_handler)
358                         p->post_handler(p, regs, 0);
359                 resume_execution(p, regs, kcb);
360                 preempt_enable_no_resched();
361         } else
362                 kcb->kprobe_status = KPROBE_HIT_SS;
363
364         return 1;
365
366 no_kprobe:
367         preempt_enable_no_resched();
368         return ret;
369
370 }
371
372 static inline int post_kprobe_handler(struct pt_regs *regs)
373 {
374         struct kprobe *cur = kprobe_running();
375         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
376
377         if (!cur)
378                 return 0;
379
380         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
381                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
382                 cur->post_handler(cur, regs, 0);
383         }
384
385         resume_execution(cur, regs, kcb);
386
387         regs->cp0_status |= kcb->kprobe_saved_SR;
388
389         /* Restore back the original saved kprobes variables and continue. */
390         if (kcb->kprobe_status == KPROBE_REENTER) {
391                 restore_previous_kprobe(kcb);
392                 goto out;
393         }
394         reset_current_kprobe();
395 out:
396         preempt_enable_no_resched();
397
398         return 1;
399 }
400
401 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
402 {
403         struct kprobe *cur = kprobe_running();
404         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
405
406         if (kcb->kprobe_status & KPROBE_HIT_SS) {
407                 resume_execution(cur, regs, kcb);
408                 regs->cp0_status |= kcb->kprobe_old_SR;
409
410                 reset_current_kprobe();
411                 preempt_enable_no_resched();
412         }
413         return 0;
414 }
415
416 /*
417  * Wrapper routine for handling exceptions.
418  */
419 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
420                                        unsigned long val, void *data)
421 {
422
423         struct die_args *args = (struct die_args *)data;
424         int ret = NOTIFY_DONE;
425
426         switch (val) {
427         case DIE_BREAK:
428                 if (kprobe_handler(args->regs))
429                         ret = NOTIFY_STOP;
430                 break;
431         case DIE_SSTEPBP:
432                 if (post_kprobe_handler(args->regs))
433                         ret = NOTIFY_STOP;
434                 break;
435
436         case DIE_PAGE_FAULT:
437                 /* kprobe_running() needs smp_processor_id() */
438                 preempt_disable();
439
440                 if (kprobe_running()
441                     && kprobe_fault_handler(args->regs, args->trapnr))
442                         ret = NOTIFY_STOP;
443                 preempt_enable();
444                 break;
445         default:
446                 break;
447         }
448         return ret;
449 }
450
451 /*
452  * Function return probe trampoline:
453  *      - init_kprobes() establishes a probepoint here
454  *      - When the probed function returns, this probe causes the
455  *        handlers to fire
456  */
457 static void __used kretprobe_trampoline_holder(void)
458 {
459         asm volatile(
460                 ".set push\n\t"
461                 /* Keep the assembler from reordering and placing JR here. */
462                 ".set noreorder\n\t"
463                 "nop\n\t"
464                 ".global kretprobe_trampoline\n"
465                 "kretprobe_trampoline:\n\t"
466                 "nop\n\t"
467                 ".set pop"
468                 : : : "memory");
469 }
470
471 void kretprobe_trampoline(void);
472
473 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
474                                       struct pt_regs *regs)
475 {
476         ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
477         ri->fp = NULL;
478
479         /* Replace the return addr with trampoline addr */
480         regs->regs[31] = (unsigned long)kretprobe_trampoline;
481 }
482
483 /*
484  * Called when the probe at kretprobe trampoline is hit
485  */
486 static int __kprobes trampoline_probe_handler(struct kprobe *p,
487                                                 struct pt_regs *regs)
488 {
489         instruction_pointer(regs) = __kretprobe_trampoline_handler(regs,
490                                                 kretprobe_trampoline, NULL);
491         /*
492          * By returning a non-zero value, we are telling
493          * kprobe_handler() that we don't want the post_handler
494          * to run (and have re-enabled preemption)
495          */
496         return 1;
497 }
498
499 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
500 {
501         if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
502                 return 1;
503
504         return 0;
505 }
506
507 static struct kprobe trampoline_p = {
508         .addr = (kprobe_opcode_t *)kretprobe_trampoline,
509         .pre_handler = trampoline_probe_handler
510 };
511
512 int __init arch_init_kprobes(void)
513 {
514         return register_kprobe(&trampoline_p);
515 }