Merge tag 'arm-dt-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / loongarch / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/cpu.h>
12 #include <linux/cpumask.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/smp.h>
17 #include <linux/threads.h>
18 #include <linux/export.h>
19 #include <linux/time.h>
20 #include <linux/tracepoint.h>
21 #include <linux/sched/hotplug.h>
22 #include <linux/sched/task_stack.h>
23
24 #include <asm/cpu.h>
25 #include <asm/idle.h>
26 #include <asm/loongson.h>
27 #include <asm/mmu_context.h>
28 #include <asm/numa.h>
29 #include <asm/processor.h>
30 #include <asm/setup.h>
31 #include <asm/time.h>
32
33 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
34 EXPORT_SYMBOL(__cpu_number_map);
35
36 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
37 EXPORT_SYMBOL(__cpu_logical_map);
38
39 /* Number of threads (siblings) per CPU core */
40 int smp_num_siblings = 1;
41 EXPORT_SYMBOL(smp_num_siblings);
42
43 /* Representing the threads (siblings) of each logical CPU */
44 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
45 EXPORT_SYMBOL(cpu_sibling_map);
46
47 /* Representing the core map of multi-core chips of each logical CPU */
48 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
49 EXPORT_SYMBOL(cpu_core_map);
50
51 static DECLARE_COMPLETION(cpu_starting);
52 static DECLARE_COMPLETION(cpu_running);
53
54 /*
55  * A logcal cpu mask containing only one VPE per core to
56  * reduce the number of IPIs on large MT systems.
57  */
58 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
59 EXPORT_SYMBOL(cpu_foreign_map);
60
61 /* representing cpus for which sibling maps can be computed */
62 static cpumask_t cpu_sibling_setup_map;
63
64 /* representing cpus for which core maps can be computed */
65 static cpumask_t cpu_core_setup_map;
66
67 struct secondary_data cpuboot_data;
68 static DEFINE_PER_CPU(int, cpu_state);
69
70 enum ipi_msg_type {
71         IPI_RESCHEDULE,
72         IPI_CALL_FUNCTION,
73 };
74
75 static const char *ipi_types[NR_IPI] __tracepoint_string = {
76         [IPI_RESCHEDULE] = "Rescheduling interrupts",
77         [IPI_CALL_FUNCTION] = "Function call interrupts",
78 };
79
80 void show_ipi_list(struct seq_file *p, int prec)
81 {
82         unsigned int cpu, i;
83
84         for (i = 0; i < NR_IPI; i++) {
85                 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
86                 for_each_online_cpu(cpu)
87                         seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
88                 seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
89         }
90 }
91
92 /* Send mailbox buffer via Mail_Send */
93 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
94 {
95         uint64_t val;
96
97         /* Send high 32 bits */
98         val = IOCSR_MBUF_SEND_BLOCKING;
99         val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
100         val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
101         val |= (data & IOCSR_MBUF_SEND_H32_MASK);
102         iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
103
104         /* Send low 32 bits */
105         val = IOCSR_MBUF_SEND_BLOCKING;
106         val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
107         val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
108         val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
109         iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
110 };
111
112 static u32 ipi_read_clear(int cpu)
113 {
114         u32 action;
115
116         /* Load the ipi register to figure out what we're supposed to do */
117         action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
118         /* Clear the ipi register to clear the interrupt */
119         iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
120         smp_mb();
121
122         return action;
123 }
124
125 static void ipi_write_action(int cpu, u32 action)
126 {
127         unsigned int irq = 0;
128
129         while ((irq = ffs(action))) {
130                 uint32_t val = IOCSR_IPI_SEND_BLOCKING;
131
132                 val |= (irq - 1);
133                 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
134                 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
135                 action &= ~BIT(irq - 1);
136         }
137 }
138
139 void loongson3_send_ipi_single(int cpu, unsigned int action)
140 {
141         ipi_write_action(cpu_logical_map(cpu), (u32)action);
142 }
143
144 void loongson3_send_ipi_mask(const struct cpumask *mask, unsigned int action)
145 {
146         unsigned int i;
147
148         for_each_cpu(i, mask)
149                 ipi_write_action(cpu_logical_map(i), (u32)action);
150 }
151
152 irqreturn_t loongson3_ipi_interrupt(int irq, void *dev)
153 {
154         unsigned int action;
155         unsigned int cpu = smp_processor_id();
156
157         action = ipi_read_clear(cpu_logical_map(cpu));
158
159         if (action & SMP_RESCHEDULE) {
160                 scheduler_ipi();
161                 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
162         }
163
164         if (action & SMP_CALL_FUNCTION) {
165                 generic_smp_call_function_interrupt();
166                 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
167         }
168
169         return IRQ_HANDLED;
170 }
171
172 void __init loongson3_smp_setup(void)
173 {
174         cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
175         cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
176
177         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
178         pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
179 }
180
181 void __init loongson3_prepare_cpus(unsigned int max_cpus)
182 {
183         int i = 0;
184
185         for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
186                 set_cpu_present(i, true);
187                 csr_mail_send(0, __cpu_logical_map[i], 0);
188         }
189
190         per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
191 }
192
193 /*
194  * Setup the PC, SP, and TP of a secondary processor and start it running!
195  */
196 void loongson3_boot_secondary(int cpu, struct task_struct *idle)
197 {
198         unsigned long entry;
199
200         pr_info("Booting CPU#%d...\n", cpu);
201
202         entry = __pa_symbol((unsigned long)&smpboot_entry);
203         cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
204         cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
205
206         csr_mail_send(entry, cpu_logical_map(cpu), 0);
207
208         loongson3_send_ipi_single(cpu, SMP_BOOT_CPU);
209 }
210
211 /*
212  * SMP init and finish on secondary CPUs
213  */
214 void loongson3_init_secondary(void)
215 {
216         unsigned int cpu = smp_processor_id();
217         unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
218                              ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
219
220         change_csr_ecfg(ECFG0_IM, imask);
221
222         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
223
224 #ifdef CONFIG_NUMA
225         numa_add_cpu(cpu);
226 #endif
227         per_cpu(cpu_state, cpu) = CPU_ONLINE;
228         cpu_data[cpu].core =
229                      cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
230         cpu_data[cpu].package =
231                      cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
232 }
233
234 void loongson3_smp_finish(void)
235 {
236         local_irq_enable();
237         iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
238         pr_info("CPU#%d finished\n", smp_processor_id());
239 }
240
241 #ifdef CONFIG_HOTPLUG_CPU
242
243 static bool io_master(int cpu)
244 {
245         if (cpu == 0)
246                 return true;
247
248         return false;
249 }
250
251 int loongson3_cpu_disable(void)
252 {
253         unsigned long flags;
254         unsigned int cpu = smp_processor_id();
255
256         if (io_master(cpu))
257                 return -EBUSY;
258
259 #ifdef CONFIG_NUMA
260         numa_remove_cpu(cpu);
261 #endif
262         set_cpu_online(cpu, false);
263         calculate_cpu_foreign_map();
264         local_irq_save(flags);
265         irq_migrate_all_off_this_cpu();
266         clear_csr_ecfg(ECFG0_IM);
267         local_irq_restore(flags);
268         local_flush_tlb_all();
269
270         return 0;
271 }
272
273 void loongson3_cpu_die(unsigned int cpu)
274 {
275         while (per_cpu(cpu_state, cpu) != CPU_DEAD)
276                 cpu_relax();
277
278         mb();
279 }
280
281 void play_dead(void)
282 {
283         register uint64_t addr;
284         register void (*init_fn)(void);
285
286         idle_task_exit();
287         local_irq_enable();
288         set_csr_ecfg(ECFGF_IPI);
289         __this_cpu_write(cpu_state, CPU_DEAD);
290
291         __smp_mb();
292         do {
293                 __asm__ __volatile__("idle 0\n\t");
294                 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
295         } while (addr == 0);
296
297         init_fn = (void *)TO_CACHE(addr);
298         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
299
300         init_fn();
301         unreachable();
302 }
303
304 #endif
305
306 /*
307  * Power management
308  */
309 #ifdef CONFIG_PM
310
311 static int loongson3_ipi_suspend(void)
312 {
313         return 0;
314 }
315
316 static void loongson3_ipi_resume(void)
317 {
318         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
319 }
320
321 static struct syscore_ops loongson3_ipi_syscore_ops = {
322         .resume         = loongson3_ipi_resume,
323         .suspend        = loongson3_ipi_suspend,
324 };
325
326 /*
327  * Enable boot cpu ipi before enabling nonboot cpus
328  * during syscore_resume.
329  */
330 static int __init ipi_pm_init(void)
331 {
332         register_syscore_ops(&loongson3_ipi_syscore_ops);
333         return 0;
334 }
335
336 core_initcall(ipi_pm_init);
337 #endif
338
339 static inline void set_cpu_sibling_map(int cpu)
340 {
341         int i;
342
343         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
344
345         if (smp_num_siblings <= 1)
346                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
347         else {
348                 for_each_cpu(i, &cpu_sibling_setup_map) {
349                         if (cpus_are_siblings(cpu, i)) {
350                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
351                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
352                         }
353                 }
354         }
355 }
356
357 static inline void set_cpu_core_map(int cpu)
358 {
359         int i;
360
361         cpumask_set_cpu(cpu, &cpu_core_setup_map);
362
363         for_each_cpu(i, &cpu_core_setup_map) {
364                 if (cpu_data[cpu].package == cpu_data[i].package) {
365                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
366                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
367                 }
368         }
369 }
370
371 /*
372  * Calculate a new cpu_foreign_map mask whenever a
373  * new cpu appears or disappears.
374  */
375 void calculate_cpu_foreign_map(void)
376 {
377         int i, k, core_present;
378         cpumask_t temp_foreign_map;
379
380         /* Re-calculate the mask */
381         cpumask_clear(&temp_foreign_map);
382         for_each_online_cpu(i) {
383                 core_present = 0;
384                 for_each_cpu(k, &temp_foreign_map)
385                         if (cpus_are_siblings(i, k))
386                                 core_present = 1;
387                 if (!core_present)
388                         cpumask_set_cpu(i, &temp_foreign_map);
389         }
390
391         for_each_online_cpu(i)
392                 cpumask_andnot(&cpu_foreign_map[i],
393                                &temp_foreign_map, &cpu_sibling_map[i]);
394 }
395
396 /* Preload SMP state for boot cpu */
397 void smp_prepare_boot_cpu(void)
398 {
399         unsigned int cpu, node, rr_node;
400
401         set_cpu_possible(0, true);
402         set_cpu_online(0, true);
403         set_my_cpu_offset(per_cpu_offset(0));
404
405         rr_node = first_node(node_online_map);
406         for_each_possible_cpu(cpu) {
407                 node = early_cpu_to_node(cpu);
408
409                 /*
410                  * The mapping between present cpus and nodes has been
411                  * built during MADT and SRAT parsing.
412                  *
413                  * If possible cpus = present cpus here, early_cpu_to_node
414                  * will return valid node.
415                  *
416                  * If possible cpus > present cpus here (e.g. some possible
417                  * cpus will be added by cpu-hotplug later), for possible but
418                  * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
419                  * and we just map them to online nodes in round-robin way.
420                  * Once hotplugged, new correct mapping will be built for them.
421                  */
422                 if (node != NUMA_NO_NODE)
423                         set_cpu_numa_node(cpu, node);
424                 else {
425                         set_cpu_numa_node(cpu, rr_node);
426                         rr_node = next_node_in(rr_node, node_online_map);
427                 }
428         }
429 }
430
431 /* called from main before smp_init() */
432 void __init smp_prepare_cpus(unsigned int max_cpus)
433 {
434         init_new_context(current, &init_mm);
435         current_thread_info()->cpu = 0;
436         loongson3_prepare_cpus(max_cpus);
437         set_cpu_sibling_map(0);
438         set_cpu_core_map(0);
439         calculate_cpu_foreign_map();
440 #ifndef CONFIG_HOTPLUG_CPU
441         init_cpu_present(cpu_possible_mask);
442 #endif
443 }
444
445 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
446 {
447         loongson3_boot_secondary(cpu, tidle);
448
449         /* Wait for CPU to start and be ready to sync counters */
450         if (!wait_for_completion_timeout(&cpu_starting,
451                                          msecs_to_jiffies(5000))) {
452                 pr_crit("CPU%u: failed to start\n", cpu);
453                 return -EIO;
454         }
455
456         /* Wait for CPU to finish startup & mark itself online before return */
457         wait_for_completion(&cpu_running);
458
459         return 0;
460 }
461
462 /*
463  * First C code run on the secondary CPUs after being started up by
464  * the master.
465  */
466 asmlinkage void start_secondary(void)
467 {
468         unsigned int cpu;
469
470         sync_counter();
471         cpu = smp_processor_id();
472         set_my_cpu_offset(per_cpu_offset(cpu));
473
474         cpu_probe();
475         constant_clockevent_init();
476         loongson3_init_secondary();
477
478         set_cpu_sibling_map(cpu);
479         set_cpu_core_map(cpu);
480
481         notify_cpu_starting(cpu);
482
483         /* Notify boot CPU that we're starting */
484         complete(&cpu_starting);
485
486         /* The CPU is running, now mark it online */
487         set_cpu_online(cpu, true);
488
489         calculate_cpu_foreign_map();
490
491         /*
492          * Notify boot CPU that we're up & online and it can safely return
493          * from __cpu_up()
494          */
495         complete(&cpu_running);
496
497         /*
498          * irq will be enabled in loongson3_smp_finish(), enabling it too
499          * early is dangerous.
500          */
501         WARN_ON_ONCE(!irqs_disabled());
502         loongson3_smp_finish();
503
504         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
505 }
506
507 void __init smp_cpus_done(unsigned int max_cpus)
508 {
509 }
510
511 static void stop_this_cpu(void *dummy)
512 {
513         set_cpu_online(smp_processor_id(), false);
514         calculate_cpu_foreign_map();
515         local_irq_disable();
516         while (true);
517 }
518
519 void smp_send_stop(void)
520 {
521         smp_call_function(stop_this_cpu, NULL, 0);
522 }
523
524 int setup_profiling_timer(unsigned int multiplier)
525 {
526         return 0;
527 }
528
529 static void flush_tlb_all_ipi(void *info)
530 {
531         local_flush_tlb_all();
532 }
533
534 void flush_tlb_all(void)
535 {
536         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
537 }
538
539 static void flush_tlb_mm_ipi(void *mm)
540 {
541         local_flush_tlb_mm((struct mm_struct *)mm);
542 }
543
544 void flush_tlb_mm(struct mm_struct *mm)
545 {
546         if (atomic_read(&mm->mm_users) == 0)
547                 return;         /* happens as a result of exit_mmap() */
548
549         preempt_disable();
550
551         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
552                 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
553         } else {
554                 unsigned int cpu;
555
556                 for_each_online_cpu(cpu) {
557                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
558                                 cpu_context(cpu, mm) = 0;
559                 }
560                 local_flush_tlb_mm(mm);
561         }
562
563         preempt_enable();
564 }
565
566 struct flush_tlb_data {
567         struct vm_area_struct *vma;
568         unsigned long addr1;
569         unsigned long addr2;
570 };
571
572 static void flush_tlb_range_ipi(void *info)
573 {
574         struct flush_tlb_data *fd = info;
575
576         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
577 }
578
579 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
580 {
581         struct mm_struct *mm = vma->vm_mm;
582
583         preempt_disable();
584         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
585                 struct flush_tlb_data fd = {
586                         .vma = vma,
587                         .addr1 = start,
588                         .addr2 = end,
589                 };
590
591                 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
592         } else {
593                 unsigned int cpu;
594
595                 for_each_online_cpu(cpu) {
596                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
597                                 cpu_context(cpu, mm) = 0;
598                 }
599                 local_flush_tlb_range(vma, start, end);
600         }
601         preempt_enable();
602 }
603
604 static void flush_tlb_kernel_range_ipi(void *info)
605 {
606         struct flush_tlb_data *fd = info;
607
608         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
609 }
610
611 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
612 {
613         struct flush_tlb_data fd = {
614                 .addr1 = start,
615                 .addr2 = end,
616         };
617
618         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
619 }
620
621 static void flush_tlb_page_ipi(void *info)
622 {
623         struct flush_tlb_data *fd = info;
624
625         local_flush_tlb_page(fd->vma, fd->addr1);
626 }
627
628 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
629 {
630         preempt_disable();
631         if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
632                 struct flush_tlb_data fd = {
633                         .vma = vma,
634                         .addr1 = page,
635                 };
636
637                 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
638         } else {
639                 unsigned int cpu;
640
641                 for_each_online_cpu(cpu) {
642                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
643                                 cpu_context(cpu, vma->vm_mm) = 0;
644                 }
645                 local_flush_tlb_page(vma, page);
646         }
647         preempt_enable();
648 }
649 EXPORT_SYMBOL(flush_tlb_page);
650
651 static void flush_tlb_one_ipi(void *info)
652 {
653         unsigned long vaddr = (unsigned long) info;
654
655         local_flush_tlb_one(vaddr);
656 }
657
658 void flush_tlb_one(unsigned long vaddr)
659 {
660         on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
661 }
662 EXPORT_SYMBOL(flush_tlb_one);