Merge tag 'for-linus-5.8b-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / ia64 / kernel / efi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Extensible Firmware Interface
4  *
5  * Based on Extensible Firmware Interface Specification version 0.9
6  * April 30, 1999
7  *
8  * Copyright (C) 1999 VA Linux Systems
9  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10  * Copyright (C) 1999-2003 Hewlett-Packard Co.
11  *      David Mosberger-Tang <davidm@hpl.hp.com>
12  *      Stephane Eranian <eranian@hpl.hp.com>
13  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
15  *
16  * All EFI Runtime Services are not implemented yet as EFI only
17  * supports physical mode addressing on SoftSDV. This is to be fixed
18  * in a future version.  --drummond 1999-07-20
19  *
20  * Implemented EFI runtime services and virtual mode calls.  --davidm
21  *
22  * Goutham Rao: <goutham.rao@intel.com>
23  *      Skip non-WB memory and ignore empty memory ranges.
24  */
25 #include <linux/module.h>
26 #include <linux/memblock.h>
27 #include <linux/crash_dump.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/efi.h>
34 #include <linux/kexec.h>
35 #include <linux/mm.h>
36
37 #include <asm/io.h>
38 #include <asm/kregs.h>
39 #include <asm/meminit.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44
45 #define EFI_DEBUG       0
46
47 #define ESI_TABLE_GUID                                  \
48     EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3,          \
49              0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
50
51 static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
52 static __initdata unsigned long palo_phys;
53
54 unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
55 unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
56 unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
57
58 static const efi_config_table_type_t arch_tables[] __initconst = {
59         {ESI_TABLE_GUID,                                &esi_phys,              "ESI"           },
60         {HCDP_TABLE_GUID,                               &hcdp_phys,             "HCDP"          },
61         {MPS_TABLE_GUID,                                &mps_phys,              "MPS"           },
62         {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID,    &palo_phys,             "PALO"          },
63         {SAL_SYSTEM_TABLE_GUID,                         &sal_systab_phys,       "SALsystab"     },
64         {},
65 };
66
67 extern efi_status_t efi_call_phys (void *, ...);
68
69 static efi_runtime_services_t *runtime;
70 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
71
72 #define efi_call_virt(f, args...)       (*(f))(args)
73
74 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
75 static efi_status_t                                                            \
76 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
77 {                                                                              \
78         struct ia64_fpreg fr[6];                                               \
79         efi_time_cap_t *atc = NULL;                                            \
80         efi_status_t ret;                                                      \
81                                                                                \
82         if (tc)                                                                \
83                 atc = adjust_arg(tc);                                          \
84         ia64_save_scratch_fpregs(fr);                                          \
85         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
86                                 adjust_arg(tm), atc);                          \
87         ia64_load_scratch_fpregs(fr);                                          \
88         return ret;                                                            \
89 }
90
91 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
92 static efi_status_t                                                            \
93 prefix##_set_time (efi_time_t *tm)                                             \
94 {                                                                              \
95         struct ia64_fpreg fr[6];                                               \
96         efi_status_t ret;                                                      \
97                                                                                \
98         ia64_save_scratch_fpregs(fr);                                          \
99         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
100                                 adjust_arg(tm));                               \
101         ia64_load_scratch_fpregs(fr);                                          \
102         return ret;                                                            \
103 }
104
105 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
106 static efi_status_t                                                            \
107 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
108                           efi_time_t *tm)                                      \
109 {                                                                              \
110         struct ia64_fpreg fr[6];                                               \
111         efi_status_t ret;                                                      \
112                                                                                \
113         ia64_save_scratch_fpregs(fr);                                          \
114         ret = efi_call_##prefix(                                               \
115                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
116                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
117         ia64_load_scratch_fpregs(fr);                                          \
118         return ret;                                                            \
119 }
120
121 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
122 static efi_status_t                                                            \
123 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
124 {                                                                              \
125         struct ia64_fpreg fr[6];                                               \
126         efi_time_t *atm = NULL;                                                \
127         efi_status_t ret;                                                      \
128                                                                                \
129         if (tm)                                                                \
130                 atm = adjust_arg(tm);                                          \
131         ia64_save_scratch_fpregs(fr);                                          \
132         ret = efi_call_##prefix(                                               \
133                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
134                 enabled, atm);                                                 \
135         ia64_load_scratch_fpregs(fr);                                          \
136         return ret;                                                            \
137 }
138
139 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
140 static efi_status_t                                                            \
141 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
142                        unsigned long *data_size, void *data)                   \
143 {                                                                              \
144         struct ia64_fpreg fr[6];                                               \
145         u32 *aattr = NULL;                                                     \
146         efi_status_t ret;                                                      \
147                                                                                \
148         if (attr)                                                              \
149                 aattr = adjust_arg(attr);                                      \
150         ia64_save_scratch_fpregs(fr);                                          \
151         ret = efi_call_##prefix(                                               \
152                 (efi_get_variable_t *) __va(runtime->get_variable),            \
153                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
154                 adjust_arg(data_size), adjust_arg(data));                      \
155         ia64_load_scratch_fpregs(fr);                                          \
156         return ret;                                                            \
157 }
158
159 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
160 static efi_status_t                                                            \
161 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
162                             efi_guid_t *vendor)                                \
163 {                                                                              \
164         struct ia64_fpreg fr[6];                                               \
165         efi_status_t ret;                                                      \
166                                                                                \
167         ia64_save_scratch_fpregs(fr);                                          \
168         ret = efi_call_##prefix(                                               \
169                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
170                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
171         ia64_load_scratch_fpregs(fr);                                          \
172         return ret;                                                            \
173 }
174
175 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
176 static efi_status_t                                                            \
177 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
178                        u32 attr, unsigned long data_size,                      \
179                        void *data)                                             \
180 {                                                                              \
181         struct ia64_fpreg fr[6];                                               \
182         efi_status_t ret;                                                      \
183                                                                                \
184         ia64_save_scratch_fpregs(fr);                                          \
185         ret = efi_call_##prefix(                                               \
186                 (efi_set_variable_t *) __va(runtime->set_variable),            \
187                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
188                 adjust_arg(data));                                             \
189         ia64_load_scratch_fpregs(fr);                                          \
190         return ret;                                                            \
191 }
192
193 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
194 static efi_status_t                                                            \
195 prefix##_get_next_high_mono_count (u32 *count)                                 \
196 {                                                                              \
197         struct ia64_fpreg fr[6];                                               \
198         efi_status_t ret;                                                      \
199                                                                                \
200         ia64_save_scratch_fpregs(fr);                                          \
201         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
202                                 __va(runtime->get_next_high_mono_count),       \
203                                 adjust_arg(count));                            \
204         ia64_load_scratch_fpregs(fr);                                          \
205         return ret;                                                            \
206 }
207
208 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
209 static void                                                                    \
210 prefix##_reset_system (int reset_type, efi_status_t status,                    \
211                        unsigned long data_size, efi_char16_t *data)            \
212 {                                                                              \
213         struct ia64_fpreg fr[6];                                               \
214         efi_char16_t *adata = NULL;                                            \
215                                                                                \
216         if (data)                                                              \
217                 adata = adjust_arg(data);                                      \
218                                                                                \
219         ia64_save_scratch_fpregs(fr);                                          \
220         efi_call_##prefix(                                                     \
221                 (efi_reset_system_t *) __va(runtime->reset_system),            \
222                 reset_type, status, data_size, adata);                         \
223         /* should not return, but just in case... */                           \
224         ia64_load_scratch_fpregs(fr);                                          \
225 }
226
227 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
228
229 STUB_GET_TIME(phys, phys_ptr)
230 STUB_SET_TIME(phys, phys_ptr)
231 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
232 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
233 STUB_GET_VARIABLE(phys, phys_ptr)
234 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
235 STUB_SET_VARIABLE(phys, phys_ptr)
236 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
237 STUB_RESET_SYSTEM(phys, phys_ptr)
238
239 #define id(arg) arg
240
241 STUB_GET_TIME(virt, id)
242 STUB_SET_TIME(virt, id)
243 STUB_GET_WAKEUP_TIME(virt, id)
244 STUB_SET_WAKEUP_TIME(virt, id)
245 STUB_GET_VARIABLE(virt, id)
246 STUB_GET_NEXT_VARIABLE(virt, id)
247 STUB_SET_VARIABLE(virt, id)
248 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
249 STUB_RESET_SYSTEM(virt, id)
250
251 void
252 efi_gettimeofday (struct timespec64 *ts)
253 {
254         efi_time_t tm;
255
256         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
257                 memset(ts, 0, sizeof(*ts));
258                 return;
259         }
260
261         ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
262                             tm.hour, tm.minute, tm.second);
263         ts->tv_nsec = tm.nanosecond;
264 }
265
266 static int
267 is_memory_available (efi_memory_desc_t *md)
268 {
269         if (!(md->attribute & EFI_MEMORY_WB))
270                 return 0;
271
272         switch (md->type) {
273               case EFI_LOADER_CODE:
274               case EFI_LOADER_DATA:
275               case EFI_BOOT_SERVICES_CODE:
276               case EFI_BOOT_SERVICES_DATA:
277               case EFI_CONVENTIONAL_MEMORY:
278                 return 1;
279         }
280         return 0;
281 }
282
283 typedef struct kern_memdesc {
284         u64 attribute;
285         u64 start;
286         u64 num_pages;
287 } kern_memdesc_t;
288
289 static kern_memdesc_t *kern_memmap;
290
291 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
292
293 static inline u64
294 kmd_end(kern_memdesc_t *kmd)
295 {
296         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
297 }
298
299 static inline u64
300 efi_md_end(efi_memory_desc_t *md)
301 {
302         return (md->phys_addr + efi_md_size(md));
303 }
304
305 static inline int
306 efi_wb(efi_memory_desc_t *md)
307 {
308         return (md->attribute & EFI_MEMORY_WB);
309 }
310
311 static inline int
312 efi_uc(efi_memory_desc_t *md)
313 {
314         return (md->attribute & EFI_MEMORY_UC);
315 }
316
317 static void
318 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
319 {
320         kern_memdesc_t *k;
321         u64 start, end, voff;
322
323         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
324         for (k = kern_memmap; k->start != ~0UL; k++) {
325                 if (k->attribute != attr)
326                         continue;
327                 start = PAGE_ALIGN(k->start);
328                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
329                 if (start < end)
330                         if ((*callback)(start + voff, end + voff, arg) < 0)
331                                 return;
332         }
333 }
334
335 /*
336  * Walk the EFI memory map and call CALLBACK once for each EFI memory
337  * descriptor that has memory that is available for OS use.
338  */
339 void
340 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
341 {
342         walk(callback, arg, EFI_MEMORY_WB);
343 }
344
345 /*
346  * Walk the EFI memory map and call CALLBACK once for each EFI memory
347  * descriptor that has memory that is available for uncached allocator.
348  */
349 void
350 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
351 {
352         walk(callback, arg, EFI_MEMORY_UC);
353 }
354
355 /*
356  * Look for the PAL_CODE region reported by EFI and map it using an
357  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
358  * Abstraction Layer chapter 11 in ADAG
359  */
360 void *
361 efi_get_pal_addr (void)
362 {
363         void *efi_map_start, *efi_map_end, *p;
364         efi_memory_desc_t *md;
365         u64 efi_desc_size;
366         int pal_code_count = 0;
367         u64 vaddr, mask;
368
369         efi_map_start = __va(ia64_boot_param->efi_memmap);
370         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
371         efi_desc_size = ia64_boot_param->efi_memdesc_size;
372
373         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
374                 md = p;
375                 if (md->type != EFI_PAL_CODE)
376                         continue;
377
378                 if (++pal_code_count > 1) {
379                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
380                                "dropped @ %llx\n", md->phys_addr);
381                         continue;
382                 }
383                 /*
384                  * The only ITLB entry in region 7 that is used is the one
385                  * installed by __start().  That entry covers a 64MB range.
386                  */
387                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
388                 vaddr = PAGE_OFFSET + md->phys_addr;
389
390                 /*
391                  * We must check that the PAL mapping won't overlap with the
392                  * kernel mapping.
393                  *
394                  * PAL code is guaranteed to be aligned on a power of 2 between
395                  * 4k and 256KB and that only one ITR is needed to map it. This
396                  * implies that the PAL code is always aligned on its size,
397                  * i.e., the closest matching page size supported by the TLB.
398                  * Therefore PAL code is guaranteed never to cross a 64MB unless
399                  * it is bigger than 64MB (very unlikely!).  So for now the
400                  * following test is enough to determine whether or not we need
401                  * a dedicated ITR for the PAL code.
402                  */
403                 if ((vaddr & mask) == (KERNEL_START & mask)) {
404                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
405                                __func__);
406                         continue;
407                 }
408
409                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
410                         panic("Whoa!  PAL code size bigger than a granule!");
411
412 #if EFI_DEBUG
413                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
414
415                 printk(KERN_INFO "CPU %d: mapping PAL code "
416                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
417                        smp_processor_id(), md->phys_addr,
418                        md->phys_addr + efi_md_size(md),
419                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
420 #endif
421                 return __va(md->phys_addr);
422         }
423         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
424                __func__);
425         return NULL;
426 }
427
428
429 static u8 __init palo_checksum(u8 *buffer, u32 length)
430 {
431         u8 sum = 0;
432         u8 *end = buffer + length;
433
434         while (buffer < end)
435                 sum = (u8) (sum + *(buffer++));
436
437         return sum;
438 }
439
440 /*
441  * Parse and handle PALO table which is published at:
442  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
443  */
444 static void __init handle_palo(unsigned long phys_addr)
445 {
446         struct palo_table *palo = __va(phys_addr);
447         u8  checksum;
448
449         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
450                 printk(KERN_INFO "PALO signature incorrect.\n");
451                 return;
452         }
453
454         checksum = palo_checksum((u8 *)palo, palo->length);
455         if (checksum) {
456                 printk(KERN_INFO "PALO checksum incorrect.\n");
457                 return;
458         }
459
460         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
461 }
462
463 void
464 efi_map_pal_code (void)
465 {
466         void *pal_vaddr = efi_get_pal_addr ();
467         u64 psr;
468
469         if (!pal_vaddr)
470                 return;
471
472         /*
473          * Cannot write to CRx with PSR.ic=1
474          */
475         psr = ia64_clear_ic();
476         ia64_itr(0x1, IA64_TR_PALCODE,
477                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
478                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
479                  IA64_GRANULE_SHIFT);
480         ia64_set_psr(psr);              /* restore psr */
481 }
482
483 void __init
484 efi_init (void)
485 {
486         const efi_system_table_t *efi_systab;
487         void *efi_map_start, *efi_map_end;
488         u64 efi_desc_size;
489         char *cp;
490
491         set_bit(EFI_BOOT, &efi.flags);
492         set_bit(EFI_64BIT, &efi.flags);
493
494         /*
495          * It's too early to be able to use the standard kernel command line
496          * support...
497          */
498         for (cp = boot_command_line; *cp; ) {
499                 if (memcmp(cp, "mem=", 4) == 0) {
500                         mem_limit = memparse(cp + 4, &cp);
501                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
502                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
503                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
504                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
505                 } else {
506                         while (*cp != ' ' && *cp)
507                                 ++cp;
508                         while (*cp == ' ')
509                                 ++cp;
510                 }
511         }
512         if (min_addr != 0UL)
513                 printk(KERN_INFO "Ignoring memory below %lluMB\n",
514                        min_addr >> 20);
515         if (max_addr != ~0UL)
516                 printk(KERN_INFO "Ignoring memory above %lluMB\n",
517                        max_addr >> 20);
518
519         efi_systab = __va(ia64_boot_param->efi_systab);
520
521         /*
522          * Verify the EFI Table
523          */
524         if (efi_systab == NULL)
525                 panic("Whoa! Can't find EFI system table.\n");
526         if (efi_systab_check_header(&efi_systab->hdr, 1))
527                 panic("Whoa! EFI system table signature incorrect\n");
528
529         efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
530
531         palo_phys      = EFI_INVALID_TABLE_ADDR;
532
533         if (efi_config_parse_tables(__va(efi_systab->tables),
534                                     efi_systab->nr_tables,
535                                     arch_tables) != 0)
536                 return;
537
538         if (palo_phys != EFI_INVALID_TABLE_ADDR)
539                 handle_palo(palo_phys);
540
541         runtime = __va(efi_systab->runtime);
542         efi.get_time = phys_get_time;
543         efi.set_time = phys_set_time;
544         efi.get_wakeup_time = phys_get_wakeup_time;
545         efi.set_wakeup_time = phys_set_wakeup_time;
546         efi.get_variable = phys_get_variable;
547         efi.get_next_variable = phys_get_next_variable;
548         efi.set_variable = phys_set_variable;
549         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
550         efi.reset_system = phys_reset_system;
551
552         efi_map_start = __va(ia64_boot_param->efi_memmap);
553         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
554         efi_desc_size = ia64_boot_param->efi_memdesc_size;
555
556 #if EFI_DEBUG
557         /* print EFI memory map: */
558         {
559                 efi_memory_desc_t *md;
560                 void *p;
561
562                 for (i = 0, p = efi_map_start; p < efi_map_end;
563                      ++i, p += efi_desc_size)
564                 {
565                         const char *unit;
566                         unsigned long size;
567                         char buf[64];
568
569                         md = p;
570                         size = md->num_pages << EFI_PAGE_SHIFT;
571
572                         if ((size >> 40) > 0) {
573                                 size >>= 40;
574                                 unit = "TB";
575                         } else if ((size >> 30) > 0) {
576                                 size >>= 30;
577                                 unit = "GB";
578                         } else if ((size >> 20) > 0) {
579                                 size >>= 20;
580                                 unit = "MB";
581                         } else {
582                                 size >>= 10;
583                                 unit = "KB";
584                         }
585
586                         printk("mem%02d: %s "
587                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
588                                i, efi_md_typeattr_format(buf, sizeof(buf), md),
589                                md->phys_addr,
590                                md->phys_addr + efi_md_size(md), size, unit);
591                 }
592         }
593 #endif
594
595         efi_map_pal_code();
596         efi_enter_virtual_mode();
597 }
598
599 void
600 efi_enter_virtual_mode (void)
601 {
602         void *efi_map_start, *efi_map_end, *p;
603         efi_memory_desc_t *md;
604         efi_status_t status;
605         u64 efi_desc_size;
606
607         efi_map_start = __va(ia64_boot_param->efi_memmap);
608         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
609         efi_desc_size = ia64_boot_param->efi_memdesc_size;
610
611         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
612                 md = p;
613                 if (md->attribute & EFI_MEMORY_RUNTIME) {
614                         /*
615                          * Some descriptors have multiple bits set, so the
616                          * order of the tests is relevant.
617                          */
618                         if (md->attribute & EFI_MEMORY_WB) {
619                                 md->virt_addr = (u64) __va(md->phys_addr);
620                         } else if (md->attribute & EFI_MEMORY_UC) {
621                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
622                         } else if (md->attribute & EFI_MEMORY_WC) {
623 #if 0
624                                 md->virt_addr = ia64_remap(md->phys_addr,
625                                                            (_PAGE_A |
626                                                             _PAGE_P |
627                                                             _PAGE_D |
628                                                             _PAGE_MA_WC |
629                                                             _PAGE_PL_0 |
630                                                             _PAGE_AR_RW));
631 #else
632                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
633                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
634 #endif
635                         } else if (md->attribute & EFI_MEMORY_WT) {
636 #if 0
637                                 md->virt_addr = ia64_remap(md->phys_addr,
638                                                            (_PAGE_A |
639                                                             _PAGE_P |
640                                                             _PAGE_D |
641                                                             _PAGE_MA_WT |
642                                                             _PAGE_PL_0 |
643                                                             _PAGE_AR_RW));
644 #else
645                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
646                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
647 #endif
648                         }
649                 }
650         }
651
652         status = efi_call_phys(__va(runtime->set_virtual_address_map),
653                                ia64_boot_param->efi_memmap_size,
654                                efi_desc_size,
655                                ia64_boot_param->efi_memdesc_version,
656                                ia64_boot_param->efi_memmap);
657         if (status != EFI_SUCCESS) {
658                 printk(KERN_WARNING "warning: unable to switch EFI into "
659                        "virtual mode (status=%lu)\n", status);
660                 return;
661         }
662
663         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
664
665         /*
666          * Now that EFI is in virtual mode, we call the EFI functions more
667          * efficiently:
668          */
669         efi.get_time = virt_get_time;
670         efi.set_time = virt_set_time;
671         efi.get_wakeup_time = virt_get_wakeup_time;
672         efi.set_wakeup_time = virt_set_wakeup_time;
673         efi.get_variable = virt_get_variable;
674         efi.get_next_variable = virt_get_next_variable;
675         efi.set_variable = virt_set_variable;
676         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
677         efi.reset_system = virt_reset_system;
678 }
679
680 /*
681  * Walk the EFI memory map looking for the I/O port range.  There can only be
682  * one entry of this type, other I/O port ranges should be described via ACPI.
683  */
684 u64
685 efi_get_iobase (void)
686 {
687         void *efi_map_start, *efi_map_end, *p;
688         efi_memory_desc_t *md;
689         u64 efi_desc_size;
690
691         efi_map_start = __va(ia64_boot_param->efi_memmap);
692         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
693         efi_desc_size = ia64_boot_param->efi_memdesc_size;
694
695         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
696                 md = p;
697                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
698                         if (md->attribute & EFI_MEMORY_UC)
699                                 return md->phys_addr;
700                 }
701         }
702         return 0;
703 }
704
705 static struct kern_memdesc *
706 kern_memory_descriptor (unsigned long phys_addr)
707 {
708         struct kern_memdesc *md;
709
710         for (md = kern_memmap; md->start != ~0UL; md++) {
711                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
712                          return md;
713         }
714         return NULL;
715 }
716
717 static efi_memory_desc_t *
718 efi_memory_descriptor (unsigned long phys_addr)
719 {
720         void *efi_map_start, *efi_map_end, *p;
721         efi_memory_desc_t *md;
722         u64 efi_desc_size;
723
724         efi_map_start = __va(ia64_boot_param->efi_memmap);
725         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
726         efi_desc_size = ia64_boot_param->efi_memdesc_size;
727
728         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
729                 md = p;
730
731                 if (phys_addr - md->phys_addr < efi_md_size(md))
732                          return md;
733         }
734         return NULL;
735 }
736
737 static int
738 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
739 {
740         void *efi_map_start, *efi_map_end, *p;
741         efi_memory_desc_t *md;
742         u64 efi_desc_size;
743         unsigned long end;
744
745         efi_map_start = __va(ia64_boot_param->efi_memmap);
746         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
747         efi_desc_size = ia64_boot_param->efi_memdesc_size;
748
749         end = phys_addr + size;
750
751         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
752                 md = p;
753                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
754                         return 1;
755         }
756         return 0;
757 }
758
759 int
760 efi_mem_type (unsigned long phys_addr)
761 {
762         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
763
764         if (md)
765                 return md->type;
766         return -EINVAL;
767 }
768
769 u64
770 efi_mem_attributes (unsigned long phys_addr)
771 {
772         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
773
774         if (md)
775                 return md->attribute;
776         return 0;
777 }
778 EXPORT_SYMBOL(efi_mem_attributes);
779
780 u64
781 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
782 {
783         unsigned long end = phys_addr + size;
784         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
785         u64 attr;
786
787         if (!md)
788                 return 0;
789
790         /*
791          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
792          * the kernel that firmware needs this region mapped.
793          */
794         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
795         do {
796                 unsigned long md_end = efi_md_end(md);
797
798                 if (end <= md_end)
799                         return attr;
800
801                 md = efi_memory_descriptor(md_end);
802                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
803                         return 0;
804         } while (md);
805         return 0;       /* never reached */
806 }
807
808 u64
809 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
810 {
811         unsigned long end = phys_addr + size;
812         struct kern_memdesc *md;
813         u64 attr;
814
815         /*
816          * This is a hack for ioremap calls before we set up kern_memmap.
817          * Maybe we should do efi_memmap_init() earlier instead.
818          */
819         if (!kern_memmap) {
820                 attr = efi_mem_attribute(phys_addr, size);
821                 if (attr & EFI_MEMORY_WB)
822                         return EFI_MEMORY_WB;
823                 return 0;
824         }
825
826         md = kern_memory_descriptor(phys_addr);
827         if (!md)
828                 return 0;
829
830         attr = md->attribute;
831         do {
832                 unsigned long md_end = kmd_end(md);
833
834                 if (end <= md_end)
835                         return attr;
836
837                 md = kern_memory_descriptor(md_end);
838                 if (!md || md->attribute != attr)
839                         return 0;
840         } while (md);
841         return 0;       /* never reached */
842 }
843
844 int
845 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
846 {
847         u64 attr;
848
849         /*
850          * /dev/mem reads and writes use copy_to_user(), which implicitly
851          * uses a granule-sized kernel identity mapping.  It's really
852          * only safe to do this for regions in kern_memmap.  For more
853          * details, see Documentation/ia64/aliasing.rst.
854          */
855         attr = kern_mem_attribute(phys_addr, size);
856         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
857                 return 1;
858         return 0;
859 }
860
861 int
862 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
863 {
864         unsigned long phys_addr = pfn << PAGE_SHIFT;
865         u64 attr;
866
867         attr = efi_mem_attribute(phys_addr, size);
868
869         /*
870          * /dev/mem mmap uses normal user pages, so we don't need the entire
871          * granule, but the entire region we're mapping must support the same
872          * attribute.
873          */
874         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
875                 return 1;
876
877         /*
878          * Intel firmware doesn't tell us about all the MMIO regions, so
879          * in general we have to allow mmap requests.  But if EFI *does*
880          * tell us about anything inside this region, we should deny it.
881          * The user can always map a smaller region to avoid the overlap.
882          */
883         if (efi_memmap_intersects(phys_addr, size))
884                 return 0;
885
886         return 1;
887 }
888
889 pgprot_t
890 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
891                      pgprot_t vma_prot)
892 {
893         unsigned long phys_addr = pfn << PAGE_SHIFT;
894         u64 attr;
895
896         /*
897          * For /dev/mem mmap, we use user mappings, but if the region is
898          * in kern_memmap (and hence may be covered by a kernel mapping),
899          * we must use the same attribute as the kernel mapping.
900          */
901         attr = kern_mem_attribute(phys_addr, size);
902         if (attr & EFI_MEMORY_WB)
903                 return pgprot_cacheable(vma_prot);
904         else if (attr & EFI_MEMORY_UC)
905                 return pgprot_noncached(vma_prot);
906
907         /*
908          * Some chipsets don't support UC access to memory.  If
909          * WB is supported, we prefer that.
910          */
911         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
912                 return pgprot_cacheable(vma_prot);
913
914         return pgprot_noncached(vma_prot);
915 }
916
917 int __init
918 efi_uart_console_only(void)
919 {
920         efi_status_t status;
921         char *s, name[] = "ConOut";
922         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
923         efi_char16_t *utf16, name_utf16[32];
924         unsigned char data[1024];
925         unsigned long size = sizeof(data);
926         struct efi_generic_dev_path *hdr, *end_addr;
927         int uart = 0;
928
929         /* Convert to UTF-16 */
930         utf16 = name_utf16;
931         s = name;
932         while (*s)
933                 *utf16++ = *s++ & 0x7f;
934         *utf16 = 0;
935
936         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
937         if (status != EFI_SUCCESS) {
938                 printk(KERN_ERR "No EFI %s variable?\n", name);
939                 return 0;
940         }
941
942         hdr = (struct efi_generic_dev_path *) data;
943         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
944         while (hdr < end_addr) {
945                 if (hdr->type == EFI_DEV_MSG &&
946                     hdr->sub_type == EFI_DEV_MSG_UART)
947                         uart = 1;
948                 else if (hdr->type == EFI_DEV_END_PATH ||
949                           hdr->type == EFI_DEV_END_PATH2) {
950                         if (!uart)
951                                 return 0;
952                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
953                                 return 1;
954                         uart = 0;
955                 }
956                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
957         }
958         printk(KERN_ERR "Malformed %s value\n", name);
959         return 0;
960 }
961
962 /*
963  * Look for the first granule aligned memory descriptor memory
964  * that is big enough to hold EFI memory map. Make sure this
965  * descriptor is at least granule sized so it does not get trimmed
966  */
967 struct kern_memdesc *
968 find_memmap_space (void)
969 {
970         u64     contig_low=0, contig_high=0;
971         u64     as = 0, ae;
972         void *efi_map_start, *efi_map_end, *p, *q;
973         efi_memory_desc_t *md, *pmd = NULL, *check_md;
974         u64     space_needed, efi_desc_size;
975         unsigned long total_mem = 0;
976
977         efi_map_start = __va(ia64_boot_param->efi_memmap);
978         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
979         efi_desc_size = ia64_boot_param->efi_memdesc_size;
980
981         /*
982          * Worst case: we need 3 kernel descriptors for each efi descriptor
983          * (if every entry has a WB part in the middle, and UC head and tail),
984          * plus one for the end marker.
985          */
986         space_needed = sizeof(kern_memdesc_t) *
987                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
988
989         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
990                 md = p;
991                 if (!efi_wb(md)) {
992                         continue;
993                 }
994                 if (pmd == NULL || !efi_wb(pmd) ||
995                     efi_md_end(pmd) != md->phys_addr) {
996                         contig_low = GRANULEROUNDUP(md->phys_addr);
997                         contig_high = efi_md_end(md);
998                         for (q = p + efi_desc_size; q < efi_map_end;
999                              q += efi_desc_size) {
1000                                 check_md = q;
1001                                 if (!efi_wb(check_md))
1002                                         break;
1003                                 if (contig_high != check_md->phys_addr)
1004                                         break;
1005                                 contig_high = efi_md_end(check_md);
1006                         }
1007                         contig_high = GRANULEROUNDDOWN(contig_high);
1008                 }
1009                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1010                         continue;
1011
1012                 /* Round ends inward to granule boundaries */
1013                 as = max(contig_low, md->phys_addr);
1014                 ae = min(contig_high, efi_md_end(md));
1015
1016                 /* keep within max_addr= and min_addr= command line arg */
1017                 as = max(as, min_addr);
1018                 ae = min(ae, max_addr);
1019                 if (ae <= as)
1020                         continue;
1021
1022                 /* avoid going over mem= command line arg */
1023                 if (total_mem + (ae - as) > mem_limit)
1024                         ae -= total_mem + (ae - as) - mem_limit;
1025
1026                 if (ae <= as)
1027                         continue;
1028
1029                 if (ae - as > space_needed)
1030                         break;
1031         }
1032         if (p >= efi_map_end)
1033                 panic("Can't allocate space for kernel memory descriptors");
1034
1035         return __va(as);
1036 }
1037
1038 /*
1039  * Walk the EFI memory map and gather all memory available for kernel
1040  * to use.  We can allocate partial granules only if the unavailable
1041  * parts exist, and are WB.
1042  */
1043 unsigned long
1044 efi_memmap_init(u64 *s, u64 *e)
1045 {
1046         struct kern_memdesc *k, *prev = NULL;
1047         u64     contig_low=0, contig_high=0;
1048         u64     as, ae, lim;
1049         void *efi_map_start, *efi_map_end, *p, *q;
1050         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1051         u64     efi_desc_size;
1052         unsigned long total_mem = 0;
1053
1054         k = kern_memmap = find_memmap_space();
1055
1056         efi_map_start = __va(ia64_boot_param->efi_memmap);
1057         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1058         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1059
1060         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1061                 md = p;
1062                 if (!efi_wb(md)) {
1063                         if (efi_uc(md) &&
1064                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1065                              md->type == EFI_BOOT_SERVICES_DATA)) {
1066                                 k->attribute = EFI_MEMORY_UC;
1067                                 k->start = md->phys_addr;
1068                                 k->num_pages = md->num_pages;
1069                                 k++;
1070                         }
1071                         continue;
1072                 }
1073                 if (pmd == NULL || !efi_wb(pmd) ||
1074                     efi_md_end(pmd) != md->phys_addr) {
1075                         contig_low = GRANULEROUNDUP(md->phys_addr);
1076                         contig_high = efi_md_end(md);
1077                         for (q = p + efi_desc_size; q < efi_map_end;
1078                              q += efi_desc_size) {
1079                                 check_md = q;
1080                                 if (!efi_wb(check_md))
1081                                         break;
1082                                 if (contig_high != check_md->phys_addr)
1083                                         break;
1084                                 contig_high = efi_md_end(check_md);
1085                         }
1086                         contig_high = GRANULEROUNDDOWN(contig_high);
1087                 }
1088                 if (!is_memory_available(md))
1089                         continue;
1090
1091                 /*
1092                  * Round ends inward to granule boundaries
1093                  * Give trimmings to uncached allocator
1094                  */
1095                 if (md->phys_addr < contig_low) {
1096                         lim = min(efi_md_end(md), contig_low);
1097                         if (efi_uc(md)) {
1098                                 if (k > kern_memmap &&
1099                                     (k-1)->attribute == EFI_MEMORY_UC &&
1100                                     kmd_end(k-1) == md->phys_addr) {
1101                                         (k-1)->num_pages +=
1102                                                 (lim - md->phys_addr)
1103                                                 >> EFI_PAGE_SHIFT;
1104                                 } else {
1105                                         k->attribute = EFI_MEMORY_UC;
1106                                         k->start = md->phys_addr;
1107                                         k->num_pages = (lim - md->phys_addr)
1108                                                 >> EFI_PAGE_SHIFT;
1109                                         k++;
1110                                 }
1111                         }
1112                         as = contig_low;
1113                 } else
1114                         as = md->phys_addr;
1115
1116                 if (efi_md_end(md) > contig_high) {
1117                         lim = max(md->phys_addr, contig_high);
1118                         if (efi_uc(md)) {
1119                                 if (lim == md->phys_addr && k > kern_memmap &&
1120                                     (k-1)->attribute == EFI_MEMORY_UC &&
1121                                     kmd_end(k-1) == md->phys_addr) {
1122                                         (k-1)->num_pages += md->num_pages;
1123                                 } else {
1124                                         k->attribute = EFI_MEMORY_UC;
1125                                         k->start = lim;
1126                                         k->num_pages = (efi_md_end(md) - lim)
1127                                                 >> EFI_PAGE_SHIFT;
1128                                         k++;
1129                                 }
1130                         }
1131                         ae = contig_high;
1132                 } else
1133                         ae = efi_md_end(md);
1134
1135                 /* keep within max_addr= and min_addr= command line arg */
1136                 as = max(as, min_addr);
1137                 ae = min(ae, max_addr);
1138                 if (ae <= as)
1139                         continue;
1140
1141                 /* avoid going over mem= command line arg */
1142                 if (total_mem + (ae - as) > mem_limit)
1143                         ae -= total_mem + (ae - as) - mem_limit;
1144
1145                 if (ae <= as)
1146                         continue;
1147                 if (prev && kmd_end(prev) == md->phys_addr) {
1148                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1149                         total_mem += ae - as;
1150                         continue;
1151                 }
1152                 k->attribute = EFI_MEMORY_WB;
1153                 k->start = as;
1154                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1155                 total_mem += ae - as;
1156                 prev = k++;
1157         }
1158         k->start = ~0L; /* end-marker */
1159
1160         /* reserve the memory we are using for kern_memmap */
1161         *s = (u64)kern_memmap;
1162         *e = (u64)++k;
1163
1164         return total_mem;
1165 }
1166
1167 void
1168 efi_initialize_iomem_resources(struct resource *code_resource,
1169                                struct resource *data_resource,
1170                                struct resource *bss_resource)
1171 {
1172         struct resource *res;
1173         void *efi_map_start, *efi_map_end, *p;
1174         efi_memory_desc_t *md;
1175         u64 efi_desc_size;
1176         char *name;
1177         unsigned long flags, desc;
1178
1179         efi_map_start = __va(ia64_boot_param->efi_memmap);
1180         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1181         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1182
1183         res = NULL;
1184
1185         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1186                 md = p;
1187
1188                 if (md->num_pages == 0) /* should not happen */
1189                         continue;
1190
1191                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1192                 desc = IORES_DESC_NONE;
1193
1194                 switch (md->type) {
1195
1196                         case EFI_MEMORY_MAPPED_IO:
1197                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1198                                 continue;
1199
1200                         case EFI_LOADER_CODE:
1201                         case EFI_LOADER_DATA:
1202                         case EFI_BOOT_SERVICES_DATA:
1203                         case EFI_BOOT_SERVICES_CODE:
1204                         case EFI_CONVENTIONAL_MEMORY:
1205                                 if (md->attribute & EFI_MEMORY_WP) {
1206                                         name = "System ROM";
1207                                         flags |= IORESOURCE_READONLY;
1208                                 } else if (md->attribute == EFI_MEMORY_UC) {
1209                                         name = "Uncached RAM";
1210                                 } else {
1211                                         name = "System RAM";
1212                                         flags |= IORESOURCE_SYSRAM;
1213                                 }
1214                                 break;
1215
1216                         case EFI_ACPI_MEMORY_NVS:
1217                                 name = "ACPI Non-volatile Storage";
1218                                 desc = IORES_DESC_ACPI_NV_STORAGE;
1219                                 break;
1220
1221                         case EFI_UNUSABLE_MEMORY:
1222                                 name = "reserved";
1223                                 flags |= IORESOURCE_DISABLED;
1224                                 break;
1225
1226                         case EFI_PERSISTENT_MEMORY:
1227                                 name = "Persistent Memory";
1228                                 desc = IORES_DESC_PERSISTENT_MEMORY;
1229                                 break;
1230
1231                         case EFI_RESERVED_TYPE:
1232                         case EFI_RUNTIME_SERVICES_CODE:
1233                         case EFI_RUNTIME_SERVICES_DATA:
1234                         case EFI_ACPI_RECLAIM_MEMORY:
1235                         default:
1236                                 name = "reserved";
1237                                 break;
1238                 }
1239
1240                 if ((res = kzalloc(sizeof(struct resource),
1241                                    GFP_KERNEL)) == NULL) {
1242                         printk(KERN_ERR
1243                                "failed to allocate resource for iomem\n");
1244                         return;
1245                 }
1246
1247                 res->name = name;
1248                 res->start = md->phys_addr;
1249                 res->end = md->phys_addr + efi_md_size(md) - 1;
1250                 res->flags = flags;
1251                 res->desc = desc;
1252
1253                 if (insert_resource(&iomem_resource, res) < 0)
1254                         kfree(res);
1255                 else {
1256                         /*
1257                          * We don't know which region contains
1258                          * kernel data so we try it repeatedly and
1259                          * let the resource manager test it.
1260                          */
1261                         insert_resource(res, code_resource);
1262                         insert_resource(res, data_resource);
1263                         insert_resource(res, bss_resource);
1264 #ifdef CONFIG_KEXEC
1265                         insert_resource(res, &efi_memmap_res);
1266                         insert_resource(res, &boot_param_res);
1267                         if (crashk_res.end > crashk_res.start)
1268                                 insert_resource(res, &crashk_res);
1269 #endif
1270                 }
1271         }
1272 }
1273
1274 #ifdef CONFIG_KEXEC
1275 /* find a block of memory aligned to 64M exclude reserved regions
1276    rsvd_regions are sorted
1277  */
1278 unsigned long __init
1279 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1280 {
1281         int i;
1282         u64 start, end;
1283         u64 alignment = 1UL << _PAGE_SIZE_64M;
1284         void *efi_map_start, *efi_map_end, *p;
1285         efi_memory_desc_t *md;
1286         u64 efi_desc_size;
1287
1288         efi_map_start = __va(ia64_boot_param->efi_memmap);
1289         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1290         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1291
1292         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1293                 md = p;
1294                 if (!efi_wb(md))
1295                         continue;
1296                 start = ALIGN(md->phys_addr, alignment);
1297                 end = efi_md_end(md);
1298                 for (i = 0; i < n; i++) {
1299                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1300                                 if (__pa(r[i].start) > start + size)
1301                                         return start;
1302                                 start = ALIGN(__pa(r[i].end), alignment);
1303                                 if (i < n-1 &&
1304                                     __pa(r[i+1].start) < start + size)
1305                                         continue;
1306                                 else
1307                                         break;
1308                         }
1309                 }
1310                 if (end > start + size)
1311                         return start;
1312         }
1313
1314         printk(KERN_WARNING
1315                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1316         return ~0UL;
1317 }
1318 #endif
1319
1320 #ifdef CONFIG_CRASH_DUMP
1321 /* locate the size find a the descriptor at a certain address */
1322 unsigned long __init
1323 vmcore_find_descriptor_size (unsigned long address)
1324 {
1325         void *efi_map_start, *efi_map_end, *p;
1326         efi_memory_desc_t *md;
1327         u64 efi_desc_size;
1328         unsigned long ret = 0;
1329
1330         efi_map_start = __va(ia64_boot_param->efi_memmap);
1331         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1332         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1333
1334         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1335                 md = p;
1336                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1337                     && md->phys_addr == address) {
1338                         ret = efi_md_size(md);
1339                         break;
1340                 }
1341         }
1342
1343         if (ret == 0)
1344                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1345
1346         return ret;
1347 }
1348 #endif
1349
1350 char *efi_systab_show_arch(char *str)
1351 {
1352         if (mps_phys != EFI_INVALID_TABLE_ADDR)
1353                 str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1354         if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1355                 str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1356         return str;
1357 }