Merge branch 'pcmcia-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo...
[linux-2.6-microblaze.git] / arch / ia64 / kernel / efi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Extensible Firmware Interface
4  *
5  * Based on Extensible Firmware Interface Specification version 0.9
6  * April 30, 1999
7  *
8  * Copyright (C) 1999 VA Linux Systems
9  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10  * Copyright (C) 1999-2003 Hewlett-Packard Co.
11  *      David Mosberger-Tang <davidm@hpl.hp.com>
12  *      Stephane Eranian <eranian@hpl.hp.com>
13  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
15  *
16  * All EFI Runtime Services are not implemented yet as EFI only
17  * supports physical mode addressing on SoftSDV. This is to be fixed
18  * in a future version.  --drummond 1999-07-20
19  *
20  * Implemented EFI runtime services and virtual mode calls.  --davidm
21  *
22  * Goutham Rao: <goutham.rao@intel.com>
23  *      Skip non-WB memory and ignore empty memory ranges.
24  */
25 #include <linux/module.h>
26 #include <linux/memblock.h>
27 #include <linux/crash_dump.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/efi.h>
34 #include <linux/kexec.h>
35 #include <linux/mm.h>
36
37 #include <asm/efi.h>
38 #include <asm/io.h>
39 #include <asm/kregs.h>
40 #include <asm/meminit.h>
41 #include <asm/processor.h>
42 #include <asm/mca.h>
43 #include <asm/sal.h>
44 #include <asm/setup.h>
45 #include <asm/tlbflush.h>
46
47 #define EFI_DEBUG       0
48
49 #define ESI_TABLE_GUID                                  \
50     EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3,          \
51              0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
52
53 static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
54 static __initdata unsigned long palo_phys;
55
56 unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
57 unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
58 unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
59
60 static const efi_config_table_type_t arch_tables[] __initconst = {
61         {ESI_TABLE_GUID,                                &esi_phys,              "ESI"           },
62         {HCDP_TABLE_GUID,                               &hcdp_phys,             "HCDP"          },
63         {MPS_TABLE_GUID,                                &mps_phys,              "MPS"           },
64         {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID,    &palo_phys,             "PALO"          },
65         {SAL_SYSTEM_TABLE_GUID,                         &sal_systab_phys,       "SALsystab"     },
66         {},
67 };
68
69 extern efi_status_t efi_call_phys (void *, ...);
70
71 static efi_runtime_services_t *runtime;
72 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
73
74 #define efi_call_virt(f, args...)       (*(f))(args)
75
76 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
77 static efi_status_t                                                            \
78 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
79 {                                                                              \
80         struct ia64_fpreg fr[6];                                               \
81         efi_time_cap_t *atc = NULL;                                            \
82         efi_status_t ret;                                                      \
83                                                                                \
84         if (tc)                                                                \
85                 atc = adjust_arg(tc);                                          \
86         ia64_save_scratch_fpregs(fr);                                          \
87         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
88                                 adjust_arg(tm), atc);                          \
89         ia64_load_scratch_fpregs(fr);                                          \
90         return ret;                                                            \
91 }
92
93 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
94 static efi_status_t                                                            \
95 prefix##_set_time (efi_time_t *tm)                                             \
96 {                                                                              \
97         struct ia64_fpreg fr[6];                                               \
98         efi_status_t ret;                                                      \
99                                                                                \
100         ia64_save_scratch_fpregs(fr);                                          \
101         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
102                                 adjust_arg(tm));                               \
103         ia64_load_scratch_fpregs(fr);                                          \
104         return ret;                                                            \
105 }
106
107 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
108 static efi_status_t                                                            \
109 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
110                           efi_time_t *tm)                                      \
111 {                                                                              \
112         struct ia64_fpreg fr[6];                                               \
113         efi_status_t ret;                                                      \
114                                                                                \
115         ia64_save_scratch_fpregs(fr);                                          \
116         ret = efi_call_##prefix(                                               \
117                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
118                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
119         ia64_load_scratch_fpregs(fr);                                          \
120         return ret;                                                            \
121 }
122
123 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
124 static efi_status_t                                                            \
125 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
126 {                                                                              \
127         struct ia64_fpreg fr[6];                                               \
128         efi_time_t *atm = NULL;                                                \
129         efi_status_t ret;                                                      \
130                                                                                \
131         if (tm)                                                                \
132                 atm = adjust_arg(tm);                                          \
133         ia64_save_scratch_fpregs(fr);                                          \
134         ret = efi_call_##prefix(                                               \
135                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
136                 enabled, atm);                                                 \
137         ia64_load_scratch_fpregs(fr);                                          \
138         return ret;                                                            \
139 }
140
141 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
142 static efi_status_t                                                            \
143 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
144                        unsigned long *data_size, void *data)                   \
145 {                                                                              \
146         struct ia64_fpreg fr[6];                                               \
147         u32 *aattr = NULL;                                                     \
148         efi_status_t ret;                                                      \
149                                                                                \
150         if (attr)                                                              \
151                 aattr = adjust_arg(attr);                                      \
152         ia64_save_scratch_fpregs(fr);                                          \
153         ret = efi_call_##prefix(                                               \
154                 (efi_get_variable_t *) __va(runtime->get_variable),            \
155                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
156                 adjust_arg(data_size), adjust_arg(data));                      \
157         ia64_load_scratch_fpregs(fr);                                          \
158         return ret;                                                            \
159 }
160
161 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
162 static efi_status_t                                                            \
163 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
164                             efi_guid_t *vendor)                                \
165 {                                                                              \
166         struct ia64_fpreg fr[6];                                               \
167         efi_status_t ret;                                                      \
168                                                                                \
169         ia64_save_scratch_fpregs(fr);                                          \
170         ret = efi_call_##prefix(                                               \
171                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
172                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
173         ia64_load_scratch_fpregs(fr);                                          \
174         return ret;                                                            \
175 }
176
177 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
178 static efi_status_t                                                            \
179 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
180                        u32 attr, unsigned long data_size,                      \
181                        void *data)                                             \
182 {                                                                              \
183         struct ia64_fpreg fr[6];                                               \
184         efi_status_t ret;                                                      \
185                                                                                \
186         ia64_save_scratch_fpregs(fr);                                          \
187         ret = efi_call_##prefix(                                               \
188                 (efi_set_variable_t *) __va(runtime->set_variable),            \
189                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
190                 adjust_arg(data));                                             \
191         ia64_load_scratch_fpregs(fr);                                          \
192         return ret;                                                            \
193 }
194
195 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
196 static efi_status_t                                                            \
197 prefix##_get_next_high_mono_count (u32 *count)                                 \
198 {                                                                              \
199         struct ia64_fpreg fr[6];                                               \
200         efi_status_t ret;                                                      \
201                                                                                \
202         ia64_save_scratch_fpregs(fr);                                          \
203         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
204                                 __va(runtime->get_next_high_mono_count),       \
205                                 adjust_arg(count));                            \
206         ia64_load_scratch_fpregs(fr);                                          \
207         return ret;                                                            \
208 }
209
210 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
211 static void                                                                    \
212 prefix##_reset_system (int reset_type, efi_status_t status,                    \
213                        unsigned long data_size, efi_char16_t *data)            \
214 {                                                                              \
215         struct ia64_fpreg fr[6];                                               \
216         efi_char16_t *adata = NULL;                                            \
217                                                                                \
218         if (data)                                                              \
219                 adata = adjust_arg(data);                                      \
220                                                                                \
221         ia64_save_scratch_fpregs(fr);                                          \
222         efi_call_##prefix(                                                     \
223                 (efi_reset_system_t *) __va(runtime->reset_system),            \
224                 reset_type, status, data_size, adata);                         \
225         /* should not return, but just in case... */                           \
226         ia64_load_scratch_fpregs(fr);                                          \
227 }
228
229 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
230
231 STUB_GET_TIME(phys, phys_ptr)
232 STUB_SET_TIME(phys, phys_ptr)
233 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
234 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
235 STUB_GET_VARIABLE(phys, phys_ptr)
236 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
237 STUB_SET_VARIABLE(phys, phys_ptr)
238 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
239 STUB_RESET_SYSTEM(phys, phys_ptr)
240
241 #define id(arg) arg
242
243 STUB_GET_TIME(virt, id)
244 STUB_SET_TIME(virt, id)
245 STUB_GET_WAKEUP_TIME(virt, id)
246 STUB_SET_WAKEUP_TIME(virt, id)
247 STUB_GET_VARIABLE(virt, id)
248 STUB_GET_NEXT_VARIABLE(virt, id)
249 STUB_SET_VARIABLE(virt, id)
250 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
251 STUB_RESET_SYSTEM(virt, id)
252
253 void
254 efi_gettimeofday (struct timespec64 *ts)
255 {
256         efi_time_t tm;
257
258         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
259                 memset(ts, 0, sizeof(*ts));
260                 return;
261         }
262
263         ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
264                             tm.hour, tm.minute, tm.second);
265         ts->tv_nsec = tm.nanosecond;
266 }
267
268 static int
269 is_memory_available (efi_memory_desc_t *md)
270 {
271         if (!(md->attribute & EFI_MEMORY_WB))
272                 return 0;
273
274         switch (md->type) {
275               case EFI_LOADER_CODE:
276               case EFI_LOADER_DATA:
277               case EFI_BOOT_SERVICES_CODE:
278               case EFI_BOOT_SERVICES_DATA:
279               case EFI_CONVENTIONAL_MEMORY:
280                 return 1;
281         }
282         return 0;
283 }
284
285 typedef struct kern_memdesc {
286         u64 attribute;
287         u64 start;
288         u64 num_pages;
289 } kern_memdesc_t;
290
291 static kern_memdesc_t *kern_memmap;
292
293 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
294
295 static inline u64
296 kmd_end(kern_memdesc_t *kmd)
297 {
298         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
299 }
300
301 static inline u64
302 efi_md_end(efi_memory_desc_t *md)
303 {
304         return (md->phys_addr + efi_md_size(md));
305 }
306
307 static inline int
308 efi_wb(efi_memory_desc_t *md)
309 {
310         return (md->attribute & EFI_MEMORY_WB);
311 }
312
313 static inline int
314 efi_uc(efi_memory_desc_t *md)
315 {
316         return (md->attribute & EFI_MEMORY_UC);
317 }
318
319 static void
320 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
321 {
322         kern_memdesc_t *k;
323         u64 start, end, voff;
324
325         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
326         for (k = kern_memmap; k->start != ~0UL; k++) {
327                 if (k->attribute != attr)
328                         continue;
329                 start = PAGE_ALIGN(k->start);
330                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
331                 if (start < end)
332                         if ((*callback)(start + voff, end + voff, arg) < 0)
333                                 return;
334         }
335 }
336
337 /*
338  * Walk the EFI memory map and call CALLBACK once for each EFI memory
339  * descriptor that has memory that is available for OS use.
340  */
341 void
342 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
343 {
344         walk(callback, arg, EFI_MEMORY_WB);
345 }
346
347 /*
348  * Walk the EFI memory map and call CALLBACK once for each EFI memory
349  * descriptor that has memory that is available for uncached allocator.
350  */
351 void
352 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
353 {
354         walk(callback, arg, EFI_MEMORY_UC);
355 }
356
357 /*
358  * Look for the PAL_CODE region reported by EFI and map it using an
359  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
360  * Abstraction Layer chapter 11 in ADAG
361  */
362 void *
363 efi_get_pal_addr (void)
364 {
365         void *efi_map_start, *efi_map_end, *p;
366         efi_memory_desc_t *md;
367         u64 efi_desc_size;
368         int pal_code_count = 0;
369         u64 vaddr, mask;
370
371         efi_map_start = __va(ia64_boot_param->efi_memmap);
372         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
373         efi_desc_size = ia64_boot_param->efi_memdesc_size;
374
375         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
376                 md = p;
377                 if (md->type != EFI_PAL_CODE)
378                         continue;
379
380                 if (++pal_code_count > 1) {
381                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
382                                "dropped @ %llx\n", md->phys_addr);
383                         continue;
384                 }
385                 /*
386                  * The only ITLB entry in region 7 that is used is the one
387                  * installed by __start().  That entry covers a 64MB range.
388                  */
389                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
390                 vaddr = PAGE_OFFSET + md->phys_addr;
391
392                 /*
393                  * We must check that the PAL mapping won't overlap with the
394                  * kernel mapping.
395                  *
396                  * PAL code is guaranteed to be aligned on a power of 2 between
397                  * 4k and 256KB and that only one ITR is needed to map it. This
398                  * implies that the PAL code is always aligned on its size,
399                  * i.e., the closest matching page size supported by the TLB.
400                  * Therefore PAL code is guaranteed never to cross a 64MB unless
401                  * it is bigger than 64MB (very unlikely!).  So for now the
402                  * following test is enough to determine whether or not we need
403                  * a dedicated ITR for the PAL code.
404                  */
405                 if ((vaddr & mask) == (KERNEL_START & mask)) {
406                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
407                                __func__);
408                         continue;
409                 }
410
411                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
412                         panic("Whoa!  PAL code size bigger than a granule!");
413
414 #if EFI_DEBUG
415                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
416
417                 printk(KERN_INFO "CPU %d: mapping PAL code "
418                         "[0x%llx-0x%llx) into [0x%llx-0x%llx)\n",
419                         smp_processor_id(), md->phys_addr,
420                         md->phys_addr + efi_md_size(md),
421                         vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
422 #endif
423                 return __va(md->phys_addr);
424         }
425         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
426                __func__);
427         return NULL;
428 }
429
430
431 static u8 __init palo_checksum(u8 *buffer, u32 length)
432 {
433         u8 sum = 0;
434         u8 *end = buffer + length;
435
436         while (buffer < end)
437                 sum = (u8) (sum + *(buffer++));
438
439         return sum;
440 }
441
442 /*
443  * Parse and handle PALO table which is published at:
444  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
445  */
446 static void __init handle_palo(unsigned long phys_addr)
447 {
448         struct palo_table *palo = __va(phys_addr);
449         u8  checksum;
450
451         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
452                 printk(KERN_INFO "PALO signature incorrect.\n");
453                 return;
454         }
455
456         checksum = palo_checksum((u8 *)palo, palo->length);
457         if (checksum) {
458                 printk(KERN_INFO "PALO checksum incorrect.\n");
459                 return;
460         }
461
462         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
463 }
464
465 void
466 efi_map_pal_code (void)
467 {
468         void *pal_vaddr = efi_get_pal_addr ();
469         u64 psr;
470
471         if (!pal_vaddr)
472                 return;
473
474         /*
475          * Cannot write to CRx with PSR.ic=1
476          */
477         psr = ia64_clear_ic();
478         ia64_itr(0x1, IA64_TR_PALCODE,
479                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
480                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
481                  IA64_GRANULE_SHIFT);
482         ia64_set_psr(psr);              /* restore psr */
483 }
484
485 void __init
486 efi_init (void)
487 {
488         const efi_system_table_t *efi_systab;
489         void *efi_map_start, *efi_map_end;
490         u64 efi_desc_size;
491         char *cp;
492
493         set_bit(EFI_BOOT, &efi.flags);
494         set_bit(EFI_64BIT, &efi.flags);
495
496         /*
497          * It's too early to be able to use the standard kernel command line
498          * support...
499          */
500         for (cp = boot_command_line; *cp; ) {
501                 if (memcmp(cp, "mem=", 4) == 0) {
502                         mem_limit = memparse(cp + 4, &cp);
503                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
504                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
505                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
506                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
507                 } else {
508                         while (*cp != ' ' && *cp)
509                                 ++cp;
510                         while (*cp == ' ')
511                                 ++cp;
512                 }
513         }
514         if (min_addr != 0UL)
515                 printk(KERN_INFO "Ignoring memory below %lluMB\n",
516                        min_addr >> 20);
517         if (max_addr != ~0UL)
518                 printk(KERN_INFO "Ignoring memory above %lluMB\n",
519                        max_addr >> 20);
520
521         efi_systab = __va(ia64_boot_param->efi_systab);
522
523         /*
524          * Verify the EFI Table
525          */
526         if (efi_systab == NULL)
527                 panic("Whoa! Can't find EFI system table.\n");
528         if (efi_systab_check_header(&efi_systab->hdr, 1))
529                 panic("Whoa! EFI system table signature incorrect\n");
530
531         efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
532
533         palo_phys      = EFI_INVALID_TABLE_ADDR;
534
535         if (efi_config_parse_tables(__va(efi_systab->tables),
536                                     efi_systab->nr_tables,
537                                     arch_tables) != 0)
538                 return;
539
540         if (palo_phys != EFI_INVALID_TABLE_ADDR)
541                 handle_palo(palo_phys);
542
543         runtime = __va(efi_systab->runtime);
544         efi.get_time = phys_get_time;
545         efi.set_time = phys_set_time;
546         efi.get_wakeup_time = phys_get_wakeup_time;
547         efi.set_wakeup_time = phys_set_wakeup_time;
548         efi.get_variable = phys_get_variable;
549         efi.get_next_variable = phys_get_next_variable;
550         efi.set_variable = phys_set_variable;
551         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
552         efi.reset_system = phys_reset_system;
553
554         efi_map_start = __va(ia64_boot_param->efi_memmap);
555         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
556         efi_desc_size = ia64_boot_param->efi_memdesc_size;
557
558 #if EFI_DEBUG
559         /* print EFI memory map: */
560         {
561                 efi_memory_desc_t *md;
562                 void *p;
563                 unsigned int i;
564
565                 for (i = 0, p = efi_map_start; p < efi_map_end;
566                      ++i, p += efi_desc_size)
567                 {
568                         const char *unit;
569                         unsigned long size;
570                         char buf[64];
571
572                         md = p;
573                         size = md->num_pages << EFI_PAGE_SHIFT;
574
575                         if ((size >> 40) > 0) {
576                                 size >>= 40;
577                                 unit = "TB";
578                         } else if ((size >> 30) > 0) {
579                                 size >>= 30;
580                                 unit = "GB";
581                         } else if ((size >> 20) > 0) {
582                                 size >>= 20;
583                                 unit = "MB";
584                         } else {
585                                 size >>= 10;
586                                 unit = "KB";
587                         }
588
589                         printk("mem%02d: %s "
590                                "range=[0x%016llx-0x%016llx) (%4lu%s)\n",
591                                i, efi_md_typeattr_format(buf, sizeof(buf), md),
592                                md->phys_addr,
593                                md->phys_addr + efi_md_size(md), size, unit);
594                 }
595         }
596 #endif
597
598         efi_map_pal_code();
599         efi_enter_virtual_mode();
600 }
601
602 void
603 efi_enter_virtual_mode (void)
604 {
605         void *efi_map_start, *efi_map_end, *p;
606         efi_memory_desc_t *md;
607         efi_status_t status;
608         u64 efi_desc_size;
609
610         efi_map_start = __va(ia64_boot_param->efi_memmap);
611         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
612         efi_desc_size = ia64_boot_param->efi_memdesc_size;
613
614         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
615                 md = p;
616                 if (md->attribute & EFI_MEMORY_RUNTIME) {
617                         /*
618                          * Some descriptors have multiple bits set, so the
619                          * order of the tests is relevant.
620                          */
621                         if (md->attribute & EFI_MEMORY_WB) {
622                                 md->virt_addr = (u64) __va(md->phys_addr);
623                         } else if (md->attribute & EFI_MEMORY_UC) {
624                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
625                         } else if (md->attribute & EFI_MEMORY_WC) {
626 #if 0
627                                 md->virt_addr = ia64_remap(md->phys_addr,
628                                                            (_PAGE_A |
629                                                             _PAGE_P |
630                                                             _PAGE_D |
631                                                             _PAGE_MA_WC |
632                                                             _PAGE_PL_0 |
633                                                             _PAGE_AR_RW));
634 #else
635                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
636                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
637 #endif
638                         } else if (md->attribute & EFI_MEMORY_WT) {
639 #if 0
640                                 md->virt_addr = ia64_remap(md->phys_addr,
641                                                            (_PAGE_A |
642                                                             _PAGE_P |
643                                                             _PAGE_D |
644                                                             _PAGE_MA_WT |
645                                                             _PAGE_PL_0 |
646                                                             _PAGE_AR_RW));
647 #else
648                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
649                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
650 #endif
651                         }
652                 }
653         }
654
655         status = efi_call_phys(__va(runtime->set_virtual_address_map),
656                                ia64_boot_param->efi_memmap_size,
657                                efi_desc_size,
658                                ia64_boot_param->efi_memdesc_version,
659                                ia64_boot_param->efi_memmap);
660         if (status != EFI_SUCCESS) {
661                 printk(KERN_WARNING "warning: unable to switch EFI into "
662                        "virtual mode (status=%lu)\n", status);
663                 return;
664         }
665
666         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
667
668         /*
669          * Now that EFI is in virtual mode, we call the EFI functions more
670          * efficiently:
671          */
672         efi.get_time = virt_get_time;
673         efi.set_time = virt_set_time;
674         efi.get_wakeup_time = virt_get_wakeup_time;
675         efi.set_wakeup_time = virt_set_wakeup_time;
676         efi.get_variable = virt_get_variable;
677         efi.get_next_variable = virt_get_next_variable;
678         efi.set_variable = virt_set_variable;
679         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
680         efi.reset_system = virt_reset_system;
681 }
682
683 /*
684  * Walk the EFI memory map looking for the I/O port range.  There can only be
685  * one entry of this type, other I/O port ranges should be described via ACPI.
686  */
687 u64
688 efi_get_iobase (void)
689 {
690         void *efi_map_start, *efi_map_end, *p;
691         efi_memory_desc_t *md;
692         u64 efi_desc_size;
693
694         efi_map_start = __va(ia64_boot_param->efi_memmap);
695         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
696         efi_desc_size = ia64_boot_param->efi_memdesc_size;
697
698         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
699                 md = p;
700                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
701                         if (md->attribute & EFI_MEMORY_UC)
702                                 return md->phys_addr;
703                 }
704         }
705         return 0;
706 }
707
708 static struct kern_memdesc *
709 kern_memory_descriptor (unsigned long phys_addr)
710 {
711         struct kern_memdesc *md;
712
713         for (md = kern_memmap; md->start != ~0UL; md++) {
714                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
715                          return md;
716         }
717         return NULL;
718 }
719
720 static efi_memory_desc_t *
721 efi_memory_descriptor (unsigned long phys_addr)
722 {
723         void *efi_map_start, *efi_map_end, *p;
724         efi_memory_desc_t *md;
725         u64 efi_desc_size;
726
727         efi_map_start = __va(ia64_boot_param->efi_memmap);
728         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
729         efi_desc_size = ia64_boot_param->efi_memdesc_size;
730
731         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
732                 md = p;
733
734                 if (phys_addr - md->phys_addr < efi_md_size(md))
735                          return md;
736         }
737         return NULL;
738 }
739
740 static int
741 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
742 {
743         void *efi_map_start, *efi_map_end, *p;
744         efi_memory_desc_t *md;
745         u64 efi_desc_size;
746         unsigned long end;
747
748         efi_map_start = __va(ia64_boot_param->efi_memmap);
749         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
750         efi_desc_size = ia64_boot_param->efi_memdesc_size;
751
752         end = phys_addr + size;
753
754         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
755                 md = p;
756                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
757                         return 1;
758         }
759         return 0;
760 }
761
762 int
763 efi_mem_type (unsigned long phys_addr)
764 {
765         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
766
767         if (md)
768                 return md->type;
769         return -EINVAL;
770 }
771
772 u64
773 efi_mem_attributes (unsigned long phys_addr)
774 {
775         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
776
777         if (md)
778                 return md->attribute;
779         return 0;
780 }
781 EXPORT_SYMBOL(efi_mem_attributes);
782
783 u64
784 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
785 {
786         unsigned long end = phys_addr + size;
787         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
788         u64 attr;
789
790         if (!md)
791                 return 0;
792
793         /*
794          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
795          * the kernel that firmware needs this region mapped.
796          */
797         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
798         do {
799                 unsigned long md_end = efi_md_end(md);
800
801                 if (end <= md_end)
802                         return attr;
803
804                 md = efi_memory_descriptor(md_end);
805                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
806                         return 0;
807         } while (md);
808         return 0;       /* never reached */
809 }
810
811 u64
812 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
813 {
814         unsigned long end = phys_addr + size;
815         struct kern_memdesc *md;
816         u64 attr;
817
818         /*
819          * This is a hack for ioremap calls before we set up kern_memmap.
820          * Maybe we should do efi_memmap_init() earlier instead.
821          */
822         if (!kern_memmap) {
823                 attr = efi_mem_attribute(phys_addr, size);
824                 if (attr & EFI_MEMORY_WB)
825                         return EFI_MEMORY_WB;
826                 return 0;
827         }
828
829         md = kern_memory_descriptor(phys_addr);
830         if (!md)
831                 return 0;
832
833         attr = md->attribute;
834         do {
835                 unsigned long md_end = kmd_end(md);
836
837                 if (end <= md_end)
838                         return attr;
839
840                 md = kern_memory_descriptor(md_end);
841                 if (!md || md->attribute != attr)
842                         return 0;
843         } while (md);
844         return 0;       /* never reached */
845 }
846
847 int
848 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
849 {
850         u64 attr;
851
852         /*
853          * /dev/mem reads and writes use copy_to_user(), which implicitly
854          * uses a granule-sized kernel identity mapping.  It's really
855          * only safe to do this for regions in kern_memmap.  For more
856          * details, see Documentation/ia64/aliasing.rst.
857          */
858         attr = kern_mem_attribute(phys_addr, size);
859         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
860                 return 1;
861         return 0;
862 }
863
864 int
865 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
866 {
867         unsigned long phys_addr = pfn << PAGE_SHIFT;
868         u64 attr;
869
870         attr = efi_mem_attribute(phys_addr, size);
871
872         /*
873          * /dev/mem mmap uses normal user pages, so we don't need the entire
874          * granule, but the entire region we're mapping must support the same
875          * attribute.
876          */
877         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
878                 return 1;
879
880         /*
881          * Intel firmware doesn't tell us about all the MMIO regions, so
882          * in general we have to allow mmap requests.  But if EFI *does*
883          * tell us about anything inside this region, we should deny it.
884          * The user can always map a smaller region to avoid the overlap.
885          */
886         if (efi_memmap_intersects(phys_addr, size))
887                 return 0;
888
889         return 1;
890 }
891
892 pgprot_t
893 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
894                      pgprot_t vma_prot)
895 {
896         unsigned long phys_addr = pfn << PAGE_SHIFT;
897         u64 attr;
898
899         /*
900          * For /dev/mem mmap, we use user mappings, but if the region is
901          * in kern_memmap (and hence may be covered by a kernel mapping),
902          * we must use the same attribute as the kernel mapping.
903          */
904         attr = kern_mem_attribute(phys_addr, size);
905         if (attr & EFI_MEMORY_WB)
906                 return pgprot_cacheable(vma_prot);
907         else if (attr & EFI_MEMORY_UC)
908                 return pgprot_noncached(vma_prot);
909
910         /*
911          * Some chipsets don't support UC access to memory.  If
912          * WB is supported, we prefer that.
913          */
914         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
915                 return pgprot_cacheable(vma_prot);
916
917         return pgprot_noncached(vma_prot);
918 }
919
920 int __init
921 efi_uart_console_only(void)
922 {
923         efi_status_t status;
924         char *s, name[] = "ConOut";
925         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
926         efi_char16_t *utf16, name_utf16[32];
927         unsigned char data[1024];
928         unsigned long size = sizeof(data);
929         struct efi_generic_dev_path *hdr, *end_addr;
930         int uart = 0;
931
932         /* Convert to UTF-16 */
933         utf16 = name_utf16;
934         s = name;
935         while (*s)
936                 *utf16++ = *s++ & 0x7f;
937         *utf16 = 0;
938
939         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
940         if (status != EFI_SUCCESS) {
941                 printk(KERN_ERR "No EFI %s variable?\n", name);
942                 return 0;
943         }
944
945         hdr = (struct efi_generic_dev_path *) data;
946         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
947         while (hdr < end_addr) {
948                 if (hdr->type == EFI_DEV_MSG &&
949                     hdr->sub_type == EFI_DEV_MSG_UART)
950                         uart = 1;
951                 else if (hdr->type == EFI_DEV_END_PATH ||
952                           hdr->type == EFI_DEV_END_PATH2) {
953                         if (!uart)
954                                 return 0;
955                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
956                                 return 1;
957                         uart = 0;
958                 }
959                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
960         }
961         printk(KERN_ERR "Malformed %s value\n", name);
962         return 0;
963 }
964
965 /*
966  * Look for the first granule aligned memory descriptor memory
967  * that is big enough to hold EFI memory map. Make sure this
968  * descriptor is at least granule sized so it does not get trimmed
969  */
970 struct kern_memdesc *
971 find_memmap_space (void)
972 {
973         u64     contig_low=0, contig_high=0;
974         u64     as = 0, ae;
975         void *efi_map_start, *efi_map_end, *p, *q;
976         efi_memory_desc_t *md, *pmd = NULL, *check_md;
977         u64     space_needed, efi_desc_size;
978         unsigned long total_mem = 0;
979
980         efi_map_start = __va(ia64_boot_param->efi_memmap);
981         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
982         efi_desc_size = ia64_boot_param->efi_memdesc_size;
983
984         /*
985          * Worst case: we need 3 kernel descriptors for each efi descriptor
986          * (if every entry has a WB part in the middle, and UC head and tail),
987          * plus one for the end marker.
988          */
989         space_needed = sizeof(kern_memdesc_t) *
990                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
991
992         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
993                 md = p;
994                 if (!efi_wb(md)) {
995                         continue;
996                 }
997                 if (pmd == NULL || !efi_wb(pmd) ||
998                     efi_md_end(pmd) != md->phys_addr) {
999                         contig_low = GRANULEROUNDUP(md->phys_addr);
1000                         contig_high = efi_md_end(md);
1001                         for (q = p + efi_desc_size; q < efi_map_end;
1002                              q += efi_desc_size) {
1003                                 check_md = q;
1004                                 if (!efi_wb(check_md))
1005                                         break;
1006                                 if (contig_high != check_md->phys_addr)
1007                                         break;
1008                                 contig_high = efi_md_end(check_md);
1009                         }
1010                         contig_high = GRANULEROUNDDOWN(contig_high);
1011                 }
1012                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1013                         continue;
1014
1015                 /* Round ends inward to granule boundaries */
1016                 as = max(contig_low, md->phys_addr);
1017                 ae = min(contig_high, efi_md_end(md));
1018
1019                 /* keep within max_addr= and min_addr= command line arg */
1020                 as = max(as, min_addr);
1021                 ae = min(ae, max_addr);
1022                 if (ae <= as)
1023                         continue;
1024
1025                 /* avoid going over mem= command line arg */
1026                 if (total_mem + (ae - as) > mem_limit)
1027                         ae -= total_mem + (ae - as) - mem_limit;
1028
1029                 if (ae <= as)
1030                         continue;
1031
1032                 if (ae - as > space_needed)
1033                         break;
1034         }
1035         if (p >= efi_map_end)
1036                 panic("Can't allocate space for kernel memory descriptors");
1037
1038         return __va(as);
1039 }
1040
1041 /*
1042  * Walk the EFI memory map and gather all memory available for kernel
1043  * to use.  We can allocate partial granules only if the unavailable
1044  * parts exist, and are WB.
1045  */
1046 unsigned long
1047 efi_memmap_init(u64 *s, u64 *e)
1048 {
1049         struct kern_memdesc *k, *prev = NULL;
1050         u64     contig_low=0, contig_high=0;
1051         u64     as, ae, lim;
1052         void *efi_map_start, *efi_map_end, *p, *q;
1053         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1054         u64     efi_desc_size;
1055         unsigned long total_mem = 0;
1056
1057         k = kern_memmap = find_memmap_space();
1058
1059         efi_map_start = __va(ia64_boot_param->efi_memmap);
1060         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1061         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1062
1063         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1064                 md = p;
1065                 if (!efi_wb(md)) {
1066                         if (efi_uc(md) &&
1067                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1068                              md->type == EFI_BOOT_SERVICES_DATA)) {
1069                                 k->attribute = EFI_MEMORY_UC;
1070                                 k->start = md->phys_addr;
1071                                 k->num_pages = md->num_pages;
1072                                 k++;
1073                         }
1074                         continue;
1075                 }
1076                 if (pmd == NULL || !efi_wb(pmd) ||
1077                     efi_md_end(pmd) != md->phys_addr) {
1078                         contig_low = GRANULEROUNDUP(md->phys_addr);
1079                         contig_high = efi_md_end(md);
1080                         for (q = p + efi_desc_size; q < efi_map_end;
1081                              q += efi_desc_size) {
1082                                 check_md = q;
1083                                 if (!efi_wb(check_md))
1084                                         break;
1085                                 if (contig_high != check_md->phys_addr)
1086                                         break;
1087                                 contig_high = efi_md_end(check_md);
1088                         }
1089                         contig_high = GRANULEROUNDDOWN(contig_high);
1090                 }
1091                 if (!is_memory_available(md))
1092                         continue;
1093
1094                 /*
1095                  * Round ends inward to granule boundaries
1096                  * Give trimmings to uncached allocator
1097                  */
1098                 if (md->phys_addr < contig_low) {
1099                         lim = min(efi_md_end(md), contig_low);
1100                         if (efi_uc(md)) {
1101                                 if (k > kern_memmap &&
1102                                     (k-1)->attribute == EFI_MEMORY_UC &&
1103                                     kmd_end(k-1) == md->phys_addr) {
1104                                         (k-1)->num_pages +=
1105                                                 (lim - md->phys_addr)
1106                                                 >> EFI_PAGE_SHIFT;
1107                                 } else {
1108                                         k->attribute = EFI_MEMORY_UC;
1109                                         k->start = md->phys_addr;
1110                                         k->num_pages = (lim - md->phys_addr)
1111                                                 >> EFI_PAGE_SHIFT;
1112                                         k++;
1113                                 }
1114                         }
1115                         as = contig_low;
1116                 } else
1117                         as = md->phys_addr;
1118
1119                 if (efi_md_end(md) > contig_high) {
1120                         lim = max(md->phys_addr, contig_high);
1121                         if (efi_uc(md)) {
1122                                 if (lim == md->phys_addr && k > kern_memmap &&
1123                                     (k-1)->attribute == EFI_MEMORY_UC &&
1124                                     kmd_end(k-1) == md->phys_addr) {
1125                                         (k-1)->num_pages += md->num_pages;
1126                                 } else {
1127                                         k->attribute = EFI_MEMORY_UC;
1128                                         k->start = lim;
1129                                         k->num_pages = (efi_md_end(md) - lim)
1130                                                 >> EFI_PAGE_SHIFT;
1131                                         k++;
1132                                 }
1133                         }
1134                         ae = contig_high;
1135                 } else
1136                         ae = efi_md_end(md);
1137
1138                 /* keep within max_addr= and min_addr= command line arg */
1139                 as = max(as, min_addr);
1140                 ae = min(ae, max_addr);
1141                 if (ae <= as)
1142                         continue;
1143
1144                 /* avoid going over mem= command line arg */
1145                 if (total_mem + (ae - as) > mem_limit)
1146                         ae -= total_mem + (ae - as) - mem_limit;
1147
1148                 if (ae <= as)
1149                         continue;
1150                 if (prev && kmd_end(prev) == md->phys_addr) {
1151                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1152                         total_mem += ae - as;
1153                         continue;
1154                 }
1155                 k->attribute = EFI_MEMORY_WB;
1156                 k->start = as;
1157                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1158                 total_mem += ae - as;
1159                 prev = k++;
1160         }
1161         k->start = ~0L; /* end-marker */
1162
1163         /* reserve the memory we are using for kern_memmap */
1164         *s = (u64)kern_memmap;
1165         *e = (u64)++k;
1166
1167         return total_mem;
1168 }
1169
1170 void
1171 efi_initialize_iomem_resources(struct resource *code_resource,
1172                                struct resource *data_resource,
1173                                struct resource *bss_resource)
1174 {
1175         struct resource *res;
1176         void *efi_map_start, *efi_map_end, *p;
1177         efi_memory_desc_t *md;
1178         u64 efi_desc_size;
1179         char *name;
1180         unsigned long flags, desc;
1181
1182         efi_map_start = __va(ia64_boot_param->efi_memmap);
1183         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1184         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1185
1186         res = NULL;
1187
1188         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1189                 md = p;
1190
1191                 if (md->num_pages == 0) /* should not happen */
1192                         continue;
1193
1194                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1195                 desc = IORES_DESC_NONE;
1196
1197                 switch (md->type) {
1198
1199                         case EFI_MEMORY_MAPPED_IO:
1200                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1201                                 continue;
1202
1203                         case EFI_LOADER_CODE:
1204                         case EFI_LOADER_DATA:
1205                         case EFI_BOOT_SERVICES_DATA:
1206                         case EFI_BOOT_SERVICES_CODE:
1207                         case EFI_CONVENTIONAL_MEMORY:
1208                                 if (md->attribute & EFI_MEMORY_WP) {
1209                                         name = "System ROM";
1210                                         flags |= IORESOURCE_READONLY;
1211                                 } else if (md->attribute == EFI_MEMORY_UC) {
1212                                         name = "Uncached RAM";
1213                                 } else {
1214                                         name = "System RAM";
1215                                         flags |= IORESOURCE_SYSRAM;
1216                                 }
1217                                 break;
1218
1219                         case EFI_ACPI_MEMORY_NVS:
1220                                 name = "ACPI Non-volatile Storage";
1221                                 desc = IORES_DESC_ACPI_NV_STORAGE;
1222                                 break;
1223
1224                         case EFI_UNUSABLE_MEMORY:
1225                                 name = "reserved";
1226                                 flags |= IORESOURCE_DISABLED;
1227                                 break;
1228
1229                         case EFI_PERSISTENT_MEMORY:
1230                                 name = "Persistent Memory";
1231                                 desc = IORES_DESC_PERSISTENT_MEMORY;
1232                                 break;
1233
1234                         case EFI_RESERVED_TYPE:
1235                         case EFI_RUNTIME_SERVICES_CODE:
1236                         case EFI_RUNTIME_SERVICES_DATA:
1237                         case EFI_ACPI_RECLAIM_MEMORY:
1238                         default:
1239                                 name = "reserved";
1240                                 break;
1241                 }
1242
1243                 if ((res = kzalloc(sizeof(struct resource),
1244                                    GFP_KERNEL)) == NULL) {
1245                         printk(KERN_ERR
1246                                "failed to allocate resource for iomem\n");
1247                         return;
1248                 }
1249
1250                 res->name = name;
1251                 res->start = md->phys_addr;
1252                 res->end = md->phys_addr + efi_md_size(md) - 1;
1253                 res->flags = flags;
1254                 res->desc = desc;
1255
1256                 if (insert_resource(&iomem_resource, res) < 0)
1257                         kfree(res);
1258                 else {
1259                         /*
1260                          * We don't know which region contains
1261                          * kernel data so we try it repeatedly and
1262                          * let the resource manager test it.
1263                          */
1264                         insert_resource(res, code_resource);
1265                         insert_resource(res, data_resource);
1266                         insert_resource(res, bss_resource);
1267 #ifdef CONFIG_KEXEC
1268                         insert_resource(res, &efi_memmap_res);
1269                         insert_resource(res, &boot_param_res);
1270                         if (crashk_res.end > crashk_res.start)
1271                                 insert_resource(res, &crashk_res);
1272 #endif
1273                 }
1274         }
1275 }
1276
1277 #ifdef CONFIG_KEXEC
1278 /* find a block of memory aligned to 64M exclude reserved regions
1279    rsvd_regions are sorted
1280  */
1281 unsigned long __init
1282 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1283 {
1284         int i;
1285         u64 start, end;
1286         u64 alignment = 1UL << _PAGE_SIZE_64M;
1287         void *efi_map_start, *efi_map_end, *p;
1288         efi_memory_desc_t *md;
1289         u64 efi_desc_size;
1290
1291         efi_map_start = __va(ia64_boot_param->efi_memmap);
1292         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1293         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1294
1295         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1296                 md = p;
1297                 if (!efi_wb(md))
1298                         continue;
1299                 start = ALIGN(md->phys_addr, alignment);
1300                 end = efi_md_end(md);
1301                 for (i = 0; i < n; i++) {
1302                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1303                                 if (__pa(r[i].start) > start + size)
1304                                         return start;
1305                                 start = ALIGN(__pa(r[i].end), alignment);
1306                                 if (i < n-1 &&
1307                                     __pa(r[i+1].start) < start + size)
1308                                         continue;
1309                                 else
1310                                         break;
1311                         }
1312                 }
1313                 if (end > start + size)
1314                         return start;
1315         }
1316
1317         printk(KERN_WARNING
1318                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1319         return ~0UL;
1320 }
1321 #endif
1322
1323 #ifdef CONFIG_CRASH_DUMP
1324 /* locate the size find a the descriptor at a certain address */
1325 unsigned long __init
1326 vmcore_find_descriptor_size (unsigned long address)
1327 {
1328         void *efi_map_start, *efi_map_end, *p;
1329         efi_memory_desc_t *md;
1330         u64 efi_desc_size;
1331         unsigned long ret = 0;
1332
1333         efi_map_start = __va(ia64_boot_param->efi_memmap);
1334         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1335         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1336
1337         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1338                 md = p;
1339                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1340                     && md->phys_addr == address) {
1341                         ret = efi_md_size(md);
1342                         break;
1343                 }
1344         }
1345
1346         if (ret == 0)
1347                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1348
1349         return ret;
1350 }
1351 #endif
1352
1353 char *efi_systab_show_arch(char *str)
1354 {
1355         if (mps_phys != EFI_INVALID_TABLE_ADDR)
1356                 str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1357         if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1358                 str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1359         return str;
1360 }