efi/ia64: Use existing helpers to locate ESI table
[linux-2.6-microblaze.git] / arch / ia64 / kernel / efi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Extensible Firmware Interface
4  *
5  * Based on Extensible Firmware Interface Specification version 0.9
6  * April 30, 1999
7  *
8  * Copyright (C) 1999 VA Linux Systems
9  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10  * Copyright (C) 1999-2003 Hewlett-Packard Co.
11  *      David Mosberger-Tang <davidm@hpl.hp.com>
12  *      Stephane Eranian <eranian@hpl.hp.com>
13  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
15  *
16  * All EFI Runtime Services are not implemented yet as EFI only
17  * supports physical mode addressing on SoftSDV. This is to be fixed
18  * in a future version.  --drummond 1999-07-20
19  *
20  * Implemented EFI runtime services and virtual mode calls.  --davidm
21  *
22  * Goutham Rao: <goutham.rao@intel.com>
23  *      Skip non-WB memory and ignore empty memory ranges.
24  */
25 #include <linux/module.h>
26 #include <linux/memblock.h>
27 #include <linux/crash_dump.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/efi.h>
34 #include <linux/kexec.h>
35 #include <linux/mm.h>
36
37 #include <asm/io.h>
38 #include <asm/kregs.h>
39 #include <asm/meminit.h>
40 #include <asm/pgtable.h>
41 #include <asm/processor.h>
42 #include <asm/mca.h>
43 #include <asm/setup.h>
44 #include <asm/tlbflush.h>
45
46 #define EFI_DEBUG       0
47
48 #define ESI_TABLE_GUID                                  \
49     EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3,          \
50              0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
51
52 static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
53 static __initdata unsigned long palo_phys;
54
55 unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
56 unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
57 unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
58
59 static __initdata efi_config_table_type_t arch_tables[] = {
60         {ESI_TABLE_GUID, "ESI", &esi_phys},
61         {HCDP_TABLE_GUID, "HCDP", &hcdp_phys},
62         {MPS_TABLE_GUID, "MPS", &mps_phys},
63         {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
64         {SAL_SYSTEM_TABLE_GUID, "SALsystab", &sal_systab_phys},
65         {NULL_GUID, NULL, 0},
66 };
67
68 extern efi_status_t efi_call_phys (void *, ...);
69
70 static efi_runtime_services_t *runtime;
71 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
72
73 #define efi_call_virt(f, args...)       (*(f))(args)
74
75 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
76 static efi_status_t                                                            \
77 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
78 {                                                                              \
79         struct ia64_fpreg fr[6];                                               \
80         efi_time_cap_t *atc = NULL;                                            \
81         efi_status_t ret;                                                      \
82                                                                                \
83         if (tc)                                                                \
84                 atc = adjust_arg(tc);                                          \
85         ia64_save_scratch_fpregs(fr);                                          \
86         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
87                                 adjust_arg(tm), atc);                          \
88         ia64_load_scratch_fpregs(fr);                                          \
89         return ret;                                                            \
90 }
91
92 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
93 static efi_status_t                                                            \
94 prefix##_set_time (efi_time_t *tm)                                             \
95 {                                                                              \
96         struct ia64_fpreg fr[6];                                               \
97         efi_status_t ret;                                                      \
98                                                                                \
99         ia64_save_scratch_fpregs(fr);                                          \
100         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
101                                 adjust_arg(tm));                               \
102         ia64_load_scratch_fpregs(fr);                                          \
103         return ret;                                                            \
104 }
105
106 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
107 static efi_status_t                                                            \
108 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
109                           efi_time_t *tm)                                      \
110 {                                                                              \
111         struct ia64_fpreg fr[6];                                               \
112         efi_status_t ret;                                                      \
113                                                                                \
114         ia64_save_scratch_fpregs(fr);                                          \
115         ret = efi_call_##prefix(                                               \
116                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
117                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
118         ia64_load_scratch_fpregs(fr);                                          \
119         return ret;                                                            \
120 }
121
122 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
123 static efi_status_t                                                            \
124 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
125 {                                                                              \
126         struct ia64_fpreg fr[6];                                               \
127         efi_time_t *atm = NULL;                                                \
128         efi_status_t ret;                                                      \
129                                                                                \
130         if (tm)                                                                \
131                 atm = adjust_arg(tm);                                          \
132         ia64_save_scratch_fpregs(fr);                                          \
133         ret = efi_call_##prefix(                                               \
134                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
135                 enabled, atm);                                                 \
136         ia64_load_scratch_fpregs(fr);                                          \
137         return ret;                                                            \
138 }
139
140 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
141 static efi_status_t                                                            \
142 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
143                        unsigned long *data_size, void *data)                   \
144 {                                                                              \
145         struct ia64_fpreg fr[6];                                               \
146         u32 *aattr = NULL;                                                     \
147         efi_status_t ret;                                                      \
148                                                                                \
149         if (attr)                                                              \
150                 aattr = adjust_arg(attr);                                      \
151         ia64_save_scratch_fpregs(fr);                                          \
152         ret = efi_call_##prefix(                                               \
153                 (efi_get_variable_t *) __va(runtime->get_variable),            \
154                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
155                 adjust_arg(data_size), adjust_arg(data));                      \
156         ia64_load_scratch_fpregs(fr);                                          \
157         return ret;                                                            \
158 }
159
160 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
161 static efi_status_t                                                            \
162 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
163                             efi_guid_t *vendor)                                \
164 {                                                                              \
165         struct ia64_fpreg fr[6];                                               \
166         efi_status_t ret;                                                      \
167                                                                                \
168         ia64_save_scratch_fpregs(fr);                                          \
169         ret = efi_call_##prefix(                                               \
170                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
171                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
172         ia64_load_scratch_fpregs(fr);                                          \
173         return ret;                                                            \
174 }
175
176 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
177 static efi_status_t                                                            \
178 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
179                        u32 attr, unsigned long data_size,                      \
180                        void *data)                                             \
181 {                                                                              \
182         struct ia64_fpreg fr[6];                                               \
183         efi_status_t ret;                                                      \
184                                                                                \
185         ia64_save_scratch_fpregs(fr);                                          \
186         ret = efi_call_##prefix(                                               \
187                 (efi_set_variable_t *) __va(runtime->set_variable),            \
188                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
189                 adjust_arg(data));                                             \
190         ia64_load_scratch_fpregs(fr);                                          \
191         return ret;                                                            \
192 }
193
194 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
195 static efi_status_t                                                            \
196 prefix##_get_next_high_mono_count (u32 *count)                                 \
197 {                                                                              \
198         struct ia64_fpreg fr[6];                                               \
199         efi_status_t ret;                                                      \
200                                                                                \
201         ia64_save_scratch_fpregs(fr);                                          \
202         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
203                                 __va(runtime->get_next_high_mono_count),       \
204                                 adjust_arg(count));                            \
205         ia64_load_scratch_fpregs(fr);                                          \
206         return ret;                                                            \
207 }
208
209 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
210 static void                                                                    \
211 prefix##_reset_system (int reset_type, efi_status_t status,                    \
212                        unsigned long data_size, efi_char16_t *data)            \
213 {                                                                              \
214         struct ia64_fpreg fr[6];                                               \
215         efi_char16_t *adata = NULL;                                            \
216                                                                                \
217         if (data)                                                              \
218                 adata = adjust_arg(data);                                      \
219                                                                                \
220         ia64_save_scratch_fpregs(fr);                                          \
221         efi_call_##prefix(                                                     \
222                 (efi_reset_system_t *) __va(runtime->reset_system),            \
223                 reset_type, status, data_size, adata);                         \
224         /* should not return, but just in case... */                           \
225         ia64_load_scratch_fpregs(fr);                                          \
226 }
227
228 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
229
230 STUB_GET_TIME(phys, phys_ptr)
231 STUB_SET_TIME(phys, phys_ptr)
232 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
233 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
234 STUB_GET_VARIABLE(phys, phys_ptr)
235 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
236 STUB_SET_VARIABLE(phys, phys_ptr)
237 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
238 STUB_RESET_SYSTEM(phys, phys_ptr)
239
240 #define id(arg) arg
241
242 STUB_GET_TIME(virt, id)
243 STUB_SET_TIME(virt, id)
244 STUB_GET_WAKEUP_TIME(virt, id)
245 STUB_SET_WAKEUP_TIME(virt, id)
246 STUB_GET_VARIABLE(virt, id)
247 STUB_GET_NEXT_VARIABLE(virt, id)
248 STUB_SET_VARIABLE(virt, id)
249 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
250 STUB_RESET_SYSTEM(virt, id)
251
252 void
253 efi_gettimeofday (struct timespec64 *ts)
254 {
255         efi_time_t tm;
256
257         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
258                 memset(ts, 0, sizeof(*ts));
259                 return;
260         }
261
262         ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
263                             tm.hour, tm.minute, tm.second);
264         ts->tv_nsec = tm.nanosecond;
265 }
266
267 static int
268 is_memory_available (efi_memory_desc_t *md)
269 {
270         if (!(md->attribute & EFI_MEMORY_WB))
271                 return 0;
272
273         switch (md->type) {
274               case EFI_LOADER_CODE:
275               case EFI_LOADER_DATA:
276               case EFI_BOOT_SERVICES_CODE:
277               case EFI_BOOT_SERVICES_DATA:
278               case EFI_CONVENTIONAL_MEMORY:
279                 return 1;
280         }
281         return 0;
282 }
283
284 typedef struct kern_memdesc {
285         u64 attribute;
286         u64 start;
287         u64 num_pages;
288 } kern_memdesc_t;
289
290 static kern_memdesc_t *kern_memmap;
291
292 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
293
294 static inline u64
295 kmd_end(kern_memdesc_t *kmd)
296 {
297         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
298 }
299
300 static inline u64
301 efi_md_end(efi_memory_desc_t *md)
302 {
303         return (md->phys_addr + efi_md_size(md));
304 }
305
306 static inline int
307 efi_wb(efi_memory_desc_t *md)
308 {
309         return (md->attribute & EFI_MEMORY_WB);
310 }
311
312 static inline int
313 efi_uc(efi_memory_desc_t *md)
314 {
315         return (md->attribute & EFI_MEMORY_UC);
316 }
317
318 static void
319 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
320 {
321         kern_memdesc_t *k;
322         u64 start, end, voff;
323
324         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
325         for (k = kern_memmap; k->start != ~0UL; k++) {
326                 if (k->attribute != attr)
327                         continue;
328                 start = PAGE_ALIGN(k->start);
329                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
330                 if (start < end)
331                         if ((*callback)(start + voff, end + voff, arg) < 0)
332                                 return;
333         }
334 }
335
336 /*
337  * Walk the EFI memory map and call CALLBACK once for each EFI memory
338  * descriptor that has memory that is available for OS use.
339  */
340 void
341 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
342 {
343         walk(callback, arg, EFI_MEMORY_WB);
344 }
345
346 /*
347  * Walk the EFI memory map and call CALLBACK once for each EFI memory
348  * descriptor that has memory that is available for uncached allocator.
349  */
350 void
351 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
352 {
353         walk(callback, arg, EFI_MEMORY_UC);
354 }
355
356 /*
357  * Look for the PAL_CODE region reported by EFI and map it using an
358  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
359  * Abstraction Layer chapter 11 in ADAG
360  */
361 void *
362 efi_get_pal_addr (void)
363 {
364         void *efi_map_start, *efi_map_end, *p;
365         efi_memory_desc_t *md;
366         u64 efi_desc_size;
367         int pal_code_count = 0;
368         u64 vaddr, mask;
369
370         efi_map_start = __va(ia64_boot_param->efi_memmap);
371         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
372         efi_desc_size = ia64_boot_param->efi_memdesc_size;
373
374         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
375                 md = p;
376                 if (md->type != EFI_PAL_CODE)
377                         continue;
378
379                 if (++pal_code_count > 1) {
380                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
381                                "dropped @ %llx\n", md->phys_addr);
382                         continue;
383                 }
384                 /*
385                  * The only ITLB entry in region 7 that is used is the one
386                  * installed by __start().  That entry covers a 64MB range.
387                  */
388                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
389                 vaddr = PAGE_OFFSET + md->phys_addr;
390
391                 /*
392                  * We must check that the PAL mapping won't overlap with the
393                  * kernel mapping.
394                  *
395                  * PAL code is guaranteed to be aligned on a power of 2 between
396                  * 4k and 256KB and that only one ITR is needed to map it. This
397                  * implies that the PAL code is always aligned on its size,
398                  * i.e., the closest matching page size supported by the TLB.
399                  * Therefore PAL code is guaranteed never to cross a 64MB unless
400                  * it is bigger than 64MB (very unlikely!).  So for now the
401                  * following test is enough to determine whether or not we need
402                  * a dedicated ITR for the PAL code.
403                  */
404                 if ((vaddr & mask) == (KERNEL_START & mask)) {
405                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
406                                __func__);
407                         continue;
408                 }
409
410                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
411                         panic("Whoa!  PAL code size bigger than a granule!");
412
413 #if EFI_DEBUG
414                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
415
416                 printk(KERN_INFO "CPU %d: mapping PAL code "
417                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
418                        smp_processor_id(), md->phys_addr,
419                        md->phys_addr + efi_md_size(md),
420                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
421 #endif
422                 return __va(md->phys_addr);
423         }
424         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
425                __func__);
426         return NULL;
427 }
428
429
430 static u8 __init palo_checksum(u8 *buffer, u32 length)
431 {
432         u8 sum = 0;
433         u8 *end = buffer + length;
434
435         while (buffer < end)
436                 sum = (u8) (sum + *(buffer++));
437
438         return sum;
439 }
440
441 /*
442  * Parse and handle PALO table which is published at:
443  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
444  */
445 static void __init handle_palo(unsigned long phys_addr)
446 {
447         struct palo_table *palo = __va(phys_addr);
448         u8  checksum;
449
450         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
451                 printk(KERN_INFO "PALO signature incorrect.\n");
452                 return;
453         }
454
455         checksum = palo_checksum((u8 *)palo, palo->length);
456         if (checksum) {
457                 printk(KERN_INFO "PALO checksum incorrect.\n");
458                 return;
459         }
460
461         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
462 }
463
464 void
465 efi_map_pal_code (void)
466 {
467         void *pal_vaddr = efi_get_pal_addr ();
468         u64 psr;
469
470         if (!pal_vaddr)
471                 return;
472
473         /*
474          * Cannot write to CRx with PSR.ic=1
475          */
476         psr = ia64_clear_ic();
477         ia64_itr(0x1, IA64_TR_PALCODE,
478                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
479                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
480                  IA64_GRANULE_SHIFT);
481         ia64_set_psr(psr);              /* restore psr */
482 }
483
484 void __init
485 efi_init (void)
486 {
487         void *efi_map_start, *efi_map_end;
488         u64 efi_desc_size;
489         char *cp;
490
491         set_bit(EFI_BOOT, &efi.flags);
492         set_bit(EFI_64BIT, &efi.flags);
493
494         /*
495          * It's too early to be able to use the standard kernel command line
496          * support...
497          */
498         for (cp = boot_command_line; *cp; ) {
499                 if (memcmp(cp, "mem=", 4) == 0) {
500                         mem_limit = memparse(cp + 4, &cp);
501                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
502                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
503                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
504                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
505                 } else {
506                         while (*cp != ' ' && *cp)
507                                 ++cp;
508                         while (*cp == ' ')
509                                 ++cp;
510                 }
511         }
512         if (min_addr != 0UL)
513                 printk(KERN_INFO "Ignoring memory below %lluMB\n",
514                        min_addr >> 20);
515         if (max_addr != ~0UL)
516                 printk(KERN_INFO "Ignoring memory above %lluMB\n",
517                        max_addr >> 20);
518
519         efi.systab = __va(ia64_boot_param->efi_systab);
520
521         /*
522          * Verify the EFI Table
523          */
524         if (efi.systab == NULL)
525                 panic("Whoa! Can't find EFI system table.\n");
526         if (efi_systab_check_header(&efi.systab->hdr, 1))
527                 panic("Whoa! EFI system table signature incorrect\n");
528
529         efi_systab_report_header(&efi.systab->hdr, efi.systab->fw_vendor);
530
531         palo_phys      = EFI_INVALID_TABLE_ADDR;
532
533         if (efi_config_init(arch_tables) != 0)
534                 return;
535
536         if (palo_phys != EFI_INVALID_TABLE_ADDR)
537                 handle_palo(palo_phys);
538
539         runtime = __va(efi.systab->runtime);
540         efi.get_time = phys_get_time;
541         efi.set_time = phys_set_time;
542         efi.get_wakeup_time = phys_get_wakeup_time;
543         efi.set_wakeup_time = phys_set_wakeup_time;
544         efi.get_variable = phys_get_variable;
545         efi.get_next_variable = phys_get_next_variable;
546         efi.set_variable = phys_set_variable;
547         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
548         efi.reset_system = phys_reset_system;
549
550         efi_map_start = __va(ia64_boot_param->efi_memmap);
551         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
552         efi_desc_size = ia64_boot_param->efi_memdesc_size;
553
554 #if EFI_DEBUG
555         /* print EFI memory map: */
556         {
557                 efi_memory_desc_t *md;
558                 void *p;
559
560                 for (i = 0, p = efi_map_start; p < efi_map_end;
561                      ++i, p += efi_desc_size)
562                 {
563                         const char *unit;
564                         unsigned long size;
565                         char buf[64];
566
567                         md = p;
568                         size = md->num_pages << EFI_PAGE_SHIFT;
569
570                         if ((size >> 40) > 0) {
571                                 size >>= 40;
572                                 unit = "TB";
573                         } else if ((size >> 30) > 0) {
574                                 size >>= 30;
575                                 unit = "GB";
576                         } else if ((size >> 20) > 0) {
577                                 size >>= 20;
578                                 unit = "MB";
579                         } else {
580                                 size >>= 10;
581                                 unit = "KB";
582                         }
583
584                         printk("mem%02d: %s "
585                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
586                                i, efi_md_typeattr_format(buf, sizeof(buf), md),
587                                md->phys_addr,
588                                md->phys_addr + efi_md_size(md), size, unit);
589                 }
590         }
591 #endif
592
593         efi_map_pal_code();
594         efi_enter_virtual_mode();
595 }
596
597 void
598 efi_enter_virtual_mode (void)
599 {
600         void *efi_map_start, *efi_map_end, *p;
601         efi_memory_desc_t *md;
602         efi_status_t status;
603         u64 efi_desc_size;
604
605         efi_map_start = __va(ia64_boot_param->efi_memmap);
606         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
607         efi_desc_size = ia64_boot_param->efi_memdesc_size;
608
609         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
610                 md = p;
611                 if (md->attribute & EFI_MEMORY_RUNTIME) {
612                         /*
613                          * Some descriptors have multiple bits set, so the
614                          * order of the tests is relevant.
615                          */
616                         if (md->attribute & EFI_MEMORY_WB) {
617                                 md->virt_addr = (u64) __va(md->phys_addr);
618                         } else if (md->attribute & EFI_MEMORY_UC) {
619                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
620                         } else if (md->attribute & EFI_MEMORY_WC) {
621 #if 0
622                                 md->virt_addr = ia64_remap(md->phys_addr,
623                                                            (_PAGE_A |
624                                                             _PAGE_P |
625                                                             _PAGE_D |
626                                                             _PAGE_MA_WC |
627                                                             _PAGE_PL_0 |
628                                                             _PAGE_AR_RW));
629 #else
630                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
631                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
632 #endif
633                         } else if (md->attribute & EFI_MEMORY_WT) {
634 #if 0
635                                 md->virt_addr = ia64_remap(md->phys_addr,
636                                                            (_PAGE_A |
637                                                             _PAGE_P |
638                                                             _PAGE_D |
639                                                             _PAGE_MA_WT |
640                                                             _PAGE_PL_0 |
641                                                             _PAGE_AR_RW));
642 #else
643                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
644                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
645 #endif
646                         }
647                 }
648         }
649
650         status = efi_call_phys(__va(runtime->set_virtual_address_map),
651                                ia64_boot_param->efi_memmap_size,
652                                efi_desc_size,
653                                ia64_boot_param->efi_memdesc_version,
654                                ia64_boot_param->efi_memmap);
655         if (status != EFI_SUCCESS) {
656                 printk(KERN_WARNING "warning: unable to switch EFI into "
657                        "virtual mode (status=%lu)\n", status);
658                 return;
659         }
660
661         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
662
663         /*
664          * Now that EFI is in virtual mode, we call the EFI functions more
665          * efficiently:
666          */
667         efi.get_time = virt_get_time;
668         efi.set_time = virt_set_time;
669         efi.get_wakeup_time = virt_get_wakeup_time;
670         efi.set_wakeup_time = virt_set_wakeup_time;
671         efi.get_variable = virt_get_variable;
672         efi.get_next_variable = virt_get_next_variable;
673         efi.set_variable = virt_set_variable;
674         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
675         efi.reset_system = virt_reset_system;
676 }
677
678 /*
679  * Walk the EFI memory map looking for the I/O port range.  There can only be
680  * one entry of this type, other I/O port ranges should be described via ACPI.
681  */
682 u64
683 efi_get_iobase (void)
684 {
685         void *efi_map_start, *efi_map_end, *p;
686         efi_memory_desc_t *md;
687         u64 efi_desc_size;
688
689         efi_map_start = __va(ia64_boot_param->efi_memmap);
690         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
691         efi_desc_size = ia64_boot_param->efi_memdesc_size;
692
693         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
694                 md = p;
695                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
696                         if (md->attribute & EFI_MEMORY_UC)
697                                 return md->phys_addr;
698                 }
699         }
700         return 0;
701 }
702
703 static struct kern_memdesc *
704 kern_memory_descriptor (unsigned long phys_addr)
705 {
706         struct kern_memdesc *md;
707
708         for (md = kern_memmap; md->start != ~0UL; md++) {
709                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
710                          return md;
711         }
712         return NULL;
713 }
714
715 static efi_memory_desc_t *
716 efi_memory_descriptor (unsigned long phys_addr)
717 {
718         void *efi_map_start, *efi_map_end, *p;
719         efi_memory_desc_t *md;
720         u64 efi_desc_size;
721
722         efi_map_start = __va(ia64_boot_param->efi_memmap);
723         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
724         efi_desc_size = ia64_boot_param->efi_memdesc_size;
725
726         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
727                 md = p;
728
729                 if (phys_addr - md->phys_addr < efi_md_size(md))
730                          return md;
731         }
732         return NULL;
733 }
734
735 static int
736 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
737 {
738         void *efi_map_start, *efi_map_end, *p;
739         efi_memory_desc_t *md;
740         u64 efi_desc_size;
741         unsigned long end;
742
743         efi_map_start = __va(ia64_boot_param->efi_memmap);
744         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
745         efi_desc_size = ia64_boot_param->efi_memdesc_size;
746
747         end = phys_addr + size;
748
749         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
750                 md = p;
751                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
752                         return 1;
753         }
754         return 0;
755 }
756
757 int
758 efi_mem_type (unsigned long phys_addr)
759 {
760         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
761
762         if (md)
763                 return md->type;
764         return -EINVAL;
765 }
766
767 u64
768 efi_mem_attributes (unsigned long phys_addr)
769 {
770         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
771
772         if (md)
773                 return md->attribute;
774         return 0;
775 }
776 EXPORT_SYMBOL(efi_mem_attributes);
777
778 u64
779 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
780 {
781         unsigned long end = phys_addr + size;
782         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
783         u64 attr;
784
785         if (!md)
786                 return 0;
787
788         /*
789          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
790          * the kernel that firmware needs this region mapped.
791          */
792         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
793         do {
794                 unsigned long md_end = efi_md_end(md);
795
796                 if (end <= md_end)
797                         return attr;
798
799                 md = efi_memory_descriptor(md_end);
800                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
801                         return 0;
802         } while (md);
803         return 0;       /* never reached */
804 }
805
806 u64
807 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
808 {
809         unsigned long end = phys_addr + size;
810         struct kern_memdesc *md;
811         u64 attr;
812
813         /*
814          * This is a hack for ioremap calls before we set up kern_memmap.
815          * Maybe we should do efi_memmap_init() earlier instead.
816          */
817         if (!kern_memmap) {
818                 attr = efi_mem_attribute(phys_addr, size);
819                 if (attr & EFI_MEMORY_WB)
820                         return EFI_MEMORY_WB;
821                 return 0;
822         }
823
824         md = kern_memory_descriptor(phys_addr);
825         if (!md)
826                 return 0;
827
828         attr = md->attribute;
829         do {
830                 unsigned long md_end = kmd_end(md);
831
832                 if (end <= md_end)
833                         return attr;
834
835                 md = kern_memory_descriptor(md_end);
836                 if (!md || md->attribute != attr)
837                         return 0;
838         } while (md);
839         return 0;       /* never reached */
840 }
841
842 int
843 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
844 {
845         u64 attr;
846
847         /*
848          * /dev/mem reads and writes use copy_to_user(), which implicitly
849          * uses a granule-sized kernel identity mapping.  It's really
850          * only safe to do this for regions in kern_memmap.  For more
851          * details, see Documentation/ia64/aliasing.rst.
852          */
853         attr = kern_mem_attribute(phys_addr, size);
854         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
855                 return 1;
856         return 0;
857 }
858
859 int
860 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
861 {
862         unsigned long phys_addr = pfn << PAGE_SHIFT;
863         u64 attr;
864
865         attr = efi_mem_attribute(phys_addr, size);
866
867         /*
868          * /dev/mem mmap uses normal user pages, so we don't need the entire
869          * granule, but the entire region we're mapping must support the same
870          * attribute.
871          */
872         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
873                 return 1;
874
875         /*
876          * Intel firmware doesn't tell us about all the MMIO regions, so
877          * in general we have to allow mmap requests.  But if EFI *does*
878          * tell us about anything inside this region, we should deny it.
879          * The user can always map a smaller region to avoid the overlap.
880          */
881         if (efi_memmap_intersects(phys_addr, size))
882                 return 0;
883
884         return 1;
885 }
886
887 pgprot_t
888 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
889                      pgprot_t vma_prot)
890 {
891         unsigned long phys_addr = pfn << PAGE_SHIFT;
892         u64 attr;
893
894         /*
895          * For /dev/mem mmap, we use user mappings, but if the region is
896          * in kern_memmap (and hence may be covered by a kernel mapping),
897          * we must use the same attribute as the kernel mapping.
898          */
899         attr = kern_mem_attribute(phys_addr, size);
900         if (attr & EFI_MEMORY_WB)
901                 return pgprot_cacheable(vma_prot);
902         else if (attr & EFI_MEMORY_UC)
903                 return pgprot_noncached(vma_prot);
904
905         /*
906          * Some chipsets don't support UC access to memory.  If
907          * WB is supported, we prefer that.
908          */
909         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
910                 return pgprot_cacheable(vma_prot);
911
912         return pgprot_noncached(vma_prot);
913 }
914
915 int __init
916 efi_uart_console_only(void)
917 {
918         efi_status_t status;
919         char *s, name[] = "ConOut";
920         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
921         efi_char16_t *utf16, name_utf16[32];
922         unsigned char data[1024];
923         unsigned long size = sizeof(data);
924         struct efi_generic_dev_path *hdr, *end_addr;
925         int uart = 0;
926
927         /* Convert to UTF-16 */
928         utf16 = name_utf16;
929         s = name;
930         while (*s)
931                 *utf16++ = *s++ & 0x7f;
932         *utf16 = 0;
933
934         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
935         if (status != EFI_SUCCESS) {
936                 printk(KERN_ERR "No EFI %s variable?\n", name);
937                 return 0;
938         }
939
940         hdr = (struct efi_generic_dev_path *) data;
941         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
942         while (hdr < end_addr) {
943                 if (hdr->type == EFI_DEV_MSG &&
944                     hdr->sub_type == EFI_DEV_MSG_UART)
945                         uart = 1;
946                 else if (hdr->type == EFI_DEV_END_PATH ||
947                           hdr->type == EFI_DEV_END_PATH2) {
948                         if (!uart)
949                                 return 0;
950                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
951                                 return 1;
952                         uart = 0;
953                 }
954                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
955         }
956         printk(KERN_ERR "Malformed %s value\n", name);
957         return 0;
958 }
959
960 /*
961  * Look for the first granule aligned memory descriptor memory
962  * that is big enough to hold EFI memory map. Make sure this
963  * descriptor is at least granule sized so it does not get trimmed
964  */
965 struct kern_memdesc *
966 find_memmap_space (void)
967 {
968         u64     contig_low=0, contig_high=0;
969         u64     as = 0, ae;
970         void *efi_map_start, *efi_map_end, *p, *q;
971         efi_memory_desc_t *md, *pmd = NULL, *check_md;
972         u64     space_needed, efi_desc_size;
973         unsigned long total_mem = 0;
974
975         efi_map_start = __va(ia64_boot_param->efi_memmap);
976         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
977         efi_desc_size = ia64_boot_param->efi_memdesc_size;
978
979         /*
980          * Worst case: we need 3 kernel descriptors for each efi descriptor
981          * (if every entry has a WB part in the middle, and UC head and tail),
982          * plus one for the end marker.
983          */
984         space_needed = sizeof(kern_memdesc_t) *
985                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
986
987         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
988                 md = p;
989                 if (!efi_wb(md)) {
990                         continue;
991                 }
992                 if (pmd == NULL || !efi_wb(pmd) ||
993                     efi_md_end(pmd) != md->phys_addr) {
994                         contig_low = GRANULEROUNDUP(md->phys_addr);
995                         contig_high = efi_md_end(md);
996                         for (q = p + efi_desc_size; q < efi_map_end;
997                              q += efi_desc_size) {
998                                 check_md = q;
999                                 if (!efi_wb(check_md))
1000                                         break;
1001                                 if (contig_high != check_md->phys_addr)
1002                                         break;
1003                                 contig_high = efi_md_end(check_md);
1004                         }
1005                         contig_high = GRANULEROUNDDOWN(contig_high);
1006                 }
1007                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1008                         continue;
1009
1010                 /* Round ends inward to granule boundaries */
1011                 as = max(contig_low, md->phys_addr);
1012                 ae = min(contig_high, efi_md_end(md));
1013
1014                 /* keep within max_addr= and min_addr= command line arg */
1015                 as = max(as, min_addr);
1016                 ae = min(ae, max_addr);
1017                 if (ae <= as)
1018                         continue;
1019
1020                 /* avoid going over mem= command line arg */
1021                 if (total_mem + (ae - as) > mem_limit)
1022                         ae -= total_mem + (ae - as) - mem_limit;
1023
1024                 if (ae <= as)
1025                         continue;
1026
1027                 if (ae - as > space_needed)
1028                         break;
1029         }
1030         if (p >= efi_map_end)
1031                 panic("Can't allocate space for kernel memory descriptors");
1032
1033         return __va(as);
1034 }
1035
1036 /*
1037  * Walk the EFI memory map and gather all memory available for kernel
1038  * to use.  We can allocate partial granules only if the unavailable
1039  * parts exist, and are WB.
1040  */
1041 unsigned long
1042 efi_memmap_init(u64 *s, u64 *e)
1043 {
1044         struct kern_memdesc *k, *prev = NULL;
1045         u64     contig_low=0, contig_high=0;
1046         u64     as, ae, lim;
1047         void *efi_map_start, *efi_map_end, *p, *q;
1048         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1049         u64     efi_desc_size;
1050         unsigned long total_mem = 0;
1051
1052         k = kern_memmap = find_memmap_space();
1053
1054         efi_map_start = __va(ia64_boot_param->efi_memmap);
1055         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1056         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1057
1058         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1059                 md = p;
1060                 if (!efi_wb(md)) {
1061                         if (efi_uc(md) &&
1062                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1063                              md->type == EFI_BOOT_SERVICES_DATA)) {
1064                                 k->attribute = EFI_MEMORY_UC;
1065                                 k->start = md->phys_addr;
1066                                 k->num_pages = md->num_pages;
1067                                 k++;
1068                         }
1069                         continue;
1070                 }
1071                 if (pmd == NULL || !efi_wb(pmd) ||
1072                     efi_md_end(pmd) != md->phys_addr) {
1073                         contig_low = GRANULEROUNDUP(md->phys_addr);
1074                         contig_high = efi_md_end(md);
1075                         for (q = p + efi_desc_size; q < efi_map_end;
1076                              q += efi_desc_size) {
1077                                 check_md = q;
1078                                 if (!efi_wb(check_md))
1079                                         break;
1080                                 if (contig_high != check_md->phys_addr)
1081                                         break;
1082                                 contig_high = efi_md_end(check_md);
1083                         }
1084                         contig_high = GRANULEROUNDDOWN(contig_high);
1085                 }
1086                 if (!is_memory_available(md))
1087                         continue;
1088
1089                 /*
1090                  * Round ends inward to granule boundaries
1091                  * Give trimmings to uncached allocator
1092                  */
1093                 if (md->phys_addr < contig_low) {
1094                         lim = min(efi_md_end(md), contig_low);
1095                         if (efi_uc(md)) {
1096                                 if (k > kern_memmap &&
1097                                     (k-1)->attribute == EFI_MEMORY_UC &&
1098                                     kmd_end(k-1) == md->phys_addr) {
1099                                         (k-1)->num_pages +=
1100                                                 (lim - md->phys_addr)
1101                                                 >> EFI_PAGE_SHIFT;
1102                                 } else {
1103                                         k->attribute = EFI_MEMORY_UC;
1104                                         k->start = md->phys_addr;
1105                                         k->num_pages = (lim - md->phys_addr)
1106                                                 >> EFI_PAGE_SHIFT;
1107                                         k++;
1108                                 }
1109                         }
1110                         as = contig_low;
1111                 } else
1112                         as = md->phys_addr;
1113
1114                 if (efi_md_end(md) > contig_high) {
1115                         lim = max(md->phys_addr, contig_high);
1116                         if (efi_uc(md)) {
1117                                 if (lim == md->phys_addr && k > kern_memmap &&
1118                                     (k-1)->attribute == EFI_MEMORY_UC &&
1119                                     kmd_end(k-1) == md->phys_addr) {
1120                                         (k-1)->num_pages += md->num_pages;
1121                                 } else {
1122                                         k->attribute = EFI_MEMORY_UC;
1123                                         k->start = lim;
1124                                         k->num_pages = (efi_md_end(md) - lim)
1125                                                 >> EFI_PAGE_SHIFT;
1126                                         k++;
1127                                 }
1128                         }
1129                         ae = contig_high;
1130                 } else
1131                         ae = efi_md_end(md);
1132
1133                 /* keep within max_addr= and min_addr= command line arg */
1134                 as = max(as, min_addr);
1135                 ae = min(ae, max_addr);
1136                 if (ae <= as)
1137                         continue;
1138
1139                 /* avoid going over mem= command line arg */
1140                 if (total_mem + (ae - as) > mem_limit)
1141                         ae -= total_mem + (ae - as) - mem_limit;
1142
1143                 if (ae <= as)
1144                         continue;
1145                 if (prev && kmd_end(prev) == md->phys_addr) {
1146                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1147                         total_mem += ae - as;
1148                         continue;
1149                 }
1150                 k->attribute = EFI_MEMORY_WB;
1151                 k->start = as;
1152                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1153                 total_mem += ae - as;
1154                 prev = k++;
1155         }
1156         k->start = ~0L; /* end-marker */
1157
1158         /* reserve the memory we are using for kern_memmap */
1159         *s = (u64)kern_memmap;
1160         *e = (u64)++k;
1161
1162         return total_mem;
1163 }
1164
1165 void
1166 efi_initialize_iomem_resources(struct resource *code_resource,
1167                                struct resource *data_resource,
1168                                struct resource *bss_resource)
1169 {
1170         struct resource *res;
1171         void *efi_map_start, *efi_map_end, *p;
1172         efi_memory_desc_t *md;
1173         u64 efi_desc_size;
1174         char *name;
1175         unsigned long flags, desc;
1176
1177         efi_map_start = __va(ia64_boot_param->efi_memmap);
1178         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1179         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1180
1181         res = NULL;
1182
1183         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1184                 md = p;
1185
1186                 if (md->num_pages == 0) /* should not happen */
1187                         continue;
1188
1189                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1190                 desc = IORES_DESC_NONE;
1191
1192                 switch (md->type) {
1193
1194                         case EFI_MEMORY_MAPPED_IO:
1195                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1196                                 continue;
1197
1198                         case EFI_LOADER_CODE:
1199                         case EFI_LOADER_DATA:
1200                         case EFI_BOOT_SERVICES_DATA:
1201                         case EFI_BOOT_SERVICES_CODE:
1202                         case EFI_CONVENTIONAL_MEMORY:
1203                                 if (md->attribute & EFI_MEMORY_WP) {
1204                                         name = "System ROM";
1205                                         flags |= IORESOURCE_READONLY;
1206                                 } else if (md->attribute == EFI_MEMORY_UC) {
1207                                         name = "Uncached RAM";
1208                                 } else {
1209                                         name = "System RAM";
1210                                         flags |= IORESOURCE_SYSRAM;
1211                                 }
1212                                 break;
1213
1214                         case EFI_ACPI_MEMORY_NVS:
1215                                 name = "ACPI Non-volatile Storage";
1216                                 desc = IORES_DESC_ACPI_NV_STORAGE;
1217                                 break;
1218
1219                         case EFI_UNUSABLE_MEMORY:
1220                                 name = "reserved";
1221                                 flags |= IORESOURCE_DISABLED;
1222                                 break;
1223
1224                         case EFI_PERSISTENT_MEMORY:
1225                                 name = "Persistent Memory";
1226                                 desc = IORES_DESC_PERSISTENT_MEMORY;
1227                                 break;
1228
1229                         case EFI_RESERVED_TYPE:
1230                         case EFI_RUNTIME_SERVICES_CODE:
1231                         case EFI_RUNTIME_SERVICES_DATA:
1232                         case EFI_ACPI_RECLAIM_MEMORY:
1233                         default:
1234                                 name = "reserved";
1235                                 break;
1236                 }
1237
1238                 if ((res = kzalloc(sizeof(struct resource),
1239                                    GFP_KERNEL)) == NULL) {
1240                         printk(KERN_ERR
1241                                "failed to allocate resource for iomem\n");
1242                         return;
1243                 }
1244
1245                 res->name = name;
1246                 res->start = md->phys_addr;
1247                 res->end = md->phys_addr + efi_md_size(md) - 1;
1248                 res->flags = flags;
1249                 res->desc = desc;
1250
1251                 if (insert_resource(&iomem_resource, res) < 0)
1252                         kfree(res);
1253                 else {
1254                         /*
1255                          * We don't know which region contains
1256                          * kernel data so we try it repeatedly and
1257                          * let the resource manager test it.
1258                          */
1259                         insert_resource(res, code_resource);
1260                         insert_resource(res, data_resource);
1261                         insert_resource(res, bss_resource);
1262 #ifdef CONFIG_KEXEC
1263                         insert_resource(res, &efi_memmap_res);
1264                         insert_resource(res, &boot_param_res);
1265                         if (crashk_res.end > crashk_res.start)
1266                                 insert_resource(res, &crashk_res);
1267 #endif
1268                 }
1269         }
1270 }
1271
1272 #ifdef CONFIG_KEXEC
1273 /* find a block of memory aligned to 64M exclude reserved regions
1274    rsvd_regions are sorted
1275  */
1276 unsigned long __init
1277 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1278 {
1279         int i;
1280         u64 start, end;
1281         u64 alignment = 1UL << _PAGE_SIZE_64M;
1282         void *efi_map_start, *efi_map_end, *p;
1283         efi_memory_desc_t *md;
1284         u64 efi_desc_size;
1285
1286         efi_map_start = __va(ia64_boot_param->efi_memmap);
1287         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1288         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1289
1290         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1291                 md = p;
1292                 if (!efi_wb(md))
1293                         continue;
1294                 start = ALIGN(md->phys_addr, alignment);
1295                 end = efi_md_end(md);
1296                 for (i = 0; i < n; i++) {
1297                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1298                                 if (__pa(r[i].start) > start + size)
1299                                         return start;
1300                                 start = ALIGN(__pa(r[i].end), alignment);
1301                                 if (i < n-1 &&
1302                                     __pa(r[i+1].start) < start + size)
1303                                         continue;
1304                                 else
1305                                         break;
1306                         }
1307                 }
1308                 if (end > start + size)
1309                         return start;
1310         }
1311
1312         printk(KERN_WARNING
1313                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1314         return ~0UL;
1315 }
1316 #endif
1317
1318 #ifdef CONFIG_CRASH_DUMP
1319 /* locate the size find a the descriptor at a certain address */
1320 unsigned long __init
1321 vmcore_find_descriptor_size (unsigned long address)
1322 {
1323         void *efi_map_start, *efi_map_end, *p;
1324         efi_memory_desc_t *md;
1325         u64 efi_desc_size;
1326         unsigned long ret = 0;
1327
1328         efi_map_start = __va(ia64_boot_param->efi_memmap);
1329         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1330         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1331
1332         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1333                 md = p;
1334                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1335                     && md->phys_addr == address) {
1336                         ret = efi_md_size(md);
1337                         break;
1338                 }
1339         }
1340
1341         if (ret == 0)
1342                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1343
1344         return ret;
1345 }
1346 #endif
1347
1348 char *efi_systab_show_arch(char *str)
1349 {
1350         if (mps_phys != EFI_INVALID_TABLE_ADDR)
1351                 str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1352         if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1353                 str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1354         return str;
1355 }