Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / arch / ia64 / kernel / time.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/ia64/kernel/time.c
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *      Stephane Eranian <eranian@hpl.hp.com>
7  *      David Mosberger <davidm@hpl.hp.com>
8  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
9  * Copyright (C) 1999-2000 VA Linux Systems
10  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
11  */
12
13 #include <linux/cpu.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/time.h>
20 #include <linux/nmi.h>
21 #include <linux/interrupt.h>
22 #include <linux/efi.h>
23 #include <linux/timex.h>
24 #include <linux/timekeeper_internal.h>
25 #include <linux/platform_device.h>
26 #include <linux/sched/cputime.h>
27
28 #include <asm/delay.h>
29 #include <asm/hw_irq.h>
30 #include <asm/ptrace.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33
34 #include "fsyscall_gtod_data.h"
35 #include "irq.h"
36
37 static u64 itc_get_cycles(struct clocksource *cs);
38
39 struct fsyscall_gtod_data_t fsyscall_gtod_data;
40
41 struct itc_jitter_data_t itc_jitter_data;
42
43 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
44
45 #ifdef CONFIG_IA64_DEBUG_IRQ
46
47 unsigned long last_cli_ip;
48 EXPORT_SYMBOL(last_cli_ip);
49
50 #endif
51
52 static struct clocksource clocksource_itc = {
53         .name           = "itc",
54         .rating         = 350,
55         .read           = itc_get_cycles,
56         .mask           = CLOCKSOURCE_MASK(64),
57         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
58 };
59 static struct clocksource *itc_clocksource;
60
61 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
62
63 #include <linux/kernel_stat.h>
64
65 extern u64 cycle_to_nsec(u64 cyc);
66
67 void vtime_flush(struct task_struct *tsk)
68 {
69         struct thread_info *ti = task_thread_info(tsk);
70         u64 delta;
71
72         if (ti->utime)
73                 account_user_time(tsk, cycle_to_nsec(ti->utime));
74
75         if (ti->gtime)
76                 account_guest_time(tsk, cycle_to_nsec(ti->gtime));
77
78         if (ti->idle_time)
79                 account_idle_time(cycle_to_nsec(ti->idle_time));
80
81         if (ti->stime) {
82                 delta = cycle_to_nsec(ti->stime);
83                 account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
84         }
85
86         if (ti->hardirq_time) {
87                 delta = cycle_to_nsec(ti->hardirq_time);
88                 account_system_index_time(tsk, delta, CPUTIME_IRQ);
89         }
90
91         if (ti->softirq_time) {
92                 delta = cycle_to_nsec(ti->softirq_time);
93                 account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
94         }
95
96         ti->utime = 0;
97         ti->gtime = 0;
98         ti->idle_time = 0;
99         ti->stime = 0;
100         ti->hardirq_time = 0;
101         ti->softirq_time = 0;
102 }
103
104 /*
105  * Called from the context switch with interrupts disabled, to charge all
106  * accumulated times to the current process, and to prepare accounting on
107  * the next process.
108  */
109 void arch_vtime_task_switch(struct task_struct *prev)
110 {
111         struct thread_info *pi = task_thread_info(prev);
112         struct thread_info *ni = task_thread_info(current);
113
114         ni->ac_stamp = pi->ac_stamp;
115         ni->ac_stime = ni->ac_utime = 0;
116 }
117
118 /*
119  * Account time for a transition between system, hard irq or soft irq state.
120  * Note that this function is called with interrupts enabled.
121  */
122 static __u64 vtime_delta(struct task_struct *tsk)
123 {
124         struct thread_info *ti = task_thread_info(tsk);
125         __u64 now, delta_stime;
126
127         WARN_ON_ONCE(!irqs_disabled());
128
129         now = ia64_get_itc();
130         delta_stime = now - ti->ac_stamp;
131         ti->ac_stamp = now;
132
133         return delta_stime;
134 }
135
136 void vtime_account_kernel(struct task_struct *tsk)
137 {
138         struct thread_info *ti = task_thread_info(tsk);
139         __u64 stime = vtime_delta(tsk);
140
141         if (tsk->flags & PF_VCPU)
142                 ti->gtime += stime;
143         else
144                 ti->stime += stime;
145 }
146 EXPORT_SYMBOL_GPL(vtime_account_kernel);
147
148 void vtime_account_idle(struct task_struct *tsk)
149 {
150         struct thread_info *ti = task_thread_info(tsk);
151
152         ti->idle_time += vtime_delta(tsk);
153 }
154
155 void vtime_account_softirq(struct task_struct *tsk)
156 {
157         struct thread_info *ti = task_thread_info(tsk);
158
159         ti->softirq_time += vtime_delta(tsk);
160 }
161
162 void vtime_account_hardirq(struct task_struct *tsk)
163 {
164         struct thread_info *ti = task_thread_info(tsk);
165
166         ti->hardirq_time += vtime_delta(tsk);
167 }
168
169 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
170
171 static irqreturn_t
172 timer_interrupt (int irq, void *dev_id)
173 {
174         unsigned long cur_itm, new_itm, ticks;
175
176         if (cpu_is_offline(smp_processor_id())) {
177                 return IRQ_HANDLED;
178         }
179
180         new_itm = local_cpu_data->itm_next;
181         cur_itm = ia64_get_itc();
182
183         if (!time_after(cur_itm, new_itm)) {
184                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
185                        cur_itm, new_itm);
186                 ticks = 1;
187         } else {
188                 ticks = DIV_ROUND_UP(cur_itm - new_itm,
189                                      local_cpu_data->itm_delta);
190                 new_itm += ticks * local_cpu_data->itm_delta;
191         }
192
193         if (smp_processor_id() != time_keeper_id)
194                 ticks = 0;
195
196         legacy_timer_tick(ticks);
197
198         do {
199                 /*
200                  * If we're too close to the next clock tick for
201                  * comfort, we increase the safety margin by
202                  * intentionally dropping the next tick(s).  We do NOT
203                  * update itm.next because that would force us to call
204                  * xtime_update() which in turn would let our clock run
205                  * too fast (with the potentially devastating effect
206                  * of losing monotony of time).
207                  */
208                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
209                         new_itm += local_cpu_data->itm_delta;
210                 ia64_set_itm(new_itm);
211                 /* double check, in case we got hit by a (slow) PMI: */
212         } while (time_after_eq(ia64_get_itc(), new_itm));
213         return IRQ_HANDLED;
214 }
215
216 /*
217  * Encapsulate access to the itm structure for SMP.
218  */
219 void
220 ia64_cpu_local_tick (void)
221 {
222         int cpu = smp_processor_id();
223         unsigned long shift = 0, delta;
224
225         /* arrange for the cycle counter to generate a timer interrupt: */
226         ia64_set_itv(IA64_TIMER_VECTOR);
227
228         delta = local_cpu_data->itm_delta;
229         /*
230          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
231          * same time:
232          */
233         if (cpu) {
234                 unsigned long hi = 1UL << ia64_fls(cpu);
235                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
236         }
237         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
238         ia64_set_itm(local_cpu_data->itm_next);
239 }
240
241 static int nojitter;
242
243 static int __init nojitter_setup(char *str)
244 {
245         nojitter = 1;
246         printk("Jitter checking for ITC timers disabled\n");
247         return 1;
248 }
249
250 __setup("nojitter", nojitter_setup);
251
252
253 void ia64_init_itm(void)
254 {
255         unsigned long platform_base_freq, itc_freq;
256         struct pal_freq_ratio itc_ratio, proc_ratio;
257         long status, platform_base_drift, itc_drift;
258
259         /*
260          * According to SAL v2.6, we need to use a SAL call to determine the platform base
261          * frequency and then a PAL call to determine the frequency ratio between the ITC
262          * and the base frequency.
263          */
264         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
265                                     &platform_base_freq, &platform_base_drift);
266         if (status != 0) {
267                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
268         } else {
269                 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
270                 if (status != 0)
271                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
272         }
273         if (status != 0) {
274                 /* invent "random" values */
275                 printk(KERN_ERR
276                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
277                 platform_base_freq = 100000000;
278                 platform_base_drift = -1;       /* no drift info */
279                 itc_ratio.num = 3;
280                 itc_ratio.den = 1;
281         }
282         if (platform_base_freq < 40000000) {
283                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
284                        platform_base_freq);
285                 platform_base_freq = 75000000;
286                 platform_base_drift = -1;
287         }
288         if (!proc_ratio.den)
289                 proc_ratio.den = 1;     /* avoid division by zero */
290         if (!itc_ratio.den)
291                 itc_ratio.den = 1;      /* avoid division by zero */
292
293         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
294
295         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
296         printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
297                "ITC freq=%lu.%03luMHz", smp_processor_id(),
298                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
299                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
300
301         if (platform_base_drift != -1) {
302                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
303                 printk("+/-%ldppm\n", itc_drift);
304         } else {
305                 itc_drift = -1;
306                 printk("\n");
307         }
308
309         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
310         local_cpu_data->itc_freq = itc_freq;
311         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
312         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
313                                         + itc_freq/2)/itc_freq;
314
315         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
316 #ifdef CONFIG_SMP
317                 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
318                  * Jitter compensation requires a cmpxchg which may limit
319                  * the scalability of the syscalls for retrieving time.
320                  * The ITC synchronization is usually successful to within a few
321                  * ITC ticks but this is not a sure thing. If you need to improve
322                  * timer performance in SMP situations then boot the kernel with the
323                  * "nojitter" option. However, doing so may result in time fluctuating (maybe
324                  * even going backward) if the ITC offsets between the individual CPUs
325                  * are too large.
326                  */
327                 if (!nojitter)
328                         itc_jitter_data.itc_jitter = 1;
329 #endif
330         } else
331                 /*
332                  * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
333                  * ITC values may fluctuate significantly between processors.
334                  * Clock should not be used for hrtimers. Mark itc as only
335                  * useful for boot and testing.
336                  *
337                  * Note that jitter compensation is off! There is no point of
338                  * synchronizing ITCs since they may be large differentials
339                  * that change over time.
340                  *
341                  * The only way to fix this would be to repeatedly sync the
342                  * ITCs. Until that time we have to avoid ITC.
343                  */
344                 clocksource_itc.rating = 50;
345
346         /* avoid softlock up message when cpu is unplug and plugged again. */
347         touch_softlockup_watchdog();
348
349         /* Setup the CPU local timer tick */
350         ia64_cpu_local_tick();
351
352         if (!itc_clocksource) {
353                 clocksource_register_hz(&clocksource_itc,
354                                                 local_cpu_data->itc_freq);
355                 itc_clocksource = &clocksource_itc;
356         }
357 }
358
359 static u64 itc_get_cycles(struct clocksource *cs)
360 {
361         unsigned long lcycle, now, ret;
362
363         if (!itc_jitter_data.itc_jitter)
364                 return get_cycles();
365
366         lcycle = itc_jitter_data.itc_lastcycle;
367         now = get_cycles();
368         if (lcycle && time_after(lcycle, now))
369                 return lcycle;
370
371         /*
372          * Keep track of the last timer value returned.
373          * In an SMP environment, you could lose out in contention of
374          * cmpxchg. If so, your cmpxchg returns new value which the
375          * winner of contention updated to. Use the new value instead.
376          */
377         ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
378         if (unlikely(ret != lcycle))
379                 return ret;
380
381         return now;
382 }
383
384 void read_persistent_clock64(struct timespec64 *ts)
385 {
386         efi_gettimeofday(ts);
387 }
388
389 void __init
390 time_init (void)
391 {
392         register_percpu_irq(IA64_TIMER_VECTOR, timer_interrupt, IRQF_IRQPOLL,
393                             "timer");
394         ia64_init_itm();
395 }
396
397 /*
398  * Generic udelay assumes that if preemption is allowed and the thread
399  * migrates to another CPU, that the ITC values are synchronized across
400  * all CPUs.
401  */
402 static void
403 ia64_itc_udelay (unsigned long usecs)
404 {
405         unsigned long start = ia64_get_itc();
406         unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
407
408         while (time_before(ia64_get_itc(), end))
409                 cpu_relax();
410 }
411
412 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
413
414 void
415 udelay (unsigned long usecs)
416 {
417         (*ia64_udelay)(usecs);
418 }
419 EXPORT_SYMBOL(udelay);
420
421 /* IA64 doesn't cache the timezone */
422 void update_vsyscall_tz(void)
423 {
424 }
425
426 void update_vsyscall(struct timekeeper *tk)
427 {
428         write_seqcount_begin(&fsyscall_gtod_data.seq);
429
430         /* copy vsyscall data */
431         fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
432         fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
433         fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
434         fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
435         fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
436
437         fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
438         fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
439
440         fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
441                                               + tk->wall_to_monotonic.tv_sec;
442         fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
443                                                 + ((u64)tk->wall_to_monotonic.tv_nsec
444                                                         << tk->tkr_mono.shift);
445
446         /* normalize */
447         while (fsyscall_gtod_data.monotonic_time.snsec >=
448                                         (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
449                 fsyscall_gtod_data.monotonic_time.snsec -=
450                                         ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
451                 fsyscall_gtod_data.monotonic_time.sec++;
452         }
453
454         write_seqcount_end(&fsyscall_gtod_data.seq);
455 }
456