Merge branch 'pcmcia-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo...
[linux-2.6-microblaze.git] / arch / ia64 / kernel / time.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/ia64/kernel/time.c
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *      Stephane Eranian <eranian@hpl.hp.com>
7  *      David Mosberger <davidm@hpl.hp.com>
8  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
9  * Copyright (C) 1999-2000 VA Linux Systems
10  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
11  */
12
13 #include <linux/cpu.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/time.h>
20 #include <linux/nmi.h>
21 #include <linux/interrupt.h>
22 #include <linux/efi.h>
23 #include <linux/timex.h>
24 #include <linux/timekeeper_internal.h>
25 #include <linux/platform_device.h>
26 #include <linux/sched/cputime.h>
27
28 #include <asm/delay.h>
29 #include <asm/efi.h>
30 #include <asm/hw_irq.h>
31 #include <asm/ptrace.h>
32 #include <asm/sal.h>
33 #include <asm/sections.h>
34
35 #include "fsyscall_gtod_data.h"
36 #include "irq.h"
37
38 static u64 itc_get_cycles(struct clocksource *cs);
39
40 struct fsyscall_gtod_data_t fsyscall_gtod_data;
41
42 struct itc_jitter_data_t itc_jitter_data;
43
44 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
45
46 #ifdef CONFIG_IA64_DEBUG_IRQ
47
48 unsigned long last_cli_ip;
49 EXPORT_SYMBOL(last_cli_ip);
50
51 #endif
52
53 static struct clocksource clocksource_itc = {
54         .name           = "itc",
55         .rating         = 350,
56         .read           = itc_get_cycles,
57         .mask           = CLOCKSOURCE_MASK(64),
58         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
59 };
60 static struct clocksource *itc_clocksource;
61
62 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
63
64 #include <linux/kernel_stat.h>
65
66 extern u64 cycle_to_nsec(u64 cyc);
67
68 void vtime_flush(struct task_struct *tsk)
69 {
70         struct thread_info *ti = task_thread_info(tsk);
71         u64 delta;
72
73         if (ti->utime)
74                 account_user_time(tsk, cycle_to_nsec(ti->utime));
75
76         if (ti->gtime)
77                 account_guest_time(tsk, cycle_to_nsec(ti->gtime));
78
79         if (ti->idle_time)
80                 account_idle_time(cycle_to_nsec(ti->idle_time));
81
82         if (ti->stime) {
83                 delta = cycle_to_nsec(ti->stime);
84                 account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
85         }
86
87         if (ti->hardirq_time) {
88                 delta = cycle_to_nsec(ti->hardirq_time);
89                 account_system_index_time(tsk, delta, CPUTIME_IRQ);
90         }
91
92         if (ti->softirq_time) {
93                 delta = cycle_to_nsec(ti->softirq_time);
94                 account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
95         }
96
97         ti->utime = 0;
98         ti->gtime = 0;
99         ti->idle_time = 0;
100         ti->stime = 0;
101         ti->hardirq_time = 0;
102         ti->softirq_time = 0;
103 }
104
105 /*
106  * Called from the context switch with interrupts disabled, to charge all
107  * accumulated times to the current process, and to prepare accounting on
108  * the next process.
109  */
110 void arch_vtime_task_switch(struct task_struct *prev)
111 {
112         struct thread_info *pi = task_thread_info(prev);
113         struct thread_info *ni = task_thread_info(current);
114
115         ni->ac_stamp = pi->ac_stamp;
116         ni->ac_stime = ni->ac_utime = 0;
117 }
118
119 /*
120  * Account time for a transition between system, hard irq or soft irq state.
121  * Note that this function is called with interrupts enabled.
122  */
123 static __u64 vtime_delta(struct task_struct *tsk)
124 {
125         struct thread_info *ti = task_thread_info(tsk);
126         __u64 now, delta_stime;
127
128         WARN_ON_ONCE(!irqs_disabled());
129
130         now = ia64_get_itc();
131         delta_stime = now - ti->ac_stamp;
132         ti->ac_stamp = now;
133
134         return delta_stime;
135 }
136
137 void vtime_account_kernel(struct task_struct *tsk)
138 {
139         struct thread_info *ti = task_thread_info(tsk);
140         __u64 stime = vtime_delta(tsk);
141
142         if (tsk->flags & PF_VCPU)
143                 ti->gtime += stime;
144         else
145                 ti->stime += stime;
146 }
147 EXPORT_SYMBOL_GPL(vtime_account_kernel);
148
149 void vtime_account_idle(struct task_struct *tsk)
150 {
151         struct thread_info *ti = task_thread_info(tsk);
152
153         ti->idle_time += vtime_delta(tsk);
154 }
155
156 void vtime_account_softirq(struct task_struct *tsk)
157 {
158         struct thread_info *ti = task_thread_info(tsk);
159
160         ti->softirq_time += vtime_delta(tsk);
161 }
162
163 void vtime_account_hardirq(struct task_struct *tsk)
164 {
165         struct thread_info *ti = task_thread_info(tsk);
166
167         ti->hardirq_time += vtime_delta(tsk);
168 }
169
170 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
171
172 static irqreturn_t
173 timer_interrupt (int irq, void *dev_id)
174 {
175         unsigned long new_itm;
176
177         if (cpu_is_offline(smp_processor_id())) {
178                 return IRQ_HANDLED;
179         }
180
181         new_itm = local_cpu_data->itm_next;
182
183         if (!time_after(ia64_get_itc(), new_itm))
184                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
185                        ia64_get_itc(), new_itm);
186
187         while (1) {
188                 new_itm += local_cpu_data->itm_delta;
189
190                 legacy_timer_tick(smp_processor_id() == time_keeper_id);
191
192                 local_cpu_data->itm_next = new_itm;
193
194                 if (time_after(new_itm, ia64_get_itc()))
195                         break;
196
197                 /*
198                  * Allow IPIs to interrupt the timer loop.
199                  */
200                 local_irq_enable();
201                 local_irq_disable();
202         }
203
204         do {
205                 /*
206                  * If we're too close to the next clock tick for
207                  * comfort, we increase the safety margin by
208                  * intentionally dropping the next tick(s).  We do NOT
209                  * update itm.next because that would force us to call
210                  * xtime_update() which in turn would let our clock run
211                  * too fast (with the potentially devastating effect
212                  * of losing monotony of time).
213                  */
214                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
215                         new_itm += local_cpu_data->itm_delta;
216                 ia64_set_itm(new_itm);
217                 /* double check, in case we got hit by a (slow) PMI: */
218         } while (time_after_eq(ia64_get_itc(), new_itm));
219         return IRQ_HANDLED;
220 }
221
222 /*
223  * Encapsulate access to the itm structure for SMP.
224  */
225 void
226 ia64_cpu_local_tick (void)
227 {
228         int cpu = smp_processor_id();
229         unsigned long shift = 0, delta;
230
231         /* arrange for the cycle counter to generate a timer interrupt: */
232         ia64_set_itv(IA64_TIMER_VECTOR);
233
234         delta = local_cpu_data->itm_delta;
235         /*
236          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
237          * same time:
238          */
239         if (cpu) {
240                 unsigned long hi = 1UL << ia64_fls(cpu);
241                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
242         }
243         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
244         ia64_set_itm(local_cpu_data->itm_next);
245 }
246
247 static int nojitter;
248
249 static int __init nojitter_setup(char *str)
250 {
251         nojitter = 1;
252         printk("Jitter checking for ITC timers disabled\n");
253         return 1;
254 }
255
256 __setup("nojitter", nojitter_setup);
257
258
259 void ia64_init_itm(void)
260 {
261         unsigned long platform_base_freq, itc_freq;
262         struct pal_freq_ratio itc_ratio, proc_ratio;
263         long status, platform_base_drift, itc_drift;
264
265         /*
266          * According to SAL v2.6, we need to use a SAL call to determine the platform base
267          * frequency and then a PAL call to determine the frequency ratio between the ITC
268          * and the base frequency.
269          */
270         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
271                                     &platform_base_freq, &platform_base_drift);
272         if (status != 0) {
273                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
274         } else {
275                 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
276                 if (status != 0)
277                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
278         }
279         if (status != 0) {
280                 /* invent "random" values */
281                 printk(KERN_ERR
282                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
283                 platform_base_freq = 100000000;
284                 platform_base_drift = -1;       /* no drift info */
285                 itc_ratio.num = 3;
286                 itc_ratio.den = 1;
287         }
288         if (platform_base_freq < 40000000) {
289                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
290                        platform_base_freq);
291                 platform_base_freq = 75000000;
292                 platform_base_drift = -1;
293         }
294         if (!proc_ratio.den)
295                 proc_ratio.den = 1;     /* avoid division by zero */
296         if (!itc_ratio.den)
297                 itc_ratio.den = 1;      /* avoid division by zero */
298
299         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
300
301         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
302         printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
303                "ITC freq=%lu.%03luMHz", smp_processor_id(),
304                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
305                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
306
307         if (platform_base_drift != -1) {
308                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
309                 printk("+/-%ldppm\n", itc_drift);
310         } else {
311                 itc_drift = -1;
312                 printk("\n");
313         }
314
315         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
316         local_cpu_data->itc_freq = itc_freq;
317         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
318         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
319                                         + itc_freq/2)/itc_freq;
320
321         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
322 #ifdef CONFIG_SMP
323                 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
324                  * Jitter compensation requires a cmpxchg which may limit
325                  * the scalability of the syscalls for retrieving time.
326                  * The ITC synchronization is usually successful to within a few
327                  * ITC ticks but this is not a sure thing. If you need to improve
328                  * timer performance in SMP situations then boot the kernel with the
329                  * "nojitter" option. However, doing so may result in time fluctuating (maybe
330                  * even going backward) if the ITC offsets between the individual CPUs
331                  * are too large.
332                  */
333                 if (!nojitter)
334                         itc_jitter_data.itc_jitter = 1;
335 #endif
336         } else
337                 /*
338                  * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
339                  * ITC values may fluctuate significantly between processors.
340                  * Clock should not be used for hrtimers. Mark itc as only
341                  * useful for boot and testing.
342                  *
343                  * Note that jitter compensation is off! There is no point of
344                  * synchronizing ITCs since they may be large differentials
345                  * that change over time.
346                  *
347                  * The only way to fix this would be to repeatedly sync the
348                  * ITCs. Until that time we have to avoid ITC.
349                  */
350                 clocksource_itc.rating = 50;
351
352         /* avoid softlock up message when cpu is unplug and plugged again. */
353         touch_softlockup_watchdog();
354
355         /* Setup the CPU local timer tick */
356         ia64_cpu_local_tick();
357
358         if (!itc_clocksource) {
359                 clocksource_register_hz(&clocksource_itc,
360                                                 local_cpu_data->itc_freq);
361                 itc_clocksource = &clocksource_itc;
362         }
363 }
364
365 static u64 itc_get_cycles(struct clocksource *cs)
366 {
367         unsigned long lcycle, now, ret;
368
369         if (!itc_jitter_data.itc_jitter)
370                 return get_cycles();
371
372         lcycle = itc_jitter_data.itc_lastcycle;
373         now = get_cycles();
374         if (lcycle && time_after(lcycle, now))
375                 return lcycle;
376
377         /*
378          * Keep track of the last timer value returned.
379          * In an SMP environment, you could lose out in contention of
380          * cmpxchg. If so, your cmpxchg returns new value which the
381          * winner of contention updated to. Use the new value instead.
382          */
383         ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
384         if (unlikely(ret != lcycle))
385                 return ret;
386
387         return now;
388 }
389
390 void read_persistent_clock64(struct timespec64 *ts)
391 {
392         efi_gettimeofday(ts);
393 }
394
395 void __init
396 time_init (void)
397 {
398         register_percpu_irq(IA64_TIMER_VECTOR, timer_interrupt, IRQF_IRQPOLL,
399                             "timer");
400         ia64_init_itm();
401 }
402
403 /*
404  * Generic udelay assumes that if preemption is allowed and the thread
405  * migrates to another CPU, that the ITC values are synchronized across
406  * all CPUs.
407  */
408 static void
409 ia64_itc_udelay (unsigned long usecs)
410 {
411         unsigned long start = ia64_get_itc();
412         unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
413
414         while (time_before(ia64_get_itc(), end))
415                 cpu_relax();
416 }
417
418 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
419
420 void
421 udelay (unsigned long usecs)
422 {
423         (*ia64_udelay)(usecs);
424 }
425 EXPORT_SYMBOL(udelay);
426
427 /* IA64 doesn't cache the timezone */
428 void update_vsyscall_tz(void)
429 {
430 }
431
432 void update_vsyscall(struct timekeeper *tk)
433 {
434         write_seqcount_begin(&fsyscall_gtod_data.seq);
435
436         /* copy vsyscall data */
437         fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
438         fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
439         fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
440         fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
441         fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
442
443         fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
444         fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
445
446         fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
447                                               + tk->wall_to_monotonic.tv_sec;
448         fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
449                                                 + ((u64)tk->wall_to_monotonic.tv_nsec
450                                                         << tk->tkr_mono.shift);
451
452         /* normalize */
453         while (fsyscall_gtod_data.monotonic_time.snsec >=
454                                         (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
455                 fsyscall_gtod_data.monotonic_time.snsec -=
456                                         ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
457                 fsyscall_gtod_data.monotonic_time.sec++;
458         }
459
460         write_seqcount_end(&fsyscall_gtod_data.seq);
461 }
462