Merge tag 'acpi-5.20-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / arch / ia64 / kernel / mca.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * File:        mca.c
4  * Purpose:     Generic MCA handling layer
5  *
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20  *
21  * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23  *
24  * Copyright (C) 2006 FUJITSU LIMITED
25  * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26  *
27  * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
28  *            Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
29  *            added min save state dump, added INIT handler.
30  *
31  * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
32  *            Added setup of CMCI and CPEI IRQs, logging of corrected platform
33  *            errors, completed code for logging of corrected & uncorrected
34  *            machine check errors, and updated for conformance with Nov. 2000
35  *            revision of the SAL 3.0 spec.
36  *
37  * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
38  *            Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
39  *            set SAL default return values, changed error record structure to
40  *            linked list, added init call to sal_get_state_info_size().
41  *
42  * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
43  *            GUID cleanups.
44  *
45  * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
46  *            Added INIT backtrace support.
47  *
48  * 2003-12-08 Keith Owens <kaos@sgi.com>
49  *            smp_call_function() must not be called from interrupt context
50  *            (can deadlock on tasklist_lock).
51  *            Use keventd to call smp_call_function().
52  *
53  * 2004-02-01 Keith Owens <kaos@sgi.com>
54  *            Avoid deadlock when using printk() for MCA and INIT records.
55  *            Delete all record printing code, moved to salinfo_decode in user
56  *            space.  Mark variables and functions static where possible.
57  *            Delete dead variables and functions.  Reorder to remove the need
58  *            for forward declarations and to consolidate related code.
59  *
60  * 2005-08-12 Keith Owens <kaos@sgi.com>
61  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS
62  *            state.
63  *
64  * 2005-10-07 Keith Owens <kaos@sgi.com>
65  *            Add notify_die() hooks.
66  *
67  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
68  *            Add printing support for MCA/INIT.
69  *
70  * 2007-04-27 Russ Anderson <rja@sgi.com>
71  *            Support multiple cpus going through OS_MCA in the same event.
72  */
73 #include <linux/jiffies.h>
74 #include <linux/types.h>
75 #include <linux/init.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/debug.h>
78 #include <linux/sched/task.h>
79 #include <linux/interrupt.h>
80 #include <linux/irq.h>
81 #include <linux/memblock.h>
82 #include <linux/acpi.h>
83 #include <linux/timer.h>
84 #include <linux/module.h>
85 #include <linux/kernel.h>
86 #include <linux/smp.h>
87 #include <linux/workqueue.h>
88 #include <linux/cpumask.h>
89 #include <linux/kdebug.h>
90 #include <linux/cpu.h>
91 #include <linux/gfp.h>
92
93 #include <asm/delay.h>
94 #include <asm/efi.h>
95 #include <asm/meminit.h>
96 #include <asm/page.h>
97 #include <asm/ptrace.h>
98 #include <asm/sal.h>
99 #include <asm/mca.h>
100 #include <asm/mca_asm.h>
101 #include <asm/kexec.h>
102
103 #include <asm/irq.h>
104 #include <asm/hw_irq.h>
105 #include <asm/tlb.h>
106
107 #include "mca_drv.h"
108 #include "entry.h"
109 #include "irq.h"
110
111 #if defined(IA64_MCA_DEBUG_INFO)
112 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
113 #else
114 # define IA64_MCA_DEBUG(fmt...) do {} while (0)
115 #endif
116
117 #define NOTIFY_INIT(event, regs, arg, spin)                             \
118 do {                                                                    \
119         if ((notify_die((event), "INIT", (regs), (arg), 0, 0)           \
120                         == NOTIFY_STOP) && ((spin) == 1))               \
121                 ia64_mca_spin(__func__);                                \
122 } while (0)
123
124 #define NOTIFY_MCA(event, regs, arg, spin)                              \
125 do {                                                                    \
126         if ((notify_die((event), "MCA", (regs), (arg), 0, 0)            \
127                         == NOTIFY_STOP) && ((spin) == 1))               \
128                 ia64_mca_spin(__func__);                                \
129 } while (0)
130
131 /* Used by mca_asm.S */
132 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
133 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
134 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
135 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
136 DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
137
138 unsigned long __per_cpu_mca[NR_CPUS];
139
140 /* In mca_asm.S */
141 extern void                     ia64_os_init_dispatch_monarch (void);
142 extern void                     ia64_os_init_dispatch_slave (void);
143
144 static int monarch_cpu = -1;
145
146 static ia64_mc_info_t           ia64_mc_info;
147
148 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
149 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
150 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
151 #define CPE_HISTORY_LENGTH    5
152 #define CMC_HISTORY_LENGTH    5
153
154 static struct timer_list cpe_poll_timer;
155 static struct timer_list cmc_poll_timer;
156 /*
157  * This variable tells whether we are currently in polling mode.
158  * Start with this in the wrong state so we won't play w/ timers
159  * before the system is ready.
160  */
161 static int cmc_polling_enabled = 1;
162
163 /*
164  * Clearing this variable prevents CPE polling from getting activated
165  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
166  * but encounters problems retrieving CPE logs.  This should only be
167  * necessary for debugging.
168  */
169 static int cpe_poll_enabled = 1;
170
171 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
172
173 static int mca_init __initdata;
174
175 /*
176  * limited & delayed printing support for MCA/INIT handler
177  */
178
179 #define mprintk(fmt...) ia64_mca_printk(fmt)
180
181 #define MLOGBUF_SIZE (512+256*NR_CPUS)
182 #define MLOGBUF_MSGMAX 256
183 static char mlogbuf[MLOGBUF_SIZE];
184 static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
185 static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
186 static unsigned long mlogbuf_start;
187 static unsigned long mlogbuf_end;
188 static unsigned int mlogbuf_finished = 0;
189 static unsigned long mlogbuf_timestamp = 0;
190
191 static int loglevel_save = -1;
192 #define BREAK_LOGLEVEL(__console_loglevel)              \
193         oops_in_progress = 1;                           \
194         if (loglevel_save < 0)                          \
195                 loglevel_save = __console_loglevel;     \
196         __console_loglevel = 15;
197
198 #define RESTORE_LOGLEVEL(__console_loglevel)            \
199         if (loglevel_save >= 0) {                       \
200                 __console_loglevel = loglevel_save;     \
201                 loglevel_save = -1;                     \
202         }                                               \
203         mlogbuf_finished = 0;                           \
204         oops_in_progress = 0;
205
206 /*
207  * Push messages into buffer, print them later if not urgent.
208  */
209 void ia64_mca_printk(const char *fmt, ...)
210 {
211         va_list args;
212         int printed_len;
213         char temp_buf[MLOGBUF_MSGMAX];
214         char *p;
215
216         va_start(args, fmt);
217         printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
218         va_end(args);
219
220         /* Copy the output into mlogbuf */
221         if (oops_in_progress) {
222                 /* mlogbuf was abandoned, use printk directly instead. */
223                 printk("%s", temp_buf);
224         } else {
225                 spin_lock(&mlogbuf_wlock);
226                 for (p = temp_buf; *p; p++) {
227                         unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
228                         if (next != mlogbuf_start) {
229                                 mlogbuf[mlogbuf_end] = *p;
230                                 mlogbuf_end = next;
231                         } else {
232                                 /* buffer full */
233                                 break;
234                         }
235                 }
236                 mlogbuf[mlogbuf_end] = '\0';
237                 spin_unlock(&mlogbuf_wlock);
238         }
239 }
240 EXPORT_SYMBOL(ia64_mca_printk);
241
242 /*
243  * Print buffered messages.
244  *  NOTE: call this after returning normal context. (ex. from salinfod)
245  */
246 void ia64_mlogbuf_dump(void)
247 {
248         char temp_buf[MLOGBUF_MSGMAX];
249         char *p;
250         unsigned long index;
251         unsigned long flags;
252         unsigned int printed_len;
253
254         /* Get output from mlogbuf */
255         while (mlogbuf_start != mlogbuf_end) {
256                 temp_buf[0] = '\0';
257                 p = temp_buf;
258                 printed_len = 0;
259
260                 spin_lock_irqsave(&mlogbuf_rlock, flags);
261
262                 index = mlogbuf_start;
263                 while (index != mlogbuf_end) {
264                         *p = mlogbuf[index];
265                         index = (index + 1) % MLOGBUF_SIZE;
266                         if (!*p)
267                                 break;
268                         p++;
269                         if (++printed_len >= MLOGBUF_MSGMAX - 1)
270                                 break;
271                 }
272                 *p = '\0';
273                 if (temp_buf[0])
274                         printk("%s", temp_buf);
275                 mlogbuf_start = index;
276
277                 mlogbuf_timestamp = 0;
278                 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
279         }
280 }
281 EXPORT_SYMBOL(ia64_mlogbuf_dump);
282
283 /*
284  * Call this if system is going to down or if immediate flushing messages to
285  * console is required. (ex. recovery was failed, crash dump is going to be
286  * invoked, long-wait rendezvous etc.)
287  *  NOTE: this should be called from monarch.
288  */
289 static void ia64_mlogbuf_finish(int wait)
290 {
291         BREAK_LOGLEVEL(console_loglevel);
292
293         ia64_mlogbuf_dump();
294         printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
295                 "MCA/INIT might be dodgy or fail.\n");
296
297         if (!wait)
298                 return;
299
300         /* wait for console */
301         printk("Delaying for 5 seconds...\n");
302         udelay(5*1000000);
303
304         mlogbuf_finished = 1;
305 }
306
307 /*
308  * Print buffered messages from INIT context.
309  */
310 static void ia64_mlogbuf_dump_from_init(void)
311 {
312         if (mlogbuf_finished)
313                 return;
314
315         if (mlogbuf_timestamp &&
316                         time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
317                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
318                         " and the system seems to be messed up.\n");
319                 ia64_mlogbuf_finish(0);
320                 return;
321         }
322
323         if (!spin_trylock(&mlogbuf_rlock)) {
324                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
325                         "Generated messages other than stack dump will be "
326                         "buffered to mlogbuf and will be printed later.\n");
327                 printk(KERN_ERR "INIT: If messages would not printed after "
328                         "this INIT, wait 30sec and assert INIT again.\n");
329                 if (!mlogbuf_timestamp)
330                         mlogbuf_timestamp = jiffies;
331                 return;
332         }
333         spin_unlock(&mlogbuf_rlock);
334         ia64_mlogbuf_dump();
335 }
336
337 static inline void
338 ia64_mca_spin(const char *func)
339 {
340         if (monarch_cpu == smp_processor_id())
341                 ia64_mlogbuf_finish(0);
342         mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
343         while (1)
344                 cpu_relax();
345 }
346 /*
347  * IA64_MCA log support
348  */
349 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
350 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
351
352 typedef struct ia64_state_log_s
353 {
354         spinlock_t      isl_lock;
355         int             isl_index;
356         unsigned long   isl_count;
357         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
358 } ia64_state_log_t;
359
360 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
361
362 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
363 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
364 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
365 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
366 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
367 #define IA64_LOG_INDEX_INC(it) \
368     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
369     ia64_state_log[it].isl_count++;}
370 #define IA64_LOG_INDEX_DEC(it) \
371     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
372 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
373 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
374 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
375
376 static inline void ia64_log_allocate(int it, u64 size)
377 {
378         ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
379                 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
380         if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
381                 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
382
383         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
384                 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
385         if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
386                 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
387 }
388
389 /*
390  * ia64_log_init
391  *      Reset the OS ia64 log buffer
392  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
393  * Outputs      :       None
394  */
395 static void __init
396 ia64_log_init(int sal_info_type)
397 {
398         u64     max_size = 0;
399
400         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
401         IA64_LOG_LOCK_INIT(sal_info_type);
402
403         // SAL will tell us the maximum size of any error record of this type
404         max_size = ia64_sal_get_state_info_size(sal_info_type);
405         if (!max_size)
406                 /* alloc_bootmem() doesn't like zero-sized allocations! */
407                 return;
408
409         // set up OS data structures to hold error info
410         ia64_log_allocate(sal_info_type, max_size);
411 }
412
413 /*
414  * ia64_log_get
415  *
416  *      Get the current MCA log from SAL and copy it into the OS log buffer.
417  *
418  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
419  *              irq_safe    whether you can use printk at this point
420  *  Outputs :   size        (total record length)
421  *              *buffer     (ptr to error record)
422  *
423  */
424 static u64
425 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
426 {
427         sal_log_record_header_t     *log_buffer;
428         u64                         total_len = 0;
429         unsigned long               s;
430
431         IA64_LOG_LOCK(sal_info_type);
432
433         /* Get the process state information */
434         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
435
436         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
437
438         if (total_len) {
439                 IA64_LOG_INDEX_INC(sal_info_type);
440                 IA64_LOG_UNLOCK(sal_info_type);
441                 if (irq_safe) {
442                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
443                                        __func__, sal_info_type, total_len);
444                 }
445                 *buffer = (u8 *) log_buffer;
446                 return total_len;
447         } else {
448                 IA64_LOG_UNLOCK(sal_info_type);
449                 return 0;
450         }
451 }
452
453 /*
454  *  ia64_mca_log_sal_error_record
455  *
456  *  This function retrieves a specified error record type from SAL
457  *  and wakes up any processes waiting for error records.
458  *
459  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
460  *              FIXME: remove MCA and irq_safe.
461  */
462 static void
463 ia64_mca_log_sal_error_record(int sal_info_type)
464 {
465         u8 *buffer;
466         sal_log_record_header_t *rh;
467         u64 size;
468         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
469 #ifdef IA64_MCA_DEBUG_INFO
470         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
471 #endif
472
473         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
474         if (!size)
475                 return;
476
477         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
478
479         if (irq_safe)
480                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
481                         smp_processor_id(),
482                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
483
484         /* Clear logs from corrected errors in case there's no user-level logger */
485         rh = (sal_log_record_header_t *)buffer;
486         if (rh->severity == sal_log_severity_corrected)
487                 ia64_sal_clear_state_info(sal_info_type);
488 }
489
490 /*
491  * search_mca_table
492  *  See if the MCA surfaced in an instruction range
493  *  that has been tagged as recoverable.
494  *
495  *  Inputs
496  *      first   First address range to check
497  *      last    Last address range to check
498  *      ip      Instruction pointer, address we are looking for
499  *
500  * Return value:
501  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
502  */
503 int
504 search_mca_table (const struct mca_table_entry *first,
505                 const struct mca_table_entry *last,
506                 unsigned long ip)
507 {
508         const struct mca_table_entry *curr;
509         u64 curr_start, curr_end;
510
511         curr = first;
512         while (curr <= last) {
513                 curr_start = (u64) &curr->start_addr + curr->start_addr;
514                 curr_end = (u64) &curr->end_addr + curr->end_addr;
515
516                 if ((ip >= curr_start) && (ip <= curr_end)) {
517                         return 1;
518                 }
519                 curr++;
520         }
521         return 0;
522 }
523
524 /* Given an address, look for it in the mca tables. */
525 int mca_recover_range(unsigned long addr)
526 {
527         extern struct mca_table_entry __start___mca_table[];
528         extern struct mca_table_entry __stop___mca_table[];
529
530         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
531 }
532 EXPORT_SYMBOL_GPL(mca_recover_range);
533
534 int cpe_vector = -1;
535 int ia64_cpe_irq = -1;
536
537 static irqreturn_t
538 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
539 {
540         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
541         static int              index;
542         static DEFINE_SPINLOCK(cpe_history_lock);
543
544         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
545                        __func__, cpe_irq, smp_processor_id());
546
547         /* SAL spec states this should run w/ interrupts enabled */
548         local_irq_enable();
549
550         spin_lock(&cpe_history_lock);
551         if (!cpe_poll_enabled && cpe_vector >= 0) {
552
553                 int i, count = 1; /* we know 1 happened now */
554                 unsigned long now = jiffies;
555
556                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
557                         if (now - cpe_history[i] <= HZ)
558                                 count++;
559                 }
560
561                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
562                 if (count >= CPE_HISTORY_LENGTH) {
563
564                         cpe_poll_enabled = 1;
565                         spin_unlock(&cpe_history_lock);
566                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
567
568                         /*
569                          * Corrected errors will still be corrected, but
570                          * make sure there's a log somewhere that indicates
571                          * something is generating more than we can handle.
572                          */
573                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
574
575                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
576
577                         /* lock already released, get out now */
578                         goto out;
579                 } else {
580                         cpe_history[index++] = now;
581                         if (index == CPE_HISTORY_LENGTH)
582                                 index = 0;
583                 }
584         }
585         spin_unlock(&cpe_history_lock);
586 out:
587         /* Get the CPE error record and log it */
588         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
589
590         local_irq_disable();
591
592         return IRQ_HANDLED;
593 }
594
595 /*
596  * ia64_mca_register_cpev
597  *
598  *  Register the corrected platform error vector with SAL.
599  *
600  *  Inputs
601  *      cpev        Corrected Platform Error Vector number
602  *
603  *  Outputs
604  *      None
605  */
606 void
607 ia64_mca_register_cpev (int cpev)
608 {
609         /* Register the CPE interrupt vector with SAL */
610         struct ia64_sal_retval isrv;
611
612         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
613         if (isrv.status) {
614                 printk(KERN_ERR "Failed to register Corrected Platform "
615                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
616                 return;
617         }
618
619         IA64_MCA_DEBUG("%s: corrected platform error "
620                        "vector %#x registered\n", __func__, cpev);
621 }
622
623 /*
624  * ia64_mca_cmc_vector_setup
625  *
626  *  Setup the corrected machine check vector register in the processor.
627  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
628  *  This function is invoked on a per-processor basis.
629  *
630  * Inputs
631  *      None
632  *
633  * Outputs
634  *      None
635  */
636 void
637 ia64_mca_cmc_vector_setup (void)
638 {
639         cmcv_reg_t      cmcv;
640
641         cmcv.cmcv_regval        = 0;
642         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
643         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
644         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
645
646         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
647                        __func__, smp_processor_id(), IA64_CMC_VECTOR);
648
649         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
650                        __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
651 }
652
653 /*
654  * ia64_mca_cmc_vector_disable
655  *
656  *  Mask the corrected machine check vector register in the processor.
657  *  This function is invoked on a per-processor basis.
658  *
659  * Inputs
660  *      dummy(unused)
661  *
662  * Outputs
663  *      None
664  */
665 static void
666 ia64_mca_cmc_vector_disable (void *dummy)
667 {
668         cmcv_reg_t      cmcv;
669
670         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
671
672         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
673         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
674
675         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
676                        __func__, smp_processor_id(), cmcv.cmcv_vector);
677 }
678
679 /*
680  * ia64_mca_cmc_vector_enable
681  *
682  *  Unmask the corrected machine check vector register in the processor.
683  *  This function is invoked on a per-processor basis.
684  *
685  * Inputs
686  *      dummy(unused)
687  *
688  * Outputs
689  *      None
690  */
691 static void
692 ia64_mca_cmc_vector_enable (void *dummy)
693 {
694         cmcv_reg_t      cmcv;
695
696         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
697
698         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
699         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
700
701         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
702                        __func__, smp_processor_id(), cmcv.cmcv_vector);
703 }
704
705 /*
706  * ia64_mca_cmc_vector_disable_keventd
707  *
708  * Called via keventd (smp_call_function() is not safe in interrupt context) to
709  * disable the cmc interrupt vector.
710  */
711 static void
712 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
713 {
714         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
715 }
716
717 /*
718  * ia64_mca_cmc_vector_enable_keventd
719  *
720  * Called via keventd (smp_call_function() is not safe in interrupt context) to
721  * enable the cmc interrupt vector.
722  */
723 static void
724 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
725 {
726         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
727 }
728
729 /*
730  * ia64_mca_wakeup
731  *
732  *      Send an inter-cpu interrupt to wake-up a particular cpu.
733  *
734  *  Inputs  :   cpuid
735  *  Outputs :   None
736  */
737 static void
738 ia64_mca_wakeup(int cpu)
739 {
740         ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
741 }
742
743 /*
744  * ia64_mca_wakeup_all
745  *
746  *      Wakeup all the slave cpus which have rendez'ed previously.
747  *
748  *  Inputs  :   None
749  *  Outputs :   None
750  */
751 static void
752 ia64_mca_wakeup_all(void)
753 {
754         int cpu;
755
756         /* Clear the Rendez checkin flag for all cpus */
757         for_each_online_cpu(cpu) {
758                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
759                         ia64_mca_wakeup(cpu);
760         }
761
762 }
763
764 /*
765  * ia64_mca_rendez_interrupt_handler
766  *
767  *      This is handler used to put slave processors into spinloop
768  *      while the monarch processor does the mca handling and later
769  *      wake each slave up once the monarch is done.  The state
770  *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
771  *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
772  *      the cpu has come out of OS rendezvous.
773  *
774  *  Inputs  :   None
775  *  Outputs :   None
776  */
777 static irqreturn_t
778 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
779 {
780         unsigned long flags;
781         int cpu = smp_processor_id();
782         struct ia64_mca_notify_die nd =
783                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
784
785         /* Mask all interrupts */
786         local_irq_save(flags);
787
788         NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
789
790         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
791         /* Register with the SAL monarch that the slave has
792          * reached SAL
793          */
794         ia64_sal_mc_rendez();
795
796         NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
797
798         /* Wait for the monarch cpu to exit. */
799         while (monarch_cpu != -1)
800                cpu_relax();     /* spin until monarch leaves */
801
802         NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
803
804         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
805         /* Enable all interrupts */
806         local_irq_restore(flags);
807         return IRQ_HANDLED;
808 }
809
810 /*
811  * ia64_mca_wakeup_int_handler
812  *
813  *      The interrupt handler for processing the inter-cpu interrupt to the
814  *      slave cpu which was spinning in the rendez loop.
815  *      Since this spinning is done by turning off the interrupts and
816  *      polling on the wakeup-interrupt bit in the IRR, there is
817  *      nothing useful to be done in the handler.
818  *
819  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
820  *      arg             (Interrupt handler specific argument)
821  *  Outputs :   None
822  *
823  */
824 static irqreturn_t
825 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
826 {
827         return IRQ_HANDLED;
828 }
829
830 /* Function pointer for extra MCA recovery */
831 int (*ia64_mca_ucmc_extension)
832         (void*,struct ia64_sal_os_state*)
833         = NULL;
834
835 int
836 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
837 {
838         if (ia64_mca_ucmc_extension)
839                 return 1;
840
841         ia64_mca_ucmc_extension = fn;
842         return 0;
843 }
844
845 void
846 ia64_unreg_MCA_extension(void)
847 {
848         if (ia64_mca_ucmc_extension)
849                 ia64_mca_ucmc_extension = NULL;
850 }
851
852 EXPORT_SYMBOL(ia64_reg_MCA_extension);
853 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
854
855
856 static inline void
857 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
858 {
859         u64 fslot, tslot, nat;
860         *tr = *fr;
861         fslot = ((unsigned long)fr >> 3) & 63;
862         tslot = ((unsigned long)tr >> 3) & 63;
863         *tnat &= ~(1UL << tslot);
864         nat = (fnat >> fslot) & 1;
865         *tnat |= (nat << tslot);
866 }
867
868 /* Change the comm field on the MCA/INT task to include the pid that
869  * was interrupted, it makes for easier debugging.  If that pid was 0
870  * (swapper or nested MCA/INIT) then use the start of the previous comm
871  * field suffixed with its cpu.
872  */
873
874 static void
875 ia64_mca_modify_comm(const struct task_struct *previous_current)
876 {
877         char *p, comm[sizeof(current->comm)];
878         if (previous_current->pid)
879                 snprintf(comm, sizeof(comm), "%s %d",
880                         current->comm, previous_current->pid);
881         else {
882                 int l;
883                 if ((p = strchr(previous_current->comm, ' ')))
884                         l = p - previous_current->comm;
885                 else
886                         l = strlen(previous_current->comm);
887                 snprintf(comm, sizeof(comm), "%s %*s %d",
888                         current->comm, l, previous_current->comm,
889                         task_thread_info(previous_current)->cpu);
890         }
891         memcpy(current->comm, comm, sizeof(current->comm));
892 }
893
894 static void
895 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
896                 unsigned long *nat)
897 {
898         const struct pal_min_state_area *ms = sos->pal_min_state;
899         const u64 *bank;
900
901         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
902          * pmsa_{xip,xpsr,xfs}
903          */
904         if (ia64_psr(regs)->ic) {
905                 regs->cr_iip = ms->pmsa_iip;
906                 regs->cr_ipsr = ms->pmsa_ipsr;
907                 regs->cr_ifs = ms->pmsa_ifs;
908         } else {
909                 regs->cr_iip = ms->pmsa_xip;
910                 regs->cr_ipsr = ms->pmsa_xpsr;
911                 regs->cr_ifs = ms->pmsa_xfs;
912
913                 sos->iip = ms->pmsa_iip;
914                 sos->ipsr = ms->pmsa_ipsr;
915                 sos->ifs = ms->pmsa_ifs;
916         }
917         regs->pr = ms->pmsa_pr;
918         regs->b0 = ms->pmsa_br0;
919         regs->ar_rsc = ms->pmsa_rsc;
920         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
921         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
922         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
923         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
924         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
925         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
926         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
927         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
928         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
929         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
930         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
931         if (ia64_psr(regs)->bn)
932                 bank = ms->pmsa_bank1_gr;
933         else
934                 bank = ms->pmsa_bank0_gr;
935         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
936         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
937         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
938         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
939         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
940         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
941         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
942         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
943         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
944         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
945         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
946         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
947         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
948         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
949         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
950         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
951 }
952
953 /* On entry to this routine, we are running on the per cpu stack, see
954  * mca_asm.h.  The original stack has not been touched by this event.  Some of
955  * the original stack's registers will be in the RBS on this stack.  This stack
956  * also contains a partial pt_regs and switch_stack, the rest of the data is in
957  * PAL minstate.
958  *
959  * The first thing to do is modify the original stack to look like a blocked
960  * task so we can run backtrace on the original task.  Also mark the per cpu
961  * stack as current to ensure that we use the correct task state, it also means
962  * that we can do backtrace on the MCA/INIT handler code itself.
963  */
964
965 static struct task_struct *
966 ia64_mca_modify_original_stack(struct pt_regs *regs,
967                 const struct switch_stack *sw,
968                 struct ia64_sal_os_state *sos,
969                 const char *type)
970 {
971         char *p;
972         ia64_va va;
973         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
974         const struct pal_min_state_area *ms = sos->pal_min_state;
975         struct task_struct *previous_current;
976         struct pt_regs *old_regs;
977         struct switch_stack *old_sw;
978         unsigned size = sizeof(struct pt_regs) +
979                         sizeof(struct switch_stack) + 16;
980         unsigned long *old_bspstore, *old_bsp;
981         unsigned long *new_bspstore, *new_bsp;
982         unsigned long old_unat, old_rnat, new_rnat, nat;
983         u64 slots, loadrs = regs->loadrs;
984         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
985         u64 ar_bspstore = regs->ar_bspstore;
986         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
987         const char *msg;
988         int cpu = smp_processor_id();
989
990         previous_current = curr_task(cpu);
991         ia64_set_curr_task(cpu, current);
992         if ((p = strchr(current->comm, ' ')))
993                 *p = '\0';
994
995         /* Best effort attempt to cope with MCA/INIT delivered while in
996          * physical mode.
997          */
998         regs->cr_ipsr = ms->pmsa_ipsr;
999         if (ia64_psr(regs)->dt == 0) {
1000                 va.l = r12;
1001                 if (va.f.reg == 0) {
1002                         va.f.reg = 7;
1003                         r12 = va.l;
1004                 }
1005                 va.l = r13;
1006                 if (va.f.reg == 0) {
1007                         va.f.reg = 7;
1008                         r13 = va.l;
1009                 }
1010         }
1011         if (ia64_psr(regs)->rt == 0) {
1012                 va.l = ar_bspstore;
1013                 if (va.f.reg == 0) {
1014                         va.f.reg = 7;
1015                         ar_bspstore = va.l;
1016                 }
1017                 va.l = ar_bsp;
1018                 if (va.f.reg == 0) {
1019                         va.f.reg = 7;
1020                         ar_bsp = va.l;
1021                 }
1022         }
1023
1024         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1025          * have been copied to the old stack, the old stack may fail the
1026          * validation tests below.  So ia64_old_stack() must restore the dirty
1027          * registers from the new stack.  The old and new bspstore probably
1028          * have different alignments, so loadrs calculated on the old bsp
1029          * cannot be used to restore from the new bsp.  Calculate a suitable
1030          * loadrs for the new stack and save it in the new pt_regs, where
1031          * ia64_old_stack() can get it.
1032          */
1033         old_bspstore = (unsigned long *)ar_bspstore;
1034         old_bsp = (unsigned long *)ar_bsp;
1035         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1036         new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1037         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1038         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1039
1040         /* Verify the previous stack state before we change it */
1041         if (user_mode(regs)) {
1042                 msg = "occurred in user space";
1043                 /* previous_current is guaranteed to be valid when the task was
1044                  * in user space, so ...
1045                  */
1046                 ia64_mca_modify_comm(previous_current);
1047                 goto no_mod;
1048         }
1049
1050         if (r13 != sos->prev_IA64_KR_CURRENT) {
1051                 msg = "inconsistent previous current and r13";
1052                 goto no_mod;
1053         }
1054
1055         if (!mca_recover_range(ms->pmsa_iip)) {
1056                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1057                         msg = "inconsistent r12 and r13";
1058                         goto no_mod;
1059                 }
1060                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1061                         msg = "inconsistent ar.bspstore and r13";
1062                         goto no_mod;
1063                 }
1064                 va.p = old_bspstore;
1065                 if (va.f.reg < 5) {
1066                         msg = "old_bspstore is in the wrong region";
1067                         goto no_mod;
1068                 }
1069                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1070                         msg = "inconsistent ar.bsp and r13";
1071                         goto no_mod;
1072                 }
1073                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1074                 if (ar_bspstore + size > r12) {
1075                         msg = "no room for blocked state";
1076                         goto no_mod;
1077                 }
1078         }
1079
1080         ia64_mca_modify_comm(previous_current);
1081
1082         /* Make the original task look blocked.  First stack a struct pt_regs,
1083          * describing the state at the time of interrupt.  mca_asm.S built a
1084          * partial pt_regs, copy it and fill in the blanks using minstate.
1085          */
1086         p = (char *)r12 - sizeof(*regs);
1087         old_regs = (struct pt_regs *)p;
1088         memcpy(old_regs, regs, sizeof(*regs));
1089         old_regs->loadrs = loadrs;
1090         old_unat = old_regs->ar_unat;
1091         finish_pt_regs(old_regs, sos, &old_unat);
1092
1093         /* Next stack a struct switch_stack.  mca_asm.S built a partial
1094          * switch_stack, copy it and fill in the blanks using pt_regs and
1095          * minstate.
1096          *
1097          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1098          * ar.pfs is set to 0.
1099          *
1100          * unwind.c::unw_unwind() does special processing for interrupt frames.
1101          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1102          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1103          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1104          * switch_stack on the original stack so it will unwind correctly when
1105          * unwind.c reads pt_regs.
1106          *
1107          * thread.ksp is updated to point to the synthesized switch_stack.
1108          */
1109         p -= sizeof(struct switch_stack);
1110         old_sw = (struct switch_stack *)p;
1111         memcpy(old_sw, sw, sizeof(*sw));
1112         old_sw->caller_unat = old_unat;
1113         old_sw->ar_fpsr = old_regs->ar_fpsr;
1114         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1115         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1116         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1117         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1118         old_sw->b0 = (u64)ia64_leave_kernel;
1119         old_sw->b1 = ms->pmsa_br1;
1120         old_sw->ar_pfs = 0;
1121         old_sw->ar_unat = old_unat;
1122         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1123         previous_current->thread.ksp = (u64)p - 16;
1124
1125         /* Finally copy the original stack's registers back to its RBS.
1126          * Registers from ar.bspstore through ar.bsp at the time of the event
1127          * are in the current RBS, copy them back to the original stack.  The
1128          * copy must be done register by register because the original bspstore
1129          * and the current one have different alignments, so the saved RNAT
1130          * data occurs at different places.
1131          *
1132          * mca_asm does cover, so the old_bsp already includes all registers at
1133          * the time of MCA/INIT.  It also does flushrs, so all registers before
1134          * this function have been written to backing store on the MCA/INIT
1135          * stack.
1136          */
1137         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1138         old_rnat = regs->ar_rnat;
1139         while (slots--) {
1140                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1141                         new_rnat = ia64_get_rnat(new_bspstore++);
1142                 }
1143                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1144                         *old_bspstore++ = old_rnat;
1145                         old_rnat = 0;
1146                 }
1147                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1148                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1149                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1150                 *old_bspstore++ = *new_bspstore++;
1151         }
1152         old_sw->ar_bspstore = (unsigned long)old_bspstore;
1153         old_sw->ar_rnat = old_rnat;
1154
1155         sos->prev_task = previous_current;
1156         return previous_current;
1157
1158 no_mod:
1159         mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1160                         smp_processor_id(), type, msg);
1161         old_unat = regs->ar_unat;
1162         finish_pt_regs(regs, sos, &old_unat);
1163         return previous_current;
1164 }
1165
1166 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1167  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1168  * not entered rendezvous yet then wait a bit.  The assumption is that any
1169  * slave that has not rendezvoused after a reasonable time is never going to do
1170  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1171  * interrupt, as well as cpus that receive the INIT slave event.
1172  */
1173
1174 static void
1175 ia64_wait_for_slaves(int monarch, const char *type)
1176 {
1177         int c, i , wait;
1178
1179         /*
1180          * wait 5 seconds total for slaves (arbitrary)
1181          */
1182         for (i = 0; i < 5000; i++) {
1183                 wait = 0;
1184                 for_each_online_cpu(c) {
1185                         if (c == monarch)
1186                                 continue;
1187                         if (ia64_mc_info.imi_rendez_checkin[c]
1188                                         == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1189                                 udelay(1000);           /* short wait */
1190                                 wait = 1;
1191                                 break;
1192                         }
1193                 }
1194                 if (!wait)
1195                         goto all_in;
1196         }
1197
1198         /*
1199          * Maybe slave(s) dead. Print buffered messages immediately.
1200          */
1201         ia64_mlogbuf_finish(0);
1202         mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1203         for_each_online_cpu(c) {
1204                 if (c == monarch)
1205                         continue;
1206                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1207                         mprintk(" %d", c);
1208         }
1209         mprintk("\n");
1210         return;
1211
1212 all_in:
1213         mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1214         return;
1215 }
1216
1217 /*  mca_insert_tr
1218  *
1219  *  Switch rid when TR reload and needed!
1220  *  iord: 1: itr, 2: itr;
1221  *
1222 */
1223 static void mca_insert_tr(u64 iord)
1224 {
1225
1226         int i;
1227         u64 old_rr;
1228         struct ia64_tr_entry *p;
1229         unsigned long psr;
1230         int cpu = smp_processor_id();
1231
1232         if (!ia64_idtrs[cpu])
1233                 return;
1234
1235         psr = ia64_clear_ic();
1236         for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1237                 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1238                 if (p->pte & 0x1) {
1239                         old_rr = ia64_get_rr(p->ifa);
1240                         if (old_rr != p->rr) {
1241                                 ia64_set_rr(p->ifa, p->rr);
1242                                 ia64_srlz_d();
1243                         }
1244                         ia64_ptr(iord, p->ifa, p->itir >> 2);
1245                         ia64_srlz_i();
1246                         if (iord & 0x1) {
1247                                 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1248                                 ia64_srlz_i();
1249                         }
1250                         if (iord & 0x2) {
1251                                 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1252                                 ia64_srlz_i();
1253                         }
1254                         if (old_rr != p->rr) {
1255                                 ia64_set_rr(p->ifa, old_rr);
1256                                 ia64_srlz_d();
1257                         }
1258                 }
1259         }
1260         ia64_set_psr(psr);
1261 }
1262
1263 /*
1264  * ia64_mca_handler
1265  *
1266  *      This is uncorrectable machine check handler called from OS_MCA
1267  *      dispatch code which is in turn called from SAL_CHECK().
1268  *      This is the place where the core of OS MCA handling is done.
1269  *      Right now the logs are extracted and displayed in a well-defined
1270  *      format. This handler code is supposed to be run only on the
1271  *      monarch processor. Once the monarch is done with MCA handling
1272  *      further MCA logging is enabled by clearing logs.
1273  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1274  *      slave processors out of rendezvous spinloop.
1275  *
1276  *      If multiple processors call into OS_MCA, the first will become
1277  *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1278  *      bitmask.  After the first monarch has processed its MCA, it
1279  *      will wake up the next cpu in the mca_cpu bitmask and then go
1280  *      into the rendezvous loop.  When all processors have serviced
1281  *      their MCA, the last monarch frees up the rest of the processors.
1282  */
1283 void
1284 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1285                  struct ia64_sal_os_state *sos)
1286 {
1287         int recover, cpu = smp_processor_id();
1288         struct task_struct *previous_current;
1289         struct ia64_mca_notify_die nd =
1290                 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1291         static atomic_t mca_count;
1292         static cpumask_t mca_cpu;
1293
1294         if (atomic_add_return(1, &mca_count) == 1) {
1295                 monarch_cpu = cpu;
1296                 sos->monarch = 1;
1297         } else {
1298                 cpumask_set_cpu(cpu, &mca_cpu);
1299                 sos->monarch = 0;
1300         }
1301         mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1302                 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1303
1304         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1305
1306         NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1307
1308         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1309         if (sos->monarch) {
1310                 ia64_wait_for_slaves(cpu, "MCA");
1311
1312                 /* Wakeup all the processors which are spinning in the
1313                  * rendezvous loop.  They will leave SAL, then spin in the OS
1314                  * with interrupts disabled until this monarch cpu leaves the
1315                  * MCA handler.  That gets control back to the OS so we can
1316                  * backtrace the other cpus, backtrace when spinning in SAL
1317                  * does not work.
1318                  */
1319                 ia64_mca_wakeup_all();
1320         } else {
1321                 while (cpumask_test_cpu(cpu, &mca_cpu))
1322                         cpu_relax();    /* spin until monarch wakes us */
1323         }
1324
1325         NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1326
1327         /* Get the MCA error record and log it */
1328         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1329
1330         /* MCA error recovery */
1331         recover = (ia64_mca_ucmc_extension
1332                 && ia64_mca_ucmc_extension(
1333                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1334                         sos));
1335
1336         if (recover) {
1337                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1338                 rh->severity = sal_log_severity_corrected;
1339                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1340                 sos->os_status = IA64_MCA_CORRECTED;
1341         } else {
1342                 /* Dump buffered message to console */
1343                 ia64_mlogbuf_finish(1);
1344         }
1345
1346         if (__this_cpu_read(ia64_mca_tr_reload)) {
1347                 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1348                 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1349         }
1350
1351         NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1352
1353         if (atomic_dec_return(&mca_count) > 0) {
1354                 int i;
1355
1356                 /* wake up the next monarch cpu,
1357                  * and put this cpu in the rendez loop.
1358                  */
1359                 for_each_online_cpu(i) {
1360                         if (cpumask_test_cpu(i, &mca_cpu)) {
1361                                 monarch_cpu = i;
1362                                 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1363                                 while (monarch_cpu != -1)
1364                                         cpu_relax();    /* spin until last cpu leaves */
1365                                 ia64_set_curr_task(cpu, previous_current);
1366                                 ia64_mc_info.imi_rendez_checkin[cpu]
1367                                                 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1368                                 return;
1369                         }
1370                 }
1371         }
1372         ia64_set_curr_task(cpu, previous_current);
1373         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1374         monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1375 }
1376
1377 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1378 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1379
1380 /*
1381  * ia64_mca_cmc_int_handler
1382  *
1383  *  This is corrected machine check interrupt handler.
1384  *      Right now the logs are extracted and displayed in a well-defined
1385  *      format.
1386  *
1387  * Inputs
1388  *      interrupt number
1389  *      client data arg ptr
1390  *
1391  * Outputs
1392  *      None
1393  */
1394 static irqreturn_t
1395 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1396 {
1397         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1398         static int              index;
1399         static DEFINE_SPINLOCK(cmc_history_lock);
1400
1401         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1402                        __func__, cmc_irq, smp_processor_id());
1403
1404         /* SAL spec states this should run w/ interrupts enabled */
1405         local_irq_enable();
1406
1407         spin_lock(&cmc_history_lock);
1408         if (!cmc_polling_enabled) {
1409                 int i, count = 1; /* we know 1 happened now */
1410                 unsigned long now = jiffies;
1411
1412                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1413                         if (now - cmc_history[i] <= HZ)
1414                                 count++;
1415                 }
1416
1417                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1418                 if (count >= CMC_HISTORY_LENGTH) {
1419
1420                         cmc_polling_enabled = 1;
1421                         spin_unlock(&cmc_history_lock);
1422                         /* If we're being hit with CMC interrupts, we won't
1423                          * ever execute the schedule_work() below.  Need to
1424                          * disable CMC interrupts on this processor now.
1425                          */
1426                         ia64_mca_cmc_vector_disable(NULL);
1427                         schedule_work(&cmc_disable_work);
1428
1429                         /*
1430                          * Corrected errors will still be corrected, but
1431                          * make sure there's a log somewhere that indicates
1432                          * something is generating more than we can handle.
1433                          */
1434                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1435
1436                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1437
1438                         /* lock already released, get out now */
1439                         goto out;
1440                 } else {
1441                         cmc_history[index++] = now;
1442                         if (index == CMC_HISTORY_LENGTH)
1443                                 index = 0;
1444                 }
1445         }
1446         spin_unlock(&cmc_history_lock);
1447 out:
1448         /* Get the CMC error record and log it */
1449         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1450
1451         local_irq_disable();
1452
1453         return IRQ_HANDLED;
1454 }
1455
1456 /*
1457  *  ia64_mca_cmc_int_caller
1458  *
1459  *      Triggered by sw interrupt from CMC polling routine.  Calls
1460  *      real interrupt handler and either triggers a sw interrupt
1461  *      on the next cpu or does cleanup at the end.
1462  *
1463  * Inputs
1464  *      interrupt number
1465  *      client data arg ptr
1466  * Outputs
1467  *      handled
1468  */
1469 static irqreturn_t
1470 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1471 {
1472         static int start_count = -1;
1473         unsigned int cpuid;
1474
1475         cpuid = smp_processor_id();
1476
1477         /* If first cpu, update count */
1478         if (start_count == -1)
1479                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1480
1481         ia64_mca_cmc_int_handler(cmc_irq, arg);
1482
1483         cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1484
1485         if (cpuid < nr_cpu_ids) {
1486                 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1487         } else {
1488                 /* If no log record, switch out of polling mode */
1489                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1490
1491                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1492                         schedule_work(&cmc_enable_work);
1493                         cmc_polling_enabled = 0;
1494
1495                 } else {
1496
1497                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1498                 }
1499
1500                 start_count = -1;
1501         }
1502
1503         return IRQ_HANDLED;
1504 }
1505
1506 /*
1507  *  ia64_mca_cmc_poll
1508  *
1509  *      Poll for Corrected Machine Checks (CMCs)
1510  *
1511  * Inputs   :   dummy(unused)
1512  * Outputs  :   None
1513  *
1514  */
1515 static void
1516 ia64_mca_cmc_poll (struct timer_list *unused)
1517 {
1518         /* Trigger a CMC interrupt cascade  */
1519         ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1520                                                         IA64_IPI_DM_INT, 0);
1521 }
1522
1523 /*
1524  *  ia64_mca_cpe_int_caller
1525  *
1526  *      Triggered by sw interrupt from CPE polling routine.  Calls
1527  *      real interrupt handler and either triggers a sw interrupt
1528  *      on the next cpu or does cleanup at the end.
1529  *
1530  * Inputs
1531  *      interrupt number
1532  *      client data arg ptr
1533  * Outputs
1534  *      handled
1535  */
1536 static irqreturn_t
1537 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1538 {
1539         static int start_count = -1;
1540         static int poll_time = MIN_CPE_POLL_INTERVAL;
1541         unsigned int cpuid;
1542
1543         cpuid = smp_processor_id();
1544
1545         /* If first cpu, update count */
1546         if (start_count == -1)
1547                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1548
1549         ia64_mca_cpe_int_handler(cpe_irq, arg);
1550
1551         cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1552
1553         if (cpuid < NR_CPUS) {
1554                 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1555         } else {
1556                 /*
1557                  * If a log was recorded, increase our polling frequency,
1558                  * otherwise, backoff or return to interrupt mode.
1559                  */
1560                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1561                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1562                 } else if (cpe_vector < 0) {
1563                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1564                 } else {
1565                         poll_time = MIN_CPE_POLL_INTERVAL;
1566
1567                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1568                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1569                         cpe_poll_enabled = 0;
1570                 }
1571
1572                 if (cpe_poll_enabled)
1573                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1574                 start_count = -1;
1575         }
1576
1577         return IRQ_HANDLED;
1578 }
1579
1580 /*
1581  *  ia64_mca_cpe_poll
1582  *
1583  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1584  *      on first cpu, from there it will trickle through all the cpus.
1585  *
1586  * Inputs   :   dummy(unused)
1587  * Outputs  :   None
1588  *
1589  */
1590 static void
1591 ia64_mca_cpe_poll (struct timer_list *unused)
1592 {
1593         /* Trigger a CPE interrupt cascade  */
1594         ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1595                                                         IA64_IPI_DM_INT, 0);
1596 }
1597
1598 static int
1599 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1600 {
1601         int c;
1602         struct task_struct *g, *t;
1603         if (val != DIE_INIT_MONARCH_PROCESS)
1604                 return NOTIFY_DONE;
1605 #ifdef CONFIG_KEXEC
1606         if (atomic_read(&kdump_in_progress))
1607                 return NOTIFY_DONE;
1608 #endif
1609
1610         /*
1611          * FIXME: mlogbuf will brim over with INIT stack dumps.
1612          * To enable show_stack from INIT, we use oops_in_progress which should
1613          * be used in real oops. This would cause something wrong after INIT.
1614          */
1615         BREAK_LOGLEVEL(console_loglevel);
1616         ia64_mlogbuf_dump_from_init();
1617
1618         printk(KERN_ERR "Processes interrupted by INIT -");
1619         for_each_online_cpu(c) {
1620                 struct ia64_sal_os_state *s;
1621                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1622                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1623                 g = s->prev_task;
1624                 if (g) {
1625                         if (g->pid)
1626                                 printk(" %d", g->pid);
1627                         else
1628                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1629                 }
1630         }
1631         printk("\n\n");
1632         if (read_trylock(&tasklist_lock)) {
1633                 do_each_thread (g, t) {
1634                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1635                         show_stack(t, NULL, KERN_DEFAULT);
1636                 } while_each_thread (g, t);
1637                 read_unlock(&tasklist_lock);
1638         }
1639         /* FIXME: This will not restore zapped printk locks. */
1640         RESTORE_LOGLEVEL(console_loglevel);
1641         return NOTIFY_DONE;
1642 }
1643
1644 /*
1645  * C portion of the OS INIT handler
1646  *
1647  * Called from ia64_os_init_dispatch
1648  *
1649  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1650  * this event.  This code is used for both monarch and slave INIT events, see
1651  * sos->monarch.
1652  *
1653  * All INIT events switch to the INIT stack and change the previous process to
1654  * blocked status.  If one of the INIT events is the monarch then we are
1655  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1656  * the processes.  The slave INIT events all spin until the monarch cpu
1657  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1658  * process is the monarch.
1659  */
1660
1661 void
1662 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1663                   struct ia64_sal_os_state *sos)
1664 {
1665         static atomic_t slaves;
1666         static atomic_t monarchs;
1667         struct task_struct *previous_current;
1668         int cpu = smp_processor_id();
1669         struct ia64_mca_notify_die nd =
1670                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1671
1672         NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1673
1674         mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1675                 sos->proc_state_param, cpu, sos->monarch);
1676         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1677
1678         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1679         sos->os_status = IA64_INIT_RESUME;
1680
1681         /* FIXME: Workaround for broken proms that drive all INIT events as
1682          * slaves.  The last slave that enters is promoted to be a monarch.
1683          * Remove this code in September 2006, that gives platforms a year to
1684          * fix their proms and get their customers updated.
1685          */
1686         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1687                 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1688                         __func__, cpu);
1689                 atomic_dec(&slaves);
1690                 sos->monarch = 1;
1691         }
1692
1693         /* FIXME: Workaround for broken proms that drive all INIT events as
1694          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1695          * Remove this code in September 2006, that gives platforms a year to
1696          * fix their proms and get their customers updated.
1697          */
1698         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1699                 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1700                                __func__, cpu);
1701                 atomic_dec(&monarchs);
1702                 sos->monarch = 0;
1703         }
1704
1705         if (!sos->monarch) {
1706                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1707
1708 #ifdef CONFIG_KEXEC
1709                 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1710                         udelay(1000);
1711 #else
1712                 while (monarch_cpu == -1)
1713                         cpu_relax();    /* spin until monarch enters */
1714 #endif
1715
1716                 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1717                 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1718
1719 #ifdef CONFIG_KEXEC
1720                 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1721                         udelay(1000);
1722 #else
1723                 while (monarch_cpu != -1)
1724                         cpu_relax();    /* spin until monarch leaves */
1725 #endif
1726
1727                 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1728
1729                 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1730                 ia64_set_curr_task(cpu, previous_current);
1731                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1732                 atomic_dec(&slaves);
1733                 return;
1734         }
1735
1736         monarch_cpu = cpu;
1737         NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1738
1739         /*
1740          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1741          * generated via the BMC's command-line interface, but since the console is on the
1742          * same serial line, the user will need some time to switch out of the BMC before
1743          * the dump begins.
1744          */
1745         mprintk("Delaying for 5 seconds...\n");
1746         udelay(5*1000000);
1747         ia64_wait_for_slaves(cpu, "INIT");
1748         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1749          * to default_monarch_init_process() above and just print all the
1750          * tasks.
1751          */
1752         NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1753         NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1754
1755         mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1756         atomic_dec(&monarchs);
1757         ia64_set_curr_task(cpu, previous_current);
1758         monarch_cpu = -1;
1759         return;
1760 }
1761
1762 static int __init
1763 ia64_mca_disable_cpe_polling(char *str)
1764 {
1765         cpe_poll_enabled = 0;
1766         return 1;
1767 }
1768
1769 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1770
1771 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1772  * these stacks can never sleep, they cannot return from the kernel to user
1773  * space, they do not appear in a normal ps listing.  So there is no need to
1774  * format most of the fields.
1775  */
1776
1777 static void
1778 format_mca_init_stack(void *mca_data, unsigned long offset,
1779                 const char *type, int cpu)
1780 {
1781         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1782         struct thread_info *ti;
1783         memset(p, 0, KERNEL_STACK_SIZE);
1784         ti = task_thread_info(p);
1785         ti->flags = _TIF_MCA_INIT;
1786         ti->preempt_count = 1;
1787         ti->task = p;
1788         ti->cpu = cpu;
1789         p->stack = ti;
1790         p->__state = TASK_UNINTERRUPTIBLE;
1791         cpumask_set_cpu(cpu, &p->cpus_mask);
1792         INIT_LIST_HEAD(&p->tasks);
1793         p->parent = p->real_parent = p->group_leader = p;
1794         INIT_LIST_HEAD(&p->children);
1795         INIT_LIST_HEAD(&p->sibling);
1796         strncpy(p->comm, type, sizeof(p->comm)-1);
1797 }
1798
1799 /* Caller prevents this from being called after init */
1800 static void * __ref mca_bootmem(void)
1801 {
1802         return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1803 }
1804
1805 /* Do per-CPU MCA-related initialization.  */
1806 void
1807 ia64_mca_cpu_init(void *cpu_data)
1808 {
1809         void *pal_vaddr;
1810         void *data;
1811         long sz = sizeof(struct ia64_mca_cpu);
1812         int cpu = smp_processor_id();
1813         static int first_time = 1;
1814
1815         /*
1816          * Structure will already be allocated if cpu has been online,
1817          * then offlined.
1818          */
1819         if (__per_cpu_mca[cpu]) {
1820                 data = __va(__per_cpu_mca[cpu]);
1821         } else {
1822                 if (first_time) {
1823                         data = mca_bootmem();
1824                         first_time = 0;
1825                 } else
1826                         data = (void *)__get_free_pages(GFP_ATOMIC,
1827                                                         get_order(sz));
1828                 if (!data)
1829                         panic("Could not allocate MCA memory for cpu %d\n",
1830                                         cpu);
1831         }
1832         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1833                 "MCA", cpu);
1834         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1835                 "INIT", cpu);
1836         __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1837
1838         /*
1839          * Stash away a copy of the PTE needed to map the per-CPU page.
1840          * We may need it during MCA recovery.
1841          */
1842         __this_cpu_write(ia64_mca_per_cpu_pte,
1843                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1844
1845         /*
1846          * Also, stash away a copy of the PAL address and the PTE
1847          * needed to map it.
1848          */
1849         pal_vaddr = efi_get_pal_addr();
1850         if (!pal_vaddr)
1851                 return;
1852         __this_cpu_write(ia64_mca_pal_base,
1853                 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1854         __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1855                                                               PAGE_KERNEL)));
1856 }
1857
1858 static int ia64_mca_cpu_online(unsigned int cpu)
1859 {
1860         unsigned long flags;
1861
1862         local_irq_save(flags);
1863         if (!cmc_polling_enabled)
1864                 ia64_mca_cmc_vector_enable(NULL);
1865         local_irq_restore(flags);
1866         return 0;
1867 }
1868
1869 /*
1870  * ia64_mca_init
1871  *
1872  *  Do all the system level mca specific initialization.
1873  *
1874  *      1. Register spinloop and wakeup request interrupt vectors
1875  *
1876  *      2. Register OS_MCA handler entry point
1877  *
1878  *      3. Register OS_INIT handler entry point
1879  *
1880  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1881  *
1882  *  Note that this initialization is done very early before some kernel
1883  *  services are available.
1884  *
1885  *  Inputs  :   None
1886  *
1887  *  Outputs :   None
1888  */
1889 void __init
1890 ia64_mca_init(void)
1891 {
1892         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1893         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1894         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1895         int i;
1896         long rc;
1897         struct ia64_sal_retval isrv;
1898         unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1899         static struct notifier_block default_init_monarch_nb = {
1900                 .notifier_call = default_monarch_init_process,
1901                 .priority = 0/* we need to notified last */
1902         };
1903
1904         IA64_MCA_DEBUG("%s: begin\n", __func__);
1905
1906         /* Clear the Rendez checkin flag for all cpus */
1907         for(i = 0 ; i < NR_CPUS; i++)
1908                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1909
1910         /*
1911          * Register the rendezvous spinloop and wakeup mechanism with SAL
1912          */
1913
1914         /* Register the rendezvous interrupt vector with SAL */
1915         while (1) {
1916                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1917                                               SAL_MC_PARAM_MECHANISM_INT,
1918                                               IA64_MCA_RENDEZ_VECTOR,
1919                                               timeout,
1920                                               SAL_MC_PARAM_RZ_ALWAYS);
1921                 rc = isrv.status;
1922                 if (rc == 0)
1923                         break;
1924                 if (rc == -2) {
1925                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1926                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1927                         timeout = isrv.v0;
1928                         NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1929                         continue;
1930                 }
1931                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1932                        "with SAL (status %ld)\n", rc);
1933                 return;
1934         }
1935
1936         /* Register the wakeup interrupt vector with SAL */
1937         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1938                                       SAL_MC_PARAM_MECHANISM_INT,
1939                                       IA64_MCA_WAKEUP_VECTOR,
1940                                       0, 0);
1941         rc = isrv.status;
1942         if (rc) {
1943                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1944                        "(status %ld)\n", rc);
1945                 return;
1946         }
1947
1948         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1949
1950         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1951         /*
1952          * XXX - disable SAL checksum by setting size to 0; should be
1953          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1954          */
1955         ia64_mc_info.imi_mca_handler_size       = 0;
1956
1957         /* Register the os mca handler with SAL */
1958         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1959                                        ia64_mc_info.imi_mca_handler,
1960                                        ia64_tpa(mca_hldlr_ptr->gp),
1961                                        ia64_mc_info.imi_mca_handler_size,
1962                                        0, 0, 0)))
1963         {
1964                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1965                        "(status %ld)\n", rc);
1966                 return;
1967         }
1968
1969         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1970                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1971
1972         /*
1973          * XXX - disable SAL checksum by setting size to 0, should be
1974          * size of the actual init handler in mca_asm.S.
1975          */
1976         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1977         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1978         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1979         ia64_mc_info.imi_slave_init_handler_size        = 0;
1980
1981         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1982                        ia64_mc_info.imi_monarch_init_handler);
1983
1984         /* Register the os init handler with SAL */
1985         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1986                                        ia64_mc_info.imi_monarch_init_handler,
1987                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1988                                        ia64_mc_info.imi_monarch_init_handler_size,
1989                                        ia64_mc_info.imi_slave_init_handler,
1990                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1991                                        ia64_mc_info.imi_slave_init_handler_size)))
1992         {
1993                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1994                        "(status %ld)\n", rc);
1995                 return;
1996         }
1997         if (register_die_notifier(&default_init_monarch_nb)) {
1998                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1999                 return;
2000         }
2001
2002         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2003
2004         /* Initialize the areas set aside by the OS to buffer the
2005          * platform/processor error states for MCA/INIT/CMC
2006          * handling.
2007          */
2008         ia64_log_init(SAL_INFO_TYPE_MCA);
2009         ia64_log_init(SAL_INFO_TYPE_INIT);
2010         ia64_log_init(SAL_INFO_TYPE_CMC);
2011         ia64_log_init(SAL_INFO_TYPE_CPE);
2012
2013         mca_init = 1;
2014         printk(KERN_INFO "MCA related initialization done\n");
2015 }
2016
2017
2018 /*
2019  * These pieces cannot be done in ia64_mca_init() because it is called before
2020  * early_irq_init() which would wipe out our percpu irq registrations. But we
2021  * cannot leave them until ia64_mca_late_init() because by then all the other
2022  * processors have been brought online and have set their own CMC vectors to
2023  * point at a non-existant action. Called from arch_early_irq_init().
2024  */
2025 void __init ia64_mca_irq_init(void)
2026 {
2027         /*
2028          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2029          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2030          */
2031         register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0,
2032                             "cmc_hndlr");
2033         register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0,
2034                             "cmc_poll");
2035         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2036
2037         /* Setup the MCA rendezvous interrupt vector */
2038         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler,
2039                             0, "mca_rdzv");
2040
2041         /* Setup the MCA wakeup interrupt vector */
2042         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler,
2043                             0, "mca_wkup");
2044
2045         /* Setup the CPEI/P handler */
2046         register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0,
2047                             "cpe_poll");
2048 }
2049
2050 /*
2051  * ia64_mca_late_init
2052  *
2053  *      Opportunity to setup things that require initialization later
2054  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2055  *      platform doesn't support an interrupt driven mechanism.
2056  *
2057  *  Inputs  :   None
2058  *  Outputs :   Status
2059  */
2060 static int __init
2061 ia64_mca_late_init(void)
2062 {
2063         if (!mca_init)
2064                 return 0;
2065
2066         /* Setup the CMCI/P vector and handler */
2067         timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2068
2069         /* Unmask/enable the vector */
2070         cmc_polling_enabled = 0;
2071         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2072                           ia64_mca_cpu_online, NULL);
2073         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2074
2075         /* Setup the CPEI/P vector and handler */
2076         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2077         timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2078
2079         {
2080                 unsigned int irq;
2081
2082                 if (cpe_vector >= 0) {
2083                         /* If platform supports CPEI, enable the irq. */
2084                         irq = local_vector_to_irq(cpe_vector);
2085                         if (irq > 0) {
2086                                 cpe_poll_enabled = 0;
2087                                 irq_set_status_flags(irq, IRQ_PER_CPU);
2088                                 if (request_irq(irq, ia64_mca_cpe_int_handler,
2089                                                 0, "cpe_hndlr", NULL))
2090                                         pr_err("Failed to register cpe_hndlr interrupt\n");
2091                                 ia64_cpe_irq = irq;
2092                                 ia64_mca_register_cpev(cpe_vector);
2093                                 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2094                                         __func__);
2095                                 return 0;
2096                         }
2097                         printk(KERN_ERR "%s: Failed to find irq for CPE "
2098                                         "interrupt handler, vector %d\n",
2099                                         __func__, cpe_vector);
2100                 }
2101                 /* If platform doesn't support CPEI, get the timer going. */
2102                 if (cpe_poll_enabled) {
2103                         ia64_mca_cpe_poll(0UL);
2104                         IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2105                 }
2106         }
2107
2108         return 0;
2109 }
2110
2111 device_initcall(ia64_mca_late_init);