Merge branch 'pcmcia-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo...
[linux-2.6-microblaze.git] / arch / ia64 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP boot-related support
4  *
5  * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  * Copyright (C) 2001, 2004-2005 Intel Corp
8  *      Rohit Seth <rohit.seth@intel.com>
9  *      Suresh Siddha <suresh.b.siddha@intel.com>
10  *      Gordon Jin <gordon.jin@intel.com>
11  *      Ashok Raj  <ashok.raj@intel.com>
12  *
13  * 01/05/16 Rohit Seth <rohit.seth@intel.com>   Moved SMP booting functions from smp.c to here.
14  * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
15  * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
16  *                                              smp_boot_cpus()/smp_commence() is replaced by
17  *                                              smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
18  * 04/06/21 Ashok Raj           <ashok.raj@intel.com> Added CPU Hotplug Support
19  * 04/12/26 Jin Gordon <gordon.jin@intel.com>
20  * 04/12/26 Rohit Seth <rohit.seth@intel.com>
21  *                                              Add multi-threading and multi-core detection
22  * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
23  *                                              Setup cpu_sibling_map and cpu_core_map
24  */
25
26 #include <linux/module.h>
27 #include <linux/acpi.h>
28 #include <linux/memblock.h>
29 #include <linux/cpu.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/irq.h>
34 #include <linux/kernel.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/mm.h>
37 #include <linux/notifier.h>
38 #include <linux/smp.h>
39 #include <linux/spinlock.h>
40 #include <linux/efi.h>
41 #include <linux/percpu.h>
42 #include <linux/bitops.h>
43
44 #include <linux/atomic.h>
45 #include <asm/cache.h>
46 #include <asm/current.h>
47 #include <asm/delay.h>
48 #include <asm/efi.h>
49 #include <asm/io.h>
50 #include <asm/irq.h>
51 #include <asm/mca.h>
52 #include <asm/page.h>
53 #include <asm/processor.h>
54 #include <asm/ptrace.h>
55 #include <asm/sal.h>
56 #include <asm/tlbflush.h>
57 #include <asm/unistd.h>
58
59 #define SMP_DEBUG 0
60
61 #if SMP_DEBUG
62 #define Dprintk(x...)  printk(x)
63 #else
64 #define Dprintk(x...)
65 #endif
66
67 #ifdef CONFIG_HOTPLUG_CPU
68 #ifdef CONFIG_PERMIT_BSP_REMOVE
69 #define bsp_remove_ok   1
70 #else
71 #define bsp_remove_ok   0
72 #endif
73
74 /*
75  * Global array allocated for NR_CPUS at boot time
76  */
77 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
78
79 /*
80  * start_ap in head.S uses this to store current booting cpu
81  * info.
82  */
83 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
84
85 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
86
87 #else
88 #define set_brendez_area(x)
89 #endif
90
91
92 /*
93  * ITC synchronization related stuff:
94  */
95 #define MASTER  (0)
96 #define SLAVE   (SMP_CACHE_BYTES/8)
97
98 #define NUM_ROUNDS      64      /* magic value */
99 #define NUM_ITERS       5       /* likewise */
100
101 static DEFINE_SPINLOCK(itc_sync_lock);
102 static volatile unsigned long go[SLAVE + 1];
103
104 #define DEBUG_ITC_SYNC  0
105
106 extern void start_ap (void);
107 extern unsigned long ia64_iobase;
108
109 struct task_struct *task_for_booting_cpu;
110
111 /*
112  * State for each CPU
113  */
114 DEFINE_PER_CPU(int, cpu_state);
115
116 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
117 EXPORT_SYMBOL(cpu_core_map);
118 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
119 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
120
121 int smp_num_siblings = 1;
122
123 /* which logical CPU number maps to which CPU (physical APIC ID) */
124 volatile int ia64_cpu_to_sapicid[NR_CPUS];
125 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
126
127 static cpumask_t cpu_callin_map;
128
129 struct smp_boot_data smp_boot_data __initdata;
130
131 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
132
133 char __initdata no_int_routing;
134
135 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
136
137 #ifdef CONFIG_FORCE_CPEI_RETARGET
138 #define CPEI_OVERRIDE_DEFAULT   (1)
139 #else
140 #define CPEI_OVERRIDE_DEFAULT   (0)
141 #endif
142
143 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
144
145 static int __init
146 cmdl_force_cpei(char *str)
147 {
148         int value=0;
149
150         get_option (&str, &value);
151         force_cpei_retarget = value;
152
153         return 1;
154 }
155
156 __setup("force_cpei=", cmdl_force_cpei);
157
158 static int __init
159 nointroute (char *str)
160 {
161         no_int_routing = 1;
162         printk ("no_int_routing on\n");
163         return 1;
164 }
165
166 __setup("nointroute", nointroute);
167
168 static void fix_b0_for_bsp(void)
169 {
170 #ifdef CONFIG_HOTPLUG_CPU
171         int cpuid;
172         static int fix_bsp_b0 = 1;
173
174         cpuid = smp_processor_id();
175
176         /*
177          * Cache the b0 value on the first AP that comes up
178          */
179         if (!(fix_bsp_b0 && cpuid))
180                 return;
181
182         sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
183         printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
184
185         fix_bsp_b0 = 0;
186 #endif
187 }
188
189 void
190 sync_master (void *arg)
191 {
192         unsigned long flags, i;
193
194         go[MASTER] = 0;
195
196         local_irq_save(flags);
197         {
198                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
199                         while (!go[MASTER])
200                                 cpu_relax();
201                         go[MASTER] = 0;
202                         go[SLAVE] = ia64_get_itc();
203                 }
204         }
205         local_irq_restore(flags);
206 }
207
208 /*
209  * Return the number of cycles by which our itc differs from the itc on the master
210  * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
211  * negative that it is behind.
212  */
213 static inline long
214 get_delta (long *rt, long *master)
215 {
216         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
217         unsigned long tcenter, t0, t1, tm;
218         long i;
219
220         for (i = 0; i < NUM_ITERS; ++i) {
221                 t0 = ia64_get_itc();
222                 go[MASTER] = 1;
223                 while (!(tm = go[SLAVE]))
224                         cpu_relax();
225                 go[SLAVE] = 0;
226                 t1 = ia64_get_itc();
227
228                 if (t1 - t0 < best_t1 - best_t0)
229                         best_t0 = t0, best_t1 = t1, best_tm = tm;
230         }
231
232         *rt = best_t1 - best_t0;
233         *master = best_tm - best_t0;
234
235         /* average best_t0 and best_t1 without overflow: */
236         tcenter = (best_t0/2 + best_t1/2);
237         if (best_t0 % 2 + best_t1 % 2 == 2)
238                 ++tcenter;
239         return tcenter - best_tm;
240 }
241
242 /*
243  * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
244  * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
245  * unaccounted-for errors (such as getting a machine check in the middle of a calibration
246  * step).  The basic idea is for the slave to ask the master what itc value it has and to
247  * read its own itc before and after the master responds.  Each iteration gives us three
248  * timestamps:
249  *
250  *      slave           master
251  *
252  *      t0 ---\
253  *             ---\
254  *                 --->
255  *                      tm
256  *                 /---
257  *             /---
258  *      t1 <---
259  *
260  *
261  * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
262  * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
263  * between the slave and the master is symmetric.  Even if the interconnect were
264  * asymmetric, we would still know that the synchronization error is smaller than the
265  * roundtrip latency (t0 - t1).
266  *
267  * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
268  * within one or two cycles.  However, we can only *guarantee* that the synchronization is
269  * accurate to within a round-trip time, which is typically in the range of several
270  * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
271  * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
272  * than half a micro second or so.
273  */
274 void
275 ia64_sync_itc (unsigned int master)
276 {
277         long i, delta, adj, adjust_latency = 0, done = 0;
278         unsigned long flags, rt, master_time_stamp, bound;
279 #if DEBUG_ITC_SYNC
280         struct {
281                 long rt;        /* roundtrip time */
282                 long master;    /* master's timestamp */
283                 long diff;      /* difference between midpoint and master's timestamp */
284                 long lat;       /* estimate of itc adjustment latency */
285         } t[NUM_ROUNDS];
286 #endif
287
288         /*
289          * Make sure local timer ticks are disabled while we sync.  If
290          * they were enabled, we'd have to worry about nasty issues
291          * like setting the ITC ahead of (or a long time before) the
292          * next scheduled tick.
293          */
294         BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
295
296         go[MASTER] = 1;
297
298         if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
299                 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
300                 return;
301         }
302
303         while (go[MASTER])
304                 cpu_relax();    /* wait for master to be ready */
305
306         spin_lock_irqsave(&itc_sync_lock, flags);
307         {
308                 for (i = 0; i < NUM_ROUNDS; ++i) {
309                         delta = get_delta(&rt, &master_time_stamp);
310                         if (delta == 0) {
311                                 done = 1;       /* let's lock on to this... */
312                                 bound = rt;
313                         }
314
315                         if (!done) {
316                                 if (i > 0) {
317                                         adjust_latency += -delta;
318                                         adj = -delta + adjust_latency/4;
319                                 } else
320                                         adj = -delta;
321
322                                 ia64_set_itc(ia64_get_itc() + adj);
323                         }
324 #if DEBUG_ITC_SYNC
325                         t[i].rt = rt;
326                         t[i].master = master_time_stamp;
327                         t[i].diff = delta;
328                         t[i].lat = adjust_latency/4;
329 #endif
330                 }
331         }
332         spin_unlock_irqrestore(&itc_sync_lock, flags);
333
334 #if DEBUG_ITC_SYNC
335         for (i = 0; i < NUM_ROUNDS; ++i)
336                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
337                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
338 #endif
339
340         printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
341                "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
342 }
343
344 /*
345  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
346  */
347 static inline void smp_setup_percpu_timer(void)
348 {
349 }
350
351 static void
352 smp_callin (void)
353 {
354         int cpuid, phys_id, itc_master;
355         struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
356         extern void ia64_init_itm(void);
357         extern volatile int time_keeper_id;
358
359         cpuid = smp_processor_id();
360         phys_id = hard_smp_processor_id();
361         itc_master = time_keeper_id;
362
363         if (cpu_online(cpuid)) {
364                 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
365                        phys_id, cpuid);
366                 BUG();
367         }
368
369         fix_b0_for_bsp();
370
371         /*
372          * numa_node_id() works after this.
373          */
374         set_numa_node(cpu_to_node_map[cpuid]);
375         set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
376
377         spin_lock(&vector_lock);
378         /* Setup the per cpu irq handling data structures */
379         __setup_vector_irq(cpuid);
380         notify_cpu_starting(cpuid);
381         set_cpu_online(cpuid, true);
382         per_cpu(cpu_state, cpuid) = CPU_ONLINE;
383         spin_unlock(&vector_lock);
384
385         smp_setup_percpu_timer();
386
387         ia64_mca_cmc_vector_setup();    /* Setup vector on AP */
388
389         local_irq_enable();
390
391         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
392                 /*
393                  * Synchronize the ITC with the BP.  Need to do this after irqs are
394                  * enabled because ia64_sync_itc() calls smp_call_function_single(), which
395                  * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
396                  * local_bh_enable(), which bugs out if irqs are not enabled...
397                  */
398                 Dprintk("Going to syncup ITC with ITC Master.\n");
399                 ia64_sync_itc(itc_master);
400         }
401
402         /*
403          * Get our bogomips.
404          */
405         ia64_init_itm();
406
407         /*
408          * Delay calibration can be skipped if new processor is identical to the
409          * previous processor.
410          */
411         last_cpuinfo = cpu_data(cpuid - 1);
412         this_cpuinfo = local_cpu_data;
413         if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
414             last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
415             last_cpuinfo->features != this_cpuinfo->features ||
416             last_cpuinfo->revision != this_cpuinfo->revision ||
417             last_cpuinfo->family != this_cpuinfo->family ||
418             last_cpuinfo->archrev != this_cpuinfo->archrev ||
419             last_cpuinfo->model != this_cpuinfo->model)
420                 calibrate_delay();
421         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
422
423         /*
424          * Allow the master to continue.
425          */
426         cpumask_set_cpu(cpuid, &cpu_callin_map);
427         Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
428 }
429
430
431 /*
432  * Activate a secondary processor.  head.S calls this.
433  */
434 int
435 start_secondary (void *unused)
436 {
437         /* Early console may use I/O ports */
438         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
439 #ifndef CONFIG_PRINTK_TIME
440         Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
441 #endif
442         efi_map_pal_code();
443         cpu_init();
444         preempt_disable();
445         smp_callin();
446
447         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
448         return 0;
449 }
450
451 static int
452 do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
453 {
454         int timeout;
455
456         task_for_booting_cpu = idle;
457         Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
458
459         set_brendez_area(cpu);
460         ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
461
462         /*
463          * Wait 10s total for the AP to start
464          */
465         Dprintk("Waiting on callin_map ...");
466         for (timeout = 0; timeout < 100000; timeout++) {
467                 if (cpumask_test_cpu(cpu, &cpu_callin_map))
468                         break;  /* It has booted */
469                 barrier(); /* Make sure we re-read cpu_callin_map */
470                 udelay(100);
471         }
472         Dprintk("\n");
473
474         if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
475                 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
476                 ia64_cpu_to_sapicid[cpu] = -1;
477                 set_cpu_online(cpu, false);  /* was set in smp_callin() */
478                 return -EINVAL;
479         }
480         return 0;
481 }
482
483 static int __init
484 decay (char *str)
485 {
486         int ticks;
487         get_option (&str, &ticks);
488         return 1;
489 }
490
491 __setup("decay=", decay);
492
493 /*
494  * Initialize the logical CPU number to SAPICID mapping
495  */
496 void __init
497 smp_build_cpu_map (void)
498 {
499         int sapicid, cpu, i;
500         int boot_cpu_id = hard_smp_processor_id();
501
502         for (cpu = 0; cpu < NR_CPUS; cpu++) {
503                 ia64_cpu_to_sapicid[cpu] = -1;
504         }
505
506         ia64_cpu_to_sapicid[0] = boot_cpu_id;
507         init_cpu_present(cpumask_of(0));
508         set_cpu_possible(0, true);
509         for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
510                 sapicid = smp_boot_data.cpu_phys_id[i];
511                 if (sapicid == boot_cpu_id)
512                         continue;
513                 set_cpu_present(cpu, true);
514                 set_cpu_possible(cpu, true);
515                 ia64_cpu_to_sapicid[cpu] = sapicid;
516                 cpu++;
517         }
518 }
519
520 /*
521  * Cycle through the APs sending Wakeup IPIs to boot each.
522  */
523 void __init
524 smp_prepare_cpus (unsigned int max_cpus)
525 {
526         int boot_cpu_id = hard_smp_processor_id();
527
528         /*
529          * Initialize the per-CPU profiling counter/multiplier
530          */
531
532         smp_setup_percpu_timer();
533
534         cpumask_set_cpu(0, &cpu_callin_map);
535
536         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
537         ia64_cpu_to_sapicid[0] = boot_cpu_id;
538
539         printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
540
541         current_thread_info()->cpu = 0;
542
543         /*
544          * If SMP should be disabled, then really disable it!
545          */
546         if (!max_cpus) {
547                 printk(KERN_INFO "SMP mode deactivated.\n");
548                 init_cpu_online(cpumask_of(0));
549                 init_cpu_present(cpumask_of(0));
550                 init_cpu_possible(cpumask_of(0));
551                 return;
552         }
553 }
554
555 void smp_prepare_boot_cpu(void)
556 {
557         set_cpu_online(smp_processor_id(), true);
558         cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
559         set_numa_node(cpu_to_node_map[smp_processor_id()]);
560         per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
561 }
562
563 #ifdef CONFIG_HOTPLUG_CPU
564 static inline void
565 clear_cpu_sibling_map(int cpu)
566 {
567         int i;
568
569         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
570                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
571         for_each_cpu(i, &cpu_core_map[cpu])
572                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
573
574         per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
575 }
576
577 static void
578 remove_siblinginfo(int cpu)
579 {
580         int last = 0;
581
582         if (cpu_data(cpu)->threads_per_core == 1 &&
583             cpu_data(cpu)->cores_per_socket == 1) {
584                 cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
585                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
586                 return;
587         }
588
589         last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
590
591         /* remove it from all sibling map's */
592         clear_cpu_sibling_map(cpu);
593 }
594
595 extern void fixup_irqs(void);
596
597 int migrate_platform_irqs(unsigned int cpu)
598 {
599         int new_cpei_cpu;
600         struct irq_data *data = NULL;
601         const struct cpumask *mask;
602         int             retval = 0;
603
604         /*
605          * dont permit CPEI target to removed.
606          */
607         if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
608                 printk ("CPU (%d) is CPEI Target\n", cpu);
609                 if (can_cpei_retarget()) {
610                         /*
611                          * Now re-target the CPEI to a different processor
612                          */
613                         new_cpei_cpu = cpumask_any(cpu_online_mask);
614                         mask = cpumask_of(new_cpei_cpu);
615                         set_cpei_target_cpu(new_cpei_cpu);
616                         data = irq_get_irq_data(ia64_cpe_irq);
617                         /*
618                          * Switch for now, immediately, we need to do fake intr
619                          * as other interrupts, but need to study CPEI behaviour with
620                          * polling before making changes.
621                          */
622                         if (data && data->chip) {
623                                 data->chip->irq_disable(data);
624                                 data->chip->irq_set_affinity(data, mask, false);
625                                 data->chip->irq_enable(data);
626                                 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
627                         }
628                 }
629                 if (!data) {
630                         printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
631                         retval = -EBUSY;
632                 }
633         }
634         return retval;
635 }
636
637 /* must be called with cpucontrol mutex held */
638 int __cpu_disable(void)
639 {
640         int cpu = smp_processor_id();
641
642         /*
643          * dont permit boot processor for now
644          */
645         if (cpu == 0 && !bsp_remove_ok) {
646                 printk ("Your platform does not support removal of BSP\n");
647                 return (-EBUSY);
648         }
649
650         set_cpu_online(cpu, false);
651
652         if (migrate_platform_irqs(cpu)) {
653                 set_cpu_online(cpu, true);
654                 return -EBUSY;
655         }
656
657         remove_siblinginfo(cpu);
658         fixup_irqs();
659         local_flush_tlb_all();
660         cpumask_clear_cpu(cpu, &cpu_callin_map);
661         return 0;
662 }
663
664 void __cpu_die(unsigned int cpu)
665 {
666         unsigned int i;
667
668         for (i = 0; i < 100; i++) {
669                 /* They ack this in play_dead by setting CPU_DEAD */
670                 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
671                 {
672                         printk ("CPU %d is now offline\n", cpu);
673                         return;
674                 }
675                 msleep(100);
676         }
677         printk(KERN_ERR "CPU %u didn't die...\n", cpu);
678 }
679 #endif /* CONFIG_HOTPLUG_CPU */
680
681 void
682 smp_cpus_done (unsigned int dummy)
683 {
684         int cpu;
685         unsigned long bogosum = 0;
686
687         /*
688          * Allow the user to impress friends.
689          */
690
691         for_each_online_cpu(cpu) {
692                 bogosum += cpu_data(cpu)->loops_per_jiffy;
693         }
694
695         printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
696                (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
697 }
698
699 static inline void set_cpu_sibling_map(int cpu)
700 {
701         int i;
702
703         for_each_online_cpu(i) {
704                 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
705                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
706                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
707                         if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
708                                 cpumask_set_cpu(i,
709                                                 &per_cpu(cpu_sibling_map, cpu));
710                                 cpumask_set_cpu(cpu,
711                                                 &per_cpu(cpu_sibling_map, i));
712                         }
713                 }
714         }
715 }
716
717 int
718 __cpu_up(unsigned int cpu, struct task_struct *tidle)
719 {
720         int ret;
721         int sapicid;
722
723         sapicid = ia64_cpu_to_sapicid[cpu];
724         if (sapicid == -1)
725                 return -EINVAL;
726
727         /*
728          * Already booted cpu? not valid anymore since we dont
729          * do idle loop tightspin anymore.
730          */
731         if (cpumask_test_cpu(cpu, &cpu_callin_map))
732                 return -EINVAL;
733
734         per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
735         /* Processor goes to start_secondary(), sets online flag */
736         ret = do_boot_cpu(sapicid, cpu, tidle);
737         if (ret < 0)
738                 return ret;
739
740         if (cpu_data(cpu)->threads_per_core == 1 &&
741             cpu_data(cpu)->cores_per_socket == 1) {
742                 cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
743                 cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
744                 return 0;
745         }
746
747         set_cpu_sibling_map(cpu);
748
749         return 0;
750 }
751
752 /*
753  * Assume that CPUs have been discovered by some platform-dependent interface.  For
754  * SoftSDV/Lion, that would be ACPI.
755  *
756  * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
757  */
758 void __init
759 init_smp_config(void)
760 {
761         struct fptr {
762                 unsigned long fp;
763                 unsigned long gp;
764         } *ap_startup;
765         long sal_ret;
766
767         /* Tell SAL where to drop the APs.  */
768         ap_startup = (struct fptr *) start_ap;
769         sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
770                                        ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
771         if (sal_ret < 0)
772                 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
773                        ia64_sal_strerror(sal_ret));
774 }
775
776 /*
777  * identify_siblings(cpu) gets called from identify_cpu. This populates the 
778  * information related to logical execution units in per_cpu_data structure.
779  */
780 void identify_siblings(struct cpuinfo_ia64 *c)
781 {
782         long status;
783         u16 pltid;
784         pal_logical_to_physical_t info;
785
786         status = ia64_pal_logical_to_phys(-1, &info);
787         if (status != PAL_STATUS_SUCCESS) {
788                 if (status != PAL_STATUS_UNIMPLEMENTED) {
789                         printk(KERN_ERR
790                                 "ia64_pal_logical_to_phys failed with %ld\n",
791                                 status);
792                         return;
793                 }
794
795                 info.overview_ppid = 0;
796                 info.overview_cpp  = 1;
797                 info.overview_tpc  = 1;
798         }
799
800         status = ia64_sal_physical_id_info(&pltid);
801         if (status != PAL_STATUS_SUCCESS) {
802                 if (status != PAL_STATUS_UNIMPLEMENTED)
803                         printk(KERN_ERR
804                                 "ia64_sal_pltid failed with %ld\n",
805                                 status);
806                 return;
807         }
808
809         c->socket_id =  (pltid << 8) | info.overview_ppid;
810
811         if (info.overview_cpp == 1 && info.overview_tpc == 1)
812                 return;
813
814         c->cores_per_socket = info.overview_cpp;
815         c->threads_per_core = info.overview_tpc;
816         c->num_log = info.overview_num_log;
817
818         c->core_id = info.log1_cid;
819         c->thread_id = info.log1_tid;
820 }
821
822 /*
823  * returns non zero, if multi-threading is enabled
824  * on at least one physical package. Due to hotplug cpu
825  * and (maxcpus=), all threads may not necessarily be enabled
826  * even though the processor supports multi-threading.
827  */
828 int is_multithreading_enabled(void)
829 {
830         int i, j;
831
832         for_each_present_cpu(i) {
833                 for_each_present_cpu(j) {
834                         if (j == i)
835                                 continue;
836                         if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
837                                 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
838                                         return 1;
839                         }
840                 }
841         }
842         return 0;
843 }
844 EXPORT_SYMBOL_GPL(is_multithreading_enabled);