Merge branch 'for-5.14' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-microblaze.git] / arch / ia64 / kernel / topology.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which are used on
7  * NUMA machines with contiguous memory.
8  *              2002/08/07 Erich Focht <efocht@ess.nec.de>
9  * Populate cpu entries in sysfs for non-numa systems as well
10  *      Intel Corporation - Ashok Raj
11  * 02/27/2006 Zhang, Yanmin
12  *      Populate cpu cache entries in sysfs for cpu cache info
13  */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/node.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/memblock.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <linux/export.h>
25 #include <asm/mmzone.h>
26 #include <asm/numa.h>
27 #include <asm/cpu.h>
28
29 static struct ia64_cpu *sysfs_cpus;
30
31 void arch_fix_phys_package_id(int num, u32 slot)
32 {
33 #ifdef CONFIG_SMP
34         if (cpu_data(num)->socket_id == -1)
35                 cpu_data(num)->socket_id = slot;
36 #endif
37 }
38 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
39
40
41 #ifdef CONFIG_HOTPLUG_CPU
42 int __ref arch_register_cpu(int num)
43 {
44         /*
45          * If CPEI can be re-targeted or if this is not
46          * CPEI target, then it is hotpluggable
47          */
48         if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49                 sysfs_cpus[num].cpu.hotpluggable = 1;
50         map_cpu_to_node(num, node_cpuid[num].nid);
51         return register_cpu(&sysfs_cpus[num].cpu, num);
52 }
53 EXPORT_SYMBOL(arch_register_cpu);
54
55 void __ref arch_unregister_cpu(int num)
56 {
57         unregister_cpu(&sysfs_cpus[num].cpu);
58         unmap_cpu_from_node(num, cpu_to_node(num));
59 }
60 EXPORT_SYMBOL(arch_unregister_cpu);
61 #else
62 static int __init arch_register_cpu(int num)
63 {
64         return register_cpu(&sysfs_cpus[num].cpu, num);
65 }
66 #endif /*CONFIG_HOTPLUG_CPU*/
67
68
69 static int __init topology_init(void)
70 {
71         int i, err = 0;
72
73 #ifdef CONFIG_NUMA
74         /*
75          * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
76          */
77         for_each_online_node(i) {
78                 if ((err = register_one_node(i)))
79                         goto out;
80         }
81 #endif
82
83         sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
84         if (!sysfs_cpus)
85                 panic("kzalloc in topology_init failed - NR_CPUS too big?");
86
87         for_each_present_cpu(i) {
88                 if((err = arch_register_cpu(i)))
89                         goto out;
90         }
91 out:
92         return err;
93 }
94
95 subsys_initcall(topology_init);
96
97
98 /*
99  * Export cpu cache information through sysfs
100  */
101
102 /*
103  *  A bunch of string array to get pretty printing
104  */
105 static const char *cache_types[] = {
106         "",                     /* not used */
107         "Instruction",
108         "Data",
109         "Unified"       /* unified */
110 };
111
112 static const char *cache_mattrib[]={
113         "WriteThrough",
114         "WriteBack",
115         "",             /* reserved */
116         ""              /* reserved */
117 };
118
119 struct cache_info {
120         pal_cache_config_info_t cci;
121         cpumask_t shared_cpu_map;
122         int level;
123         int type;
124         struct kobject kobj;
125 };
126
127 struct cpu_cache_info {
128         struct cache_info *cache_leaves;
129         int     num_cache_leaves;
130         struct kobject kobj;
131 };
132
133 static struct cpu_cache_info    all_cpu_cache_info[NR_CPUS];
134 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
135
136 #ifdef CONFIG_SMP
137 static void cache_shared_cpu_map_setup(unsigned int cpu,
138                 struct cache_info * this_leaf)
139 {
140         pal_cache_shared_info_t csi;
141         int num_shared, i = 0;
142         unsigned int j;
143
144         if (cpu_data(cpu)->threads_per_core <= 1 &&
145                 cpu_data(cpu)->cores_per_socket <= 1) {
146                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
147                 return;
148         }
149
150         if (ia64_pal_cache_shared_info(this_leaf->level,
151                                         this_leaf->type,
152                                         0,
153                                         &csi) != PAL_STATUS_SUCCESS)
154                 return;
155
156         num_shared = (int) csi.num_shared;
157         do {
158                 for_each_possible_cpu(j)
159                         if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
160                                 && cpu_data(j)->core_id == csi.log1_cid
161                                 && cpu_data(j)->thread_id == csi.log1_tid)
162                                 cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
163
164                 i++;
165         } while (i < num_shared &&
166                 ia64_pal_cache_shared_info(this_leaf->level,
167                                 this_leaf->type,
168                                 i,
169                                 &csi) == PAL_STATUS_SUCCESS);
170 }
171 #else
172 static void cache_shared_cpu_map_setup(unsigned int cpu,
173                 struct cache_info * this_leaf)
174 {
175         cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
176         return;
177 }
178 #endif
179
180 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
181                                         char *buf)
182 {
183         return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
184 }
185
186 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
187                                         char *buf)
188 {
189         return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
190 }
191
192 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
193 {
194         return sprintf(buf,
195                         "%s\n",
196                         cache_mattrib[this_leaf->cci.pcci_cache_attr]);
197 }
198
199 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
200 {
201         return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
202 }
203
204 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
205 {
206         unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
207         number_of_sets /= this_leaf->cci.pcci_assoc;
208         number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
209
210         return sprintf(buf, "%u\n", number_of_sets);
211 }
212
213 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
214 {
215         cpumask_t shared_cpu_map;
216
217         cpumask_and(&shared_cpu_map,
218                                 &this_leaf->shared_cpu_map, cpu_online_mask);
219         return scnprintf(buf, PAGE_SIZE, "%*pb\n",
220                          cpumask_pr_args(&shared_cpu_map));
221 }
222
223 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
224 {
225         int type = this_leaf->type + this_leaf->cci.pcci_unified;
226         return sprintf(buf, "%s\n", cache_types[type]);
227 }
228
229 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
230 {
231         return sprintf(buf, "%u\n", this_leaf->level);
232 }
233
234 struct cache_attr {
235         struct attribute attr;
236         ssize_t (*show)(struct cache_info *, char *);
237         ssize_t (*store)(struct cache_info *, const char *, size_t count);
238 };
239
240 #ifdef define_one_ro
241         #undef define_one_ro
242 #endif
243 #define define_one_ro(_name) \
244         static struct cache_attr _name = \
245 __ATTR(_name, 0444, show_##_name, NULL)
246
247 define_one_ro(level);
248 define_one_ro(type);
249 define_one_ro(coherency_line_size);
250 define_one_ro(ways_of_associativity);
251 define_one_ro(size);
252 define_one_ro(number_of_sets);
253 define_one_ro(shared_cpu_map);
254 define_one_ro(attributes);
255
256 static struct attribute * cache_default_attrs[] = {
257         &type.attr,
258         &level.attr,
259         &coherency_line_size.attr,
260         &ways_of_associativity.attr,
261         &attributes.attr,
262         &size.attr,
263         &number_of_sets.attr,
264         &shared_cpu_map.attr,
265         NULL
266 };
267
268 #define to_object(k) container_of(k, struct cache_info, kobj)
269 #define to_attr(a) container_of(a, struct cache_attr, attr)
270
271 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
272 {
273         struct cache_attr *fattr = to_attr(attr);
274         struct cache_info *this_leaf = to_object(kobj);
275         ssize_t ret;
276
277         ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
278         return ret;
279 }
280
281 static const struct sysfs_ops cache_sysfs_ops = {
282         .show   = ia64_cache_show
283 };
284
285 static struct kobj_type cache_ktype = {
286         .sysfs_ops      = &cache_sysfs_ops,
287         .default_attrs  = cache_default_attrs,
288 };
289
290 static struct kobj_type cache_ktype_percpu_entry = {
291         .sysfs_ops      = &cache_sysfs_ops,
292 };
293
294 static void cpu_cache_sysfs_exit(unsigned int cpu)
295 {
296         kfree(all_cpu_cache_info[cpu].cache_leaves);
297         all_cpu_cache_info[cpu].cache_leaves = NULL;
298         all_cpu_cache_info[cpu].num_cache_leaves = 0;
299         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
300         return;
301 }
302
303 static int cpu_cache_sysfs_init(unsigned int cpu)
304 {
305         unsigned long i, levels, unique_caches;
306         pal_cache_config_info_t cci;
307         int j;
308         long status;
309         struct cache_info *this_cache;
310         int num_cache_leaves = 0;
311
312         if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
313                 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
314                 return -1;
315         }
316
317         this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
318                            GFP_KERNEL);
319         if (this_cache == NULL)
320                 return -ENOMEM;
321
322         for (i=0; i < levels; i++) {
323                 for (j=2; j >0 ; j--) {
324                         if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
325                                         PAL_STATUS_SUCCESS)
326                                 continue;
327
328                         this_cache[num_cache_leaves].cci = cci;
329                         this_cache[num_cache_leaves].level = i + 1;
330                         this_cache[num_cache_leaves].type = j;
331
332                         cache_shared_cpu_map_setup(cpu,
333                                         &this_cache[num_cache_leaves]);
334                         num_cache_leaves ++;
335                 }
336         }
337
338         all_cpu_cache_info[cpu].cache_leaves = this_cache;
339         all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
340
341         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
342
343         return 0;
344 }
345
346 /* Add cache interface for CPU device */
347 static int cache_add_dev(unsigned int cpu)
348 {
349         struct device *sys_dev = get_cpu_device(cpu);
350         unsigned long i, j;
351         struct cache_info *this_object;
352         int retval = 0;
353
354         if (all_cpu_cache_info[cpu].kobj.parent)
355                 return 0;
356
357
358         retval = cpu_cache_sysfs_init(cpu);
359         if (unlikely(retval < 0))
360                 return retval;
361
362         retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
363                                       &cache_ktype_percpu_entry, &sys_dev->kobj,
364                                       "%s", "cache");
365         if (unlikely(retval < 0)) {
366                 cpu_cache_sysfs_exit(cpu);
367                 return retval;
368         }
369
370         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
371                 this_object = LEAF_KOBJECT_PTR(cpu,i);
372                 retval = kobject_init_and_add(&(this_object->kobj),
373                                               &cache_ktype,
374                                               &all_cpu_cache_info[cpu].kobj,
375                                               "index%1lu", i);
376                 if (unlikely(retval)) {
377                         for (j = 0; j < i; j++) {
378                                 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
379                         }
380                         kobject_put(&all_cpu_cache_info[cpu].kobj);
381                         cpu_cache_sysfs_exit(cpu);
382                         return retval;
383                 }
384                 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
385         }
386         kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
387         return retval;
388 }
389
390 /* Remove cache interface for CPU device */
391 static int cache_remove_dev(unsigned int cpu)
392 {
393         unsigned long i;
394
395         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
396                 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
397
398         if (all_cpu_cache_info[cpu].kobj.parent) {
399                 kobject_put(&all_cpu_cache_info[cpu].kobj);
400                 memset(&all_cpu_cache_info[cpu].kobj,
401                         0,
402                         sizeof(struct kobject));
403         }
404
405         cpu_cache_sysfs_exit(cpu);
406
407         return 0;
408 }
409
410 static int __init cache_sysfs_init(void)
411 {
412         int ret;
413
414         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
415                                 cache_add_dev, cache_remove_dev);
416         WARN_ON(ret < 0);
417         return 0;
418 }
419 device_initcall(cache_sysfs_init);