Merge branch 'pcmcia-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo...
[linux-2.6-microblaze.git] / arch / ia64 / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  arch/ia64/kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  * Copyright (C) Intel Corporation, 2005
8  *
9  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
10  *              <anil.s.keshavamurthy@intel.com> adapted from i386
11  */
12
13 #include <linux/kprobes.h>
14 #include <linux/ptrace.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/preempt.h>
18 #include <linux/extable.h>
19 #include <linux/kdebug.h>
20 #include <linux/pgtable.h>
21
22 #include <asm/sections.h>
23 #include <asm/exception.h>
24
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27
28 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
29
30 enum instruction_type {A, I, M, F, B, L, X, u};
31 static enum instruction_type bundle_encoding[32][3] = {
32   { M, I, I },                          /* 00 */
33   { M, I, I },                          /* 01 */
34   { M, I, I },                          /* 02 */
35   { M, I, I },                          /* 03 */
36   { M, L, X },                          /* 04 */
37   { M, L, X },                          /* 05 */
38   { u, u, u },                          /* 06 */
39   { u, u, u },                          /* 07 */
40   { M, M, I },                          /* 08 */
41   { M, M, I },                          /* 09 */
42   { M, M, I },                          /* 0A */
43   { M, M, I },                          /* 0B */
44   { M, F, I },                          /* 0C */
45   { M, F, I },                          /* 0D */
46   { M, M, F },                          /* 0E */
47   { M, M, F },                          /* 0F */
48   { M, I, B },                          /* 10 */
49   { M, I, B },                          /* 11 */
50   { M, B, B },                          /* 12 */
51   { M, B, B },                          /* 13 */
52   { u, u, u },                          /* 14 */
53   { u, u, u },                          /* 15 */
54   { B, B, B },                          /* 16 */
55   { B, B, B },                          /* 17 */
56   { M, M, B },                          /* 18 */
57   { M, M, B },                          /* 19 */
58   { u, u, u },                          /* 1A */
59   { u, u, u },                          /* 1B */
60   { M, F, B },                          /* 1C */
61   { M, F, B },                          /* 1D */
62   { u, u, u },                          /* 1E */
63   { u, u, u },                          /* 1F */
64 };
65
66 /* Insert a long branch code */
67 static void __kprobes set_brl_inst(void *from, void *to)
68 {
69         s64 rel = ((s64) to - (s64) from) >> 4;
70         bundle_t *brl;
71         brl = (bundle_t *) ((u64) from & ~0xf);
72         brl->quad0.template = 0x05;     /* [MLX](stop) */
73         brl->quad0.slot0 = NOP_M_INST;  /* nop.m 0x0 */
74         brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
75         brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
76         /* brl.cond.sptk.many.clr rel<<4 (qp=0) */
77         brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
78 }
79
80 /*
81  * In this function we check to see if the instruction
82  * is IP relative instruction and update the kprobe
83  * inst flag accordingly
84  */
85 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
86                                               uint major_opcode,
87                                               unsigned long kprobe_inst,
88                                               struct kprobe *p)
89 {
90         p->ainsn.inst_flag = 0;
91         p->ainsn.target_br_reg = 0;
92         p->ainsn.slot = slot;
93
94         /* Check for Break instruction
95          * Bits 37:40 Major opcode to be zero
96          * Bits 27:32 X6 to be zero
97          * Bits 32:35 X3 to be zero
98          */
99         if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
100                 /* is a break instruction */
101                 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
102                 return;
103         }
104
105         if (bundle_encoding[template][slot] == B) {
106                 switch (major_opcode) {
107                   case INDIRECT_CALL_OPCODE:
108                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
109                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
110                         break;
111                   case IP_RELATIVE_PREDICT_OPCODE:
112                   case IP_RELATIVE_BRANCH_OPCODE:
113                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
114                         break;
115                   case IP_RELATIVE_CALL_OPCODE:
116                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
117                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
118                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
119                         break;
120                 }
121         } else if (bundle_encoding[template][slot] == X) {
122                 switch (major_opcode) {
123                   case LONG_CALL_OPCODE:
124                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
125                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
126                   break;
127                 }
128         }
129         return;
130 }
131
132 /*
133  * In this function we check to see if the instruction
134  * (qp) cmpx.crel.ctype p1,p2=r2,r3
135  * on which we are inserting kprobe is cmp instruction
136  * with ctype as unc.
137  */
138 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
139                                             uint major_opcode,
140                                             unsigned long kprobe_inst)
141 {
142         cmp_inst_t cmp_inst;
143         uint ctype_unc = 0;
144
145         if (!((bundle_encoding[template][slot] == I) ||
146                 (bundle_encoding[template][slot] == M)))
147                 goto out;
148
149         if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
150                 (major_opcode == 0xE)))
151                 goto out;
152
153         cmp_inst.l = kprobe_inst;
154         if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
155                 /* Integer compare - Register Register (A6 type)*/
156                 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
157                                 &&(cmp_inst.f.c == 1))
158                         ctype_unc = 1;
159         } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
160                 /* Integer compare - Immediate Register (A8 type)*/
161                 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
162                         ctype_unc = 1;
163         }
164 out:
165         return ctype_unc;
166 }
167
168 /*
169  * In this function we check to see if the instruction
170  * on which we are inserting kprobe is supported.
171  * Returns qp value if supported
172  * Returns -EINVAL if unsupported
173  */
174 static int __kprobes unsupported_inst(uint template, uint  slot,
175                                       uint major_opcode,
176                                       unsigned long kprobe_inst,
177                                       unsigned long addr)
178 {
179         int qp;
180
181         qp = kprobe_inst & 0x3f;
182         if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
183                 if (slot == 1 && qp)  {
184                         printk(KERN_WARNING "Kprobes on cmp unc "
185                                         "instruction on slot 1 at <0x%lx> "
186                                         "is not supported\n", addr);
187                         return -EINVAL;
188
189                 }
190                 qp = 0;
191         }
192         else if (bundle_encoding[template][slot] == I) {
193                 if (major_opcode == 0) {
194                         /*
195                          * Check for Integer speculation instruction
196                          * - Bit 33-35 to be equal to 0x1
197                          */
198                         if (((kprobe_inst >> 33) & 0x7) == 1) {
199                                 printk(KERN_WARNING
200                                         "Kprobes on speculation inst at <0x%lx> not supported\n",
201                                                 addr);
202                                 return -EINVAL;
203                         }
204                         /*
205                          * IP relative mov instruction
206                          *  - Bit 27-35 to be equal to 0x30
207                          */
208                         if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
209                                 printk(KERN_WARNING
210                                         "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
211                                                 addr);
212                                 return -EINVAL;
213
214                         }
215                 }
216                 else if ((major_opcode == 5) && !(kprobe_inst & (0xFUl << 33)) &&
217                                 (kprobe_inst & (0x1UL << 12))) {
218                         /* test bit instructions, tbit,tnat,tf
219                          * bit 33-36 to be equal to 0
220                          * bit 12 to be equal to 1
221                          */
222                         if (slot == 1 && qp) {
223                                 printk(KERN_WARNING "Kprobes on test bit "
224                                                 "instruction on slot at <0x%lx> "
225                                                 "is not supported\n", addr);
226                                 return -EINVAL;
227                         }
228                         qp = 0;
229                 }
230         }
231         else if (bundle_encoding[template][slot] == B) {
232                 if (major_opcode == 7) {
233                         /* IP-Relative Predict major code is 7 */
234                         printk(KERN_WARNING "Kprobes on IP-Relative"
235                                         "Predict is not supported\n");
236                         return -EINVAL;
237                 }
238                 else if (major_opcode == 2) {
239                         /* Indirect Predict, major code is 2
240                          * bit 27-32 to be equal to 10 or 11
241                          */
242                         int x6=(kprobe_inst >> 27) & 0x3F;
243                         if ((x6 == 0x10) || (x6 == 0x11)) {
244                                 printk(KERN_WARNING "Kprobes on "
245                                         "Indirect Predict is not supported\n");
246                                 return -EINVAL;
247                         }
248                 }
249         }
250         /* kernel does not use float instruction, here for safety kprobe
251          * will judge whether it is fcmp/flass/float approximation instruction
252          */
253         else if (unlikely(bundle_encoding[template][slot] == F)) {
254                 if ((major_opcode == 4 || major_opcode == 5) &&
255                                 (kprobe_inst  & (0x1 << 12))) {
256                         /* fcmp/fclass unc instruction */
257                         if (slot == 1 && qp) {
258                                 printk(KERN_WARNING "Kprobes on fcmp/fclass "
259                                         "instruction on slot at <0x%lx> "
260                                         "is not supported\n", addr);
261                                 return -EINVAL;
262
263                         }
264                         qp = 0;
265                 }
266                 if ((major_opcode == 0 || major_opcode == 1) &&
267                         (kprobe_inst & (0x1UL << 33))) {
268                         /* float Approximation instruction */
269                         if (slot == 1 && qp) {
270                                 printk(KERN_WARNING "Kprobes on float Approx "
271                                         "instr at <0x%lx> is not supported\n",
272                                                 addr);
273                                 return -EINVAL;
274                         }
275                         qp = 0;
276                 }
277         }
278         return qp;
279 }
280
281 /*
282  * In this function we override the bundle with
283  * the break instruction at the given slot.
284  */
285 static void __kprobes prepare_break_inst(uint template, uint  slot,
286                                          uint major_opcode,
287                                          unsigned long kprobe_inst,
288                                          struct kprobe *p,
289                                          int qp)
290 {
291         unsigned long break_inst = BREAK_INST;
292         bundle_t *bundle = &p->opcode.bundle;
293
294         /*
295          * Copy the original kprobe_inst qualifying predicate(qp)
296          * to the break instruction
297          */
298         break_inst |= qp;
299
300         switch (slot) {
301           case 0:
302                 bundle->quad0.slot0 = break_inst;
303                 break;
304           case 1:
305                 bundle->quad0.slot1_p0 = break_inst;
306                 bundle->quad1.slot1_p1 = break_inst >> (64-46);
307                 break;
308           case 2:
309                 bundle->quad1.slot2 = break_inst;
310                 break;
311         }
312
313         /*
314          * Update the instruction flag, so that we can
315          * emulate the instruction properly after we
316          * single step on original instruction
317          */
318         update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
319 }
320
321 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
322                 unsigned long *kprobe_inst, uint *major_opcode)
323 {
324         unsigned long kprobe_inst_p0, kprobe_inst_p1;
325         unsigned int template;
326
327         template = bundle->quad0.template;
328
329         switch (slot) {
330           case 0:
331                 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
332                 *kprobe_inst = bundle->quad0.slot0;
333                   break;
334           case 1:
335                 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
336                 kprobe_inst_p0 = bundle->quad0.slot1_p0;
337                 kprobe_inst_p1 = bundle->quad1.slot1_p1;
338                 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
339                 break;
340           case 2:
341                 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
342                 *kprobe_inst = bundle->quad1.slot2;
343                 break;
344         }
345 }
346
347 /* Returns non-zero if the addr is in the Interrupt Vector Table */
348 static int __kprobes in_ivt_functions(unsigned long addr)
349 {
350         return (addr >= (unsigned long)__start_ivt_text
351                 && addr < (unsigned long)__end_ivt_text);
352 }
353
354 static int __kprobes valid_kprobe_addr(int template, int slot,
355                                        unsigned long addr)
356 {
357         if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
358                 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
359                                 "at 0x%lx\n", addr);
360                 return -EINVAL;
361         }
362
363         if (in_ivt_functions(addr)) {
364                 printk(KERN_WARNING "Kprobes can't be inserted inside "
365                                 "IVT functions at 0x%lx\n", addr);
366                 return -EINVAL;
367         }
368
369         return 0;
370 }
371
372 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
373 {
374         unsigned int i;
375         i = atomic_add_return(1, &kcb->prev_kprobe_index);
376         kcb->prev_kprobe[i-1].kp = kprobe_running();
377         kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
378 }
379
380 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
381 {
382         unsigned int i;
383         i = atomic_read(&kcb->prev_kprobe_index);
384         __this_cpu_write(current_kprobe, kcb->prev_kprobe[i-1].kp);
385         kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
386         atomic_sub(1, &kcb->prev_kprobe_index);
387 }
388
389 static void __kprobes set_current_kprobe(struct kprobe *p,
390                         struct kprobe_ctlblk *kcb)
391 {
392         __this_cpu_write(current_kprobe, p);
393 }
394
395 static void kretprobe_trampoline(void)
396 {
397 }
398
399 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
400 {
401         regs->cr_iip = __kretprobe_trampoline_handler(regs, kretprobe_trampoline, NULL);
402         /*
403          * By returning a non-zero value, we are telling
404          * kprobe_handler() that we don't want the post_handler
405          * to run (and have re-enabled preemption)
406          */
407         return 1;
408 }
409
410 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
411                                       struct pt_regs *regs)
412 {
413         ri->ret_addr = (kprobe_opcode_t *)regs->b0;
414         ri->fp = NULL;
415
416         /* Replace the return addr with trampoline addr */
417         regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
418 }
419
420 /* Check the instruction in the slot is break */
421 static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
422 {
423         unsigned int major_opcode;
424         unsigned int template = bundle->quad0.template;
425         unsigned long kprobe_inst;
426
427         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
428         if (slot == 1 && bundle_encoding[template][1] == L)
429                 slot++;
430
431         /* Get Kprobe probe instruction at given slot*/
432         get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
433
434         /* For break instruction,
435          * Bits 37:40 Major opcode to be zero
436          * Bits 27:32 X6 to be zero
437          * Bits 32:35 X3 to be zero
438          */
439         if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
440                 /* Not a break instruction */
441                 return 0;
442         }
443
444         /* Is a break instruction */
445         return 1;
446 }
447
448 /*
449  * In this function, we check whether the target bundle modifies IP or
450  * it triggers an exception. If so, it cannot be boostable.
451  */
452 static int __kprobes can_boost(bundle_t *bundle, uint slot,
453                                unsigned long bundle_addr)
454 {
455         unsigned int template = bundle->quad0.template;
456
457         do {
458                 if (search_exception_tables(bundle_addr + slot) ||
459                     __is_ia64_break_inst(bundle, slot))
460                         return 0;       /* exception may occur in this bundle*/
461         } while ((++slot) < 3);
462         template &= 0x1e;
463         if (template >= 0x10 /* including B unit */ ||
464             template == 0x04 /* including X unit */ ||
465             template == 0x06) /* undefined */
466                 return 0;
467
468         return 1;
469 }
470
471 /* Prepare long jump bundle and disables other boosters if need */
472 static void __kprobes prepare_booster(struct kprobe *p)
473 {
474         unsigned long addr = (unsigned long)p->addr & ~0xFULL;
475         unsigned int slot = (unsigned long)p->addr & 0xf;
476         struct kprobe *other_kp;
477
478         if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
479                 set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
480                 p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
481         }
482
483         /* disables boosters in previous slots */
484         for (; addr < (unsigned long)p->addr; addr++) {
485                 other_kp = get_kprobe((void *)addr);
486                 if (other_kp)
487                         other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
488         }
489 }
490
491 int __kprobes arch_prepare_kprobe(struct kprobe *p)
492 {
493         unsigned long addr = (unsigned long) p->addr;
494         unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
495         unsigned long kprobe_inst=0;
496         unsigned int slot = addr & 0xf, template, major_opcode = 0;
497         bundle_t *bundle;
498         int qp;
499
500         bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
501         template = bundle->quad0.template;
502
503         if(valid_kprobe_addr(template, slot, addr))
504                 return -EINVAL;
505
506         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
507         if (slot == 1 && bundle_encoding[template][1] == L)
508                 slot++;
509
510         /* Get kprobe_inst and major_opcode from the bundle */
511         get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
512
513         qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
514         if (qp < 0)
515                 return -EINVAL;
516
517         p->ainsn.insn = get_insn_slot();
518         if (!p->ainsn.insn)
519                 return -ENOMEM;
520         memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
521         memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
522
523         prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
524
525         prepare_booster(p);
526
527         return 0;
528 }
529
530 void __kprobes arch_arm_kprobe(struct kprobe *p)
531 {
532         unsigned long arm_addr;
533         bundle_t *src, *dest;
534
535         arm_addr = ((unsigned long)p->addr) & ~0xFUL;
536         dest = &((kprobe_opcode_t *)arm_addr)->bundle;
537         src = &p->opcode.bundle;
538
539         flush_icache_range((unsigned long)p->ainsn.insn,
540                            (unsigned long)p->ainsn.insn +
541                            sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
542
543         switch (p->ainsn.slot) {
544                 case 0:
545                         dest->quad0.slot0 = src->quad0.slot0;
546                         break;
547                 case 1:
548                         dest->quad1.slot1_p1 = src->quad1.slot1_p1;
549                         break;
550                 case 2:
551                         dest->quad1.slot2 = src->quad1.slot2;
552                         break;
553         }
554         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
555 }
556
557 void __kprobes arch_disarm_kprobe(struct kprobe *p)
558 {
559         unsigned long arm_addr;
560         bundle_t *src, *dest;
561
562         arm_addr = ((unsigned long)p->addr) & ~0xFUL;
563         dest = &((kprobe_opcode_t *)arm_addr)->bundle;
564         /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
565         src = &p->ainsn.insn->bundle;
566         switch (p->ainsn.slot) {
567                 case 0:
568                         dest->quad0.slot0 = src->quad0.slot0;
569                         break;
570                 case 1:
571                         dest->quad1.slot1_p1 = src->quad1.slot1_p1;
572                         break;
573                 case 2:
574                         dest->quad1.slot2 = src->quad1.slot2;
575                         break;
576         }
577         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
578 }
579
580 void __kprobes arch_remove_kprobe(struct kprobe *p)
581 {
582         if (p->ainsn.insn) {
583                 free_insn_slot(p->ainsn.insn,
584                                p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
585                 p->ainsn.insn = NULL;
586         }
587 }
588 /*
589  * We are resuming execution after a single step fault, so the pt_regs
590  * structure reflects the register state after we executed the instruction
591  * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
592  * the ip to point back to the original stack address. To set the IP address
593  * to original stack address, handle the case where we need to fixup the
594  * relative IP address and/or fixup branch register.
595  */
596 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
597 {
598         unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
599         unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
600         unsigned long template;
601         int slot = ((unsigned long)p->addr & 0xf);
602
603         template = p->ainsn.insn->bundle.quad0.template;
604
605         if (slot == 1 && bundle_encoding[template][1] == L)
606                 slot = 2;
607
608         if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
609
610                 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
611                         /* Fix relative IP address */
612                         regs->cr_iip = (regs->cr_iip - bundle_addr) +
613                                         resume_addr;
614                 }
615
616                 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
617                 /*
618                  * Fix target branch register, software convention is
619                  * to use either b0 or b6 or b7, so just checking
620                  * only those registers
621                  */
622                         switch (p->ainsn.target_br_reg) {
623                         case 0:
624                                 if ((regs->b0 == bundle_addr) ||
625                                         (regs->b0 == bundle_addr + 0x10)) {
626                                         regs->b0 = (regs->b0 - bundle_addr) +
627                                                 resume_addr;
628                                 }
629                                 break;
630                         case 6:
631                                 if ((regs->b6 == bundle_addr) ||
632                                         (regs->b6 == bundle_addr + 0x10)) {
633                                         regs->b6 = (regs->b6 - bundle_addr) +
634                                                 resume_addr;
635                                 }
636                                 break;
637                         case 7:
638                                 if ((regs->b7 == bundle_addr) ||
639                                         (regs->b7 == bundle_addr + 0x10)) {
640                                         regs->b7 = (regs->b7 - bundle_addr) +
641                                                 resume_addr;
642                                 }
643                                 break;
644                         } /* end switch */
645                 }
646                 goto turn_ss_off;
647         }
648
649         if (slot == 2) {
650                 if (regs->cr_iip == bundle_addr + 0x10) {
651                         regs->cr_iip = resume_addr + 0x10;
652                 }
653         } else {
654                 if (regs->cr_iip == bundle_addr) {
655                         regs->cr_iip = resume_addr;
656                 }
657         }
658
659 turn_ss_off:
660         /* Turn off Single Step bit */
661         ia64_psr(regs)->ss = 0;
662 }
663
664 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
665 {
666         unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
667         unsigned long slot = (unsigned long)p->addr & 0xf;
668
669         /* single step inline if break instruction */
670         if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
671                 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
672         else
673                 regs->cr_iip = bundle_addr & ~0xFULL;
674
675         if (slot > 2)
676                 slot = 0;
677
678         ia64_psr(regs)->ri = slot;
679
680         /* turn on single stepping */
681         ia64_psr(regs)->ss = 1;
682 }
683
684 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
685 {
686         unsigned int slot = ia64_psr(regs)->ri;
687         unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
688         bundle_t bundle;
689
690         memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
691
692         return __is_ia64_break_inst(&bundle, slot);
693 }
694
695 static int __kprobes pre_kprobes_handler(struct die_args *args)
696 {
697         struct kprobe *p;
698         int ret = 0;
699         struct pt_regs *regs = args->regs;
700         kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
701         struct kprobe_ctlblk *kcb;
702
703         /*
704          * We don't want to be preempted for the entire
705          * duration of kprobe processing
706          */
707         preempt_disable();
708         kcb = get_kprobe_ctlblk();
709
710         /* Handle recursion cases */
711         if (kprobe_running()) {
712                 p = get_kprobe(addr);
713                 if (p) {
714                         if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
715                              (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
716                                 ia64_psr(regs)->ss = 0;
717                                 goto no_kprobe;
718                         }
719                         /* We have reentered the pre_kprobe_handler(), since
720                          * another probe was hit while within the handler.
721                          * We here save the original kprobes variables and
722                          * just single step on the instruction of the new probe
723                          * without calling any user handlers.
724                          */
725                         save_previous_kprobe(kcb);
726                         set_current_kprobe(p, kcb);
727                         kprobes_inc_nmissed_count(p);
728                         prepare_ss(p, regs);
729                         kcb->kprobe_status = KPROBE_REENTER;
730                         return 1;
731                 } else if (!is_ia64_break_inst(regs)) {
732                         /* The breakpoint instruction was removed by
733                          * another cpu right after we hit, no further
734                          * handling of this interrupt is appropriate
735                          */
736                         ret = 1;
737                         goto no_kprobe;
738                 } else {
739                         /* Not our break */
740                         goto no_kprobe;
741                 }
742         }
743
744         p = get_kprobe(addr);
745         if (!p) {
746                 if (!is_ia64_break_inst(regs)) {
747                         /*
748                          * The breakpoint instruction was removed right
749                          * after we hit it.  Another cpu has removed
750                          * either a probepoint or a debugger breakpoint
751                          * at this address.  In either case, no further
752                          * handling of this interrupt is appropriate.
753                          */
754                         ret = 1;
755
756                 }
757
758                 /* Not one of our break, let kernel handle it */
759                 goto no_kprobe;
760         }
761
762         set_current_kprobe(p, kcb);
763         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
764
765         if (p->pre_handler && p->pre_handler(p, regs)) {
766                 reset_current_kprobe();
767                 preempt_enable_no_resched();
768                 return 1;
769         }
770
771 #if !defined(CONFIG_PREEMPTION)
772         if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
773                 /* Boost up -- we can execute copied instructions directly */
774                 ia64_psr(regs)->ri = p->ainsn.slot;
775                 regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
776                 /* turn single stepping off */
777                 ia64_psr(regs)->ss = 0;
778
779                 reset_current_kprobe();
780                 preempt_enable_no_resched();
781                 return 1;
782         }
783 #endif
784         prepare_ss(p, regs);
785         kcb->kprobe_status = KPROBE_HIT_SS;
786         return 1;
787
788 no_kprobe:
789         preempt_enable_no_resched();
790         return ret;
791 }
792
793 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
794 {
795         struct kprobe *cur = kprobe_running();
796         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
797
798         if (!cur)
799                 return 0;
800
801         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
802                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
803                 cur->post_handler(cur, regs, 0);
804         }
805
806         resume_execution(cur, regs);
807
808         /*Restore back the original saved kprobes variables and continue. */
809         if (kcb->kprobe_status == KPROBE_REENTER) {
810                 restore_previous_kprobe(kcb);
811                 goto out;
812         }
813         reset_current_kprobe();
814
815 out:
816         preempt_enable_no_resched();
817         return 1;
818 }
819
820 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
821 {
822         struct kprobe *cur = kprobe_running();
823         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
824
825
826         switch(kcb->kprobe_status) {
827         case KPROBE_HIT_SS:
828         case KPROBE_REENTER:
829                 /*
830                  * We are here because the instruction being single
831                  * stepped caused a page fault. We reset the current
832                  * kprobe and the instruction pointer points back to
833                  * the probe address and allow the page fault handler
834                  * to continue as a normal page fault.
835                  */
836                 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
837                 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
838                 if (kcb->kprobe_status == KPROBE_REENTER)
839                         restore_previous_kprobe(kcb);
840                 else
841                         reset_current_kprobe();
842                 preempt_enable_no_resched();
843                 break;
844         case KPROBE_HIT_ACTIVE:
845         case KPROBE_HIT_SSDONE:
846                 /*
847                  * We increment the nmissed count for accounting,
848                  * we can also use npre/npostfault count for accounting
849                  * these specific fault cases.
850                  */
851                 kprobes_inc_nmissed_count(cur);
852
853                 /*
854                  * We come here because instructions in the pre/post
855                  * handler caused the page_fault, this could happen
856                  * if handler tries to access user space by
857                  * copy_from_user(), get_user() etc. Let the
858                  * user-specified handler try to fix it first.
859                  */
860                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
861                         return 1;
862                 /*
863                  * In case the user-specified fault handler returned
864                  * zero, try to fix up.
865                  */
866                 if (ia64_done_with_exception(regs))
867                         return 1;
868
869                 /*
870                  * Let ia64_do_page_fault() fix it.
871                  */
872                 break;
873         default:
874                 break;
875         }
876
877         return 0;
878 }
879
880 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
881                                        unsigned long val, void *data)
882 {
883         struct die_args *args = (struct die_args *)data;
884         int ret = NOTIFY_DONE;
885
886         if (args->regs && user_mode(args->regs))
887                 return ret;
888
889         switch(val) {
890         case DIE_BREAK:
891                 /* err is break number from ia64_bad_break() */
892                 if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
893                         || args->err == 0)
894                         if (pre_kprobes_handler(args))
895                                 ret = NOTIFY_STOP;
896                 break;
897         case DIE_FAULT:
898                 /* err is vector number from ia64_fault() */
899                 if (args->err == 36)
900                         if (post_kprobes_handler(args->regs))
901                                 ret = NOTIFY_STOP;
902                 break;
903         default:
904                 break;
905         }
906         return ret;
907 }
908
909 unsigned long arch_deref_entry_point(void *entry)
910 {
911         return ((struct fnptr *)entry)->ip;
912 }
913
914 static struct kprobe trampoline_p = {
915         .pre_handler = trampoline_probe_handler
916 };
917
918 int __init arch_init_kprobes(void)
919 {
920         trampoline_p.addr =
921                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
922         return register_kprobe(&trampoline_p);
923 }
924
925 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
926 {
927         if (p->addr ==
928                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
929                 return 1;
930
931         return 0;
932 }