Merge branch 'pcmcia-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / vgic / vgic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12
13 #include <asm/kvm_hyp.h>
14
15 #include "vgic.h"
16
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21         .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23
24 /*
25  * Locking order is always:
26  * kvm->lock (mutex)
27  *   its->cmd_lock (mutex)
28  *     its->its_lock (mutex)
29  *       vgic_cpu->ap_list_lock         must be taken with IRQs disabled
30  *         kvm->lpi_list_lock           must be taken with IRQs disabled
31  *           vgic_irq->irq_lock         must be taken with IRQs disabled
32  *
33  * As the ap_list_lock might be taken from the timer interrupt handler,
34  * we have to disable IRQs before taking this lock and everything lower
35  * than it.
36  *
37  * If you need to take multiple locks, always take the upper lock first,
38  * then the lower ones, e.g. first take the its_lock, then the irq_lock.
39  * If you are already holding a lock and need to take a higher one, you
40  * have to drop the lower ranking lock first and re-aquire it after having
41  * taken the upper one.
42  *
43  * When taking more than one ap_list_lock at the same time, always take the
44  * lowest numbered VCPU's ap_list_lock first, so:
45  *   vcpuX->vcpu_id < vcpuY->vcpu_id:
46  *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
47  *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
48  *
49  * Since the VGIC must support injecting virtual interrupts from ISRs, we have
50  * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
51  * spinlocks for any lock that may be taken while injecting an interrupt.
52  */
53
54 /*
55  * Iterate over the VM's list of mapped LPIs to find the one with a
56  * matching interrupt ID and return a reference to the IRQ structure.
57  */
58 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
59 {
60         struct vgic_dist *dist = &kvm->arch.vgic;
61         struct vgic_irq *irq = NULL;
62         unsigned long flags;
63
64         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
65
66         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
67                 if (irq->intid != intid)
68                         continue;
69
70                 /*
71                  * This increases the refcount, the caller is expected to
72                  * call vgic_put_irq() later once it's finished with the IRQ.
73                  */
74                 vgic_get_irq_kref(irq);
75                 goto out_unlock;
76         }
77         irq = NULL;
78
79 out_unlock:
80         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
81
82         return irq;
83 }
84
85 /*
86  * This looks up the virtual interrupt ID to get the corresponding
87  * struct vgic_irq. It also increases the refcount, so any caller is expected
88  * to call vgic_put_irq() once it's finished with this IRQ.
89  */
90 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
91                               u32 intid)
92 {
93         /* SGIs and PPIs */
94         if (intid <= VGIC_MAX_PRIVATE) {
95                 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
96                 return &vcpu->arch.vgic_cpu.private_irqs[intid];
97         }
98
99         /* SPIs */
100         if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
101                 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
102                 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
103         }
104
105         /* LPIs */
106         if (intid >= VGIC_MIN_LPI)
107                 return vgic_get_lpi(kvm, intid);
108
109         WARN(1, "Looking up struct vgic_irq for reserved INTID");
110         return NULL;
111 }
112
113 /*
114  * We can't do anything in here, because we lack the kvm pointer to
115  * lock and remove the item from the lpi_list. So we keep this function
116  * empty and use the return value of kref_put() to trigger the freeing.
117  */
118 static void vgic_irq_release(struct kref *ref)
119 {
120 }
121
122 /*
123  * Drop the refcount on the LPI. Must be called with lpi_list_lock held.
124  */
125 void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq)
126 {
127         struct vgic_dist *dist = &kvm->arch.vgic;
128
129         if (!kref_put(&irq->refcount, vgic_irq_release))
130                 return;
131
132         list_del(&irq->lpi_list);
133         dist->lpi_list_count--;
134
135         kfree(irq);
136 }
137
138 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
139 {
140         struct vgic_dist *dist = &kvm->arch.vgic;
141         unsigned long flags;
142
143         if (irq->intid < VGIC_MIN_LPI)
144                 return;
145
146         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
147         __vgic_put_lpi_locked(kvm, irq);
148         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
149 }
150
151 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
152 {
153         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
154         struct vgic_irq *irq, *tmp;
155         unsigned long flags;
156
157         raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
158
159         list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
160                 if (irq->intid >= VGIC_MIN_LPI) {
161                         raw_spin_lock(&irq->irq_lock);
162                         list_del(&irq->ap_list);
163                         irq->vcpu = NULL;
164                         raw_spin_unlock(&irq->irq_lock);
165                         vgic_put_irq(vcpu->kvm, irq);
166                 }
167         }
168
169         raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
170 }
171
172 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
173 {
174         WARN_ON(irq_set_irqchip_state(irq->host_irq,
175                                       IRQCHIP_STATE_PENDING,
176                                       pending));
177 }
178
179 bool vgic_get_phys_line_level(struct vgic_irq *irq)
180 {
181         bool line_level;
182
183         BUG_ON(!irq->hw);
184
185         if (irq->get_input_level)
186                 return irq->get_input_level(irq->intid);
187
188         WARN_ON(irq_get_irqchip_state(irq->host_irq,
189                                       IRQCHIP_STATE_PENDING,
190                                       &line_level));
191         return line_level;
192 }
193
194 /* Set/Clear the physical active state */
195 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
196 {
197
198         BUG_ON(!irq->hw);
199         WARN_ON(irq_set_irqchip_state(irq->host_irq,
200                                       IRQCHIP_STATE_ACTIVE,
201                                       active));
202 }
203
204 /**
205  * kvm_vgic_target_oracle - compute the target vcpu for an irq
206  *
207  * @irq:        The irq to route. Must be already locked.
208  *
209  * Based on the current state of the interrupt (enabled, pending,
210  * active, vcpu and target_vcpu), compute the next vcpu this should be
211  * given to. Return NULL if this shouldn't be injected at all.
212  *
213  * Requires the IRQ lock to be held.
214  */
215 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
216 {
217         lockdep_assert_held(&irq->irq_lock);
218
219         /* If the interrupt is active, it must stay on the current vcpu */
220         if (irq->active)
221                 return irq->vcpu ? : irq->target_vcpu;
222
223         /*
224          * If the IRQ is not active but enabled and pending, we should direct
225          * it to its configured target VCPU.
226          * If the distributor is disabled, pending interrupts shouldn't be
227          * forwarded.
228          */
229         if (irq->enabled && irq_is_pending(irq)) {
230                 if (unlikely(irq->target_vcpu &&
231                              !irq->target_vcpu->kvm->arch.vgic.enabled))
232                         return NULL;
233
234                 return irq->target_vcpu;
235         }
236
237         /* If neither active nor pending and enabled, then this IRQ should not
238          * be queued to any VCPU.
239          */
240         return NULL;
241 }
242
243 /*
244  * The order of items in the ap_lists defines how we'll pack things in LRs as
245  * well, the first items in the list being the first things populated in the
246  * LRs.
247  *
248  * A hard rule is that active interrupts can never be pushed out of the LRs
249  * (and therefore take priority) since we cannot reliably trap on deactivation
250  * of IRQs and therefore they have to be present in the LRs.
251  *
252  * Otherwise things should be sorted by the priority field and the GIC
253  * hardware support will take care of preemption of priority groups etc.
254  *
255  * Return negative if "a" sorts before "b", 0 to preserve order, and positive
256  * to sort "b" before "a".
257  */
258 static int vgic_irq_cmp(void *priv, const struct list_head *a,
259                         const struct list_head *b)
260 {
261         struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
262         struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
263         bool penda, pendb;
264         int ret;
265
266         /*
267          * list_sort may call this function with the same element when
268          * the list is fairly long.
269          */
270         if (unlikely(irqa == irqb))
271                 return 0;
272
273         raw_spin_lock(&irqa->irq_lock);
274         raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
275
276         if (irqa->active || irqb->active) {
277                 ret = (int)irqb->active - (int)irqa->active;
278                 goto out;
279         }
280
281         penda = irqa->enabled && irq_is_pending(irqa);
282         pendb = irqb->enabled && irq_is_pending(irqb);
283
284         if (!penda || !pendb) {
285                 ret = (int)pendb - (int)penda;
286                 goto out;
287         }
288
289         /* Both pending and enabled, sort by priority */
290         ret = irqa->priority - irqb->priority;
291 out:
292         raw_spin_unlock(&irqb->irq_lock);
293         raw_spin_unlock(&irqa->irq_lock);
294         return ret;
295 }
296
297 /* Must be called with the ap_list_lock held */
298 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
299 {
300         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
301
302         lockdep_assert_held(&vgic_cpu->ap_list_lock);
303
304         list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
305 }
306
307 /*
308  * Only valid injection if changing level for level-triggered IRQs or for a
309  * rising edge, and in-kernel connected IRQ lines can only be controlled by
310  * their owner.
311  */
312 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
313 {
314         if (irq->owner != owner)
315                 return false;
316
317         switch (irq->config) {
318         case VGIC_CONFIG_LEVEL:
319                 return irq->line_level != level;
320         case VGIC_CONFIG_EDGE:
321                 return level;
322         }
323
324         return false;
325 }
326
327 /*
328  * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
329  * Do the queuing if necessary, taking the right locks in the right order.
330  * Returns true when the IRQ was queued, false otherwise.
331  *
332  * Needs to be entered with the IRQ lock already held, but will return
333  * with all locks dropped.
334  */
335 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
336                            unsigned long flags)
337 {
338         struct kvm_vcpu *vcpu;
339
340         lockdep_assert_held(&irq->irq_lock);
341
342 retry:
343         vcpu = vgic_target_oracle(irq);
344         if (irq->vcpu || !vcpu) {
345                 /*
346                  * If this IRQ is already on a VCPU's ap_list, then it
347                  * cannot be moved or modified and there is no more work for
348                  * us to do.
349                  *
350                  * Otherwise, if the irq is not pending and enabled, it does
351                  * not need to be inserted into an ap_list and there is also
352                  * no more work for us to do.
353                  */
354                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
355
356                 /*
357                  * We have to kick the VCPU here, because we could be
358                  * queueing an edge-triggered interrupt for which we
359                  * get no EOI maintenance interrupt. In that case,
360                  * while the IRQ is already on the VCPU's AP list, the
361                  * VCPU could have EOI'ed the original interrupt and
362                  * won't see this one until it exits for some other
363                  * reason.
364                  */
365                 if (vcpu) {
366                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
367                         kvm_vcpu_kick(vcpu);
368                 }
369                 return false;
370         }
371
372         /*
373          * We must unlock the irq lock to take the ap_list_lock where
374          * we are going to insert this new pending interrupt.
375          */
376         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
377
378         /* someone can do stuff here, which we re-check below */
379
380         raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
381         raw_spin_lock(&irq->irq_lock);
382
383         /*
384          * Did something change behind our backs?
385          *
386          * There are two cases:
387          * 1) The irq lost its pending state or was disabled behind our
388          *    backs and/or it was queued to another VCPU's ap_list.
389          * 2) Someone changed the affinity on this irq behind our
390          *    backs and we are now holding the wrong ap_list_lock.
391          *
392          * In both cases, drop the locks and retry.
393          */
394
395         if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
396                 raw_spin_unlock(&irq->irq_lock);
397                 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
398                                            flags);
399
400                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
401                 goto retry;
402         }
403
404         /*
405          * Grab a reference to the irq to reflect the fact that it is
406          * now in the ap_list.
407          */
408         vgic_get_irq_kref(irq);
409         list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
410         irq->vcpu = vcpu;
411
412         raw_spin_unlock(&irq->irq_lock);
413         raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
414
415         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
416         kvm_vcpu_kick(vcpu);
417
418         return true;
419 }
420
421 /**
422  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
423  * @kvm:     The VM structure pointer
424  * @cpuid:   The CPU for PPIs
425  * @intid:   The INTID to inject a new state to.
426  * @level:   Edge-triggered:  true:  to trigger the interrupt
427  *                            false: to ignore the call
428  *           Level-sensitive  true:  raise the input signal
429  *                            false: lower the input signal
430  * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
431  *           that the caller is allowed to inject this IRQ.  Userspace
432  *           injections will have owner == NULL.
433  *
434  * The VGIC is not concerned with devices being active-LOW or active-HIGH for
435  * level-sensitive interrupts.  You can think of the level parameter as 1
436  * being HIGH and 0 being LOW and all devices being active-HIGH.
437  */
438 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
439                         bool level, void *owner)
440 {
441         struct kvm_vcpu *vcpu;
442         struct vgic_irq *irq;
443         unsigned long flags;
444         int ret;
445
446         trace_vgic_update_irq_pending(cpuid, intid, level);
447
448         ret = vgic_lazy_init(kvm);
449         if (ret)
450                 return ret;
451
452         vcpu = kvm_get_vcpu(kvm, cpuid);
453         if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
454                 return -EINVAL;
455
456         irq = vgic_get_irq(kvm, vcpu, intid);
457         if (!irq)
458                 return -EINVAL;
459
460         raw_spin_lock_irqsave(&irq->irq_lock, flags);
461
462         if (!vgic_validate_injection(irq, level, owner)) {
463                 /* Nothing to see here, move along... */
464                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
465                 vgic_put_irq(kvm, irq);
466                 return 0;
467         }
468
469         if (irq->config == VGIC_CONFIG_LEVEL)
470                 irq->line_level = level;
471         else
472                 irq->pending_latch = true;
473
474         vgic_queue_irq_unlock(kvm, irq, flags);
475         vgic_put_irq(kvm, irq);
476
477         return 0;
478 }
479
480 /* @irq->irq_lock must be held */
481 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
482                             unsigned int host_irq,
483                             bool (*get_input_level)(int vindid))
484 {
485         struct irq_desc *desc;
486         struct irq_data *data;
487
488         /*
489          * Find the physical IRQ number corresponding to @host_irq
490          */
491         desc = irq_to_desc(host_irq);
492         if (!desc) {
493                 kvm_err("%s: no interrupt descriptor\n", __func__);
494                 return -EINVAL;
495         }
496         data = irq_desc_get_irq_data(desc);
497         while (data->parent_data)
498                 data = data->parent_data;
499
500         irq->hw = true;
501         irq->host_irq = host_irq;
502         irq->hwintid = data->hwirq;
503         irq->get_input_level = get_input_level;
504         return 0;
505 }
506
507 /* @irq->irq_lock must be held */
508 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
509 {
510         irq->hw = false;
511         irq->hwintid = 0;
512         irq->get_input_level = NULL;
513 }
514
515 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
516                           u32 vintid, bool (*get_input_level)(int vindid))
517 {
518         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
519         unsigned long flags;
520         int ret;
521
522         BUG_ON(!irq);
523
524         raw_spin_lock_irqsave(&irq->irq_lock, flags);
525         ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
526         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
527         vgic_put_irq(vcpu->kvm, irq);
528
529         return ret;
530 }
531
532 /**
533  * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
534  * @vcpu: The VCPU pointer
535  * @vintid: The INTID of the interrupt
536  *
537  * Reset the active and pending states of a mapped interrupt.  Kernel
538  * subsystems injecting mapped interrupts should reset their interrupt lines
539  * when we are doing a reset of the VM.
540  */
541 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
542 {
543         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
544         unsigned long flags;
545
546         if (!irq->hw)
547                 goto out;
548
549         raw_spin_lock_irqsave(&irq->irq_lock, flags);
550         irq->active = false;
551         irq->pending_latch = false;
552         irq->line_level = false;
553         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
554 out:
555         vgic_put_irq(vcpu->kvm, irq);
556 }
557
558 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
559 {
560         struct vgic_irq *irq;
561         unsigned long flags;
562
563         if (!vgic_initialized(vcpu->kvm))
564                 return -EAGAIN;
565
566         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
567         BUG_ON(!irq);
568
569         raw_spin_lock_irqsave(&irq->irq_lock, flags);
570         kvm_vgic_unmap_irq(irq);
571         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
572         vgic_put_irq(vcpu->kvm, irq);
573
574         return 0;
575 }
576
577 /**
578  * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
579  *
580  * @vcpu:   Pointer to the VCPU (used for PPIs)
581  * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
582  * @owner:  Opaque pointer to the owner
583  *
584  * Returns 0 if intid is not already used by another in-kernel device and the
585  * owner is set, otherwise returns an error code.
586  */
587 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
588 {
589         struct vgic_irq *irq;
590         unsigned long flags;
591         int ret = 0;
592
593         if (!vgic_initialized(vcpu->kvm))
594                 return -EAGAIN;
595
596         /* SGIs and LPIs cannot be wired up to any device */
597         if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
598                 return -EINVAL;
599
600         irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
601         raw_spin_lock_irqsave(&irq->irq_lock, flags);
602         if (irq->owner && irq->owner != owner)
603                 ret = -EEXIST;
604         else
605                 irq->owner = owner;
606         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
607
608         return ret;
609 }
610
611 /**
612  * vgic_prune_ap_list - Remove non-relevant interrupts from the list
613  *
614  * @vcpu: The VCPU pointer
615  *
616  * Go over the list of "interesting" interrupts, and prune those that we
617  * won't have to consider in the near future.
618  */
619 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
620 {
621         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
622         struct vgic_irq *irq, *tmp;
623
624         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
625
626 retry:
627         raw_spin_lock(&vgic_cpu->ap_list_lock);
628
629         list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
630                 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
631                 bool target_vcpu_needs_kick = false;
632
633                 raw_spin_lock(&irq->irq_lock);
634
635                 BUG_ON(vcpu != irq->vcpu);
636
637                 target_vcpu = vgic_target_oracle(irq);
638
639                 if (!target_vcpu) {
640                         /*
641                          * We don't need to process this interrupt any
642                          * further, move it off the list.
643                          */
644                         list_del(&irq->ap_list);
645                         irq->vcpu = NULL;
646                         raw_spin_unlock(&irq->irq_lock);
647
648                         /*
649                          * This vgic_put_irq call matches the
650                          * vgic_get_irq_kref in vgic_queue_irq_unlock,
651                          * where we added the LPI to the ap_list. As
652                          * we remove the irq from the list, we drop
653                          * also drop the refcount.
654                          */
655                         vgic_put_irq(vcpu->kvm, irq);
656                         continue;
657                 }
658
659                 if (target_vcpu == vcpu) {
660                         /* We're on the right CPU */
661                         raw_spin_unlock(&irq->irq_lock);
662                         continue;
663                 }
664
665                 /* This interrupt looks like it has to be migrated. */
666
667                 raw_spin_unlock(&irq->irq_lock);
668                 raw_spin_unlock(&vgic_cpu->ap_list_lock);
669
670                 /*
671                  * Ensure locking order by always locking the smallest
672                  * ID first.
673                  */
674                 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
675                         vcpuA = vcpu;
676                         vcpuB = target_vcpu;
677                 } else {
678                         vcpuA = target_vcpu;
679                         vcpuB = vcpu;
680                 }
681
682                 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
683                 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
684                                       SINGLE_DEPTH_NESTING);
685                 raw_spin_lock(&irq->irq_lock);
686
687                 /*
688                  * If the affinity has been preserved, move the
689                  * interrupt around. Otherwise, it means things have
690                  * changed while the interrupt was unlocked, and we
691                  * need to replay this.
692                  *
693                  * In all cases, we cannot trust the list not to have
694                  * changed, so we restart from the beginning.
695                  */
696                 if (target_vcpu == vgic_target_oracle(irq)) {
697                         struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
698
699                         list_del(&irq->ap_list);
700                         irq->vcpu = target_vcpu;
701                         list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
702                         target_vcpu_needs_kick = true;
703                 }
704
705                 raw_spin_unlock(&irq->irq_lock);
706                 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
707                 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
708
709                 if (target_vcpu_needs_kick) {
710                         kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
711                         kvm_vcpu_kick(target_vcpu);
712                 }
713
714                 goto retry;
715         }
716
717         raw_spin_unlock(&vgic_cpu->ap_list_lock);
718 }
719
720 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
721 {
722         if (kvm_vgic_global_state.type == VGIC_V2)
723                 vgic_v2_fold_lr_state(vcpu);
724         else
725                 vgic_v3_fold_lr_state(vcpu);
726 }
727
728 /* Requires the irq_lock to be held. */
729 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
730                                     struct vgic_irq *irq, int lr)
731 {
732         lockdep_assert_held(&irq->irq_lock);
733
734         if (kvm_vgic_global_state.type == VGIC_V2)
735                 vgic_v2_populate_lr(vcpu, irq, lr);
736         else
737                 vgic_v3_populate_lr(vcpu, irq, lr);
738 }
739
740 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
741 {
742         if (kvm_vgic_global_state.type == VGIC_V2)
743                 vgic_v2_clear_lr(vcpu, lr);
744         else
745                 vgic_v3_clear_lr(vcpu, lr);
746 }
747
748 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
749 {
750         if (kvm_vgic_global_state.type == VGIC_V2)
751                 vgic_v2_set_underflow(vcpu);
752         else
753                 vgic_v3_set_underflow(vcpu);
754 }
755
756 /* Requires the ap_list_lock to be held. */
757 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
758                                  bool *multi_sgi)
759 {
760         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
761         struct vgic_irq *irq;
762         int count = 0;
763
764         *multi_sgi = false;
765
766         lockdep_assert_held(&vgic_cpu->ap_list_lock);
767
768         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
769                 int w;
770
771                 raw_spin_lock(&irq->irq_lock);
772                 /* GICv2 SGIs can count for more than one... */
773                 w = vgic_irq_get_lr_count(irq);
774                 raw_spin_unlock(&irq->irq_lock);
775
776                 count += w;
777                 *multi_sgi |= (w > 1);
778         }
779         return count;
780 }
781
782 /* Requires the VCPU's ap_list_lock to be held. */
783 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
784 {
785         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
786         struct vgic_irq *irq;
787         int count;
788         bool multi_sgi;
789         u8 prio = 0xff;
790         int i = 0;
791
792         lockdep_assert_held(&vgic_cpu->ap_list_lock);
793
794         count = compute_ap_list_depth(vcpu, &multi_sgi);
795         if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
796                 vgic_sort_ap_list(vcpu);
797
798         count = 0;
799
800         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
801                 raw_spin_lock(&irq->irq_lock);
802
803                 /*
804                  * If we have multi-SGIs in the pipeline, we need to
805                  * guarantee that they are all seen before any IRQ of
806                  * lower priority. In that case, we need to filter out
807                  * these interrupts by exiting early. This is easy as
808                  * the AP list has been sorted already.
809                  */
810                 if (multi_sgi && irq->priority > prio) {
811                         _raw_spin_unlock(&irq->irq_lock);
812                         break;
813                 }
814
815                 if (likely(vgic_target_oracle(irq) == vcpu)) {
816                         vgic_populate_lr(vcpu, irq, count++);
817
818                         if (irq->source)
819                                 prio = irq->priority;
820                 }
821
822                 raw_spin_unlock(&irq->irq_lock);
823
824                 if (count == kvm_vgic_global_state.nr_lr) {
825                         if (!list_is_last(&irq->ap_list,
826                                           &vgic_cpu->ap_list_head))
827                                 vgic_set_underflow(vcpu);
828                         break;
829                 }
830         }
831
832         /* Nuke remaining LRs */
833         for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
834                 vgic_clear_lr(vcpu, i);
835
836         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
837                 vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
838         else
839                 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
840 }
841
842 static inline bool can_access_vgic_from_kernel(void)
843 {
844         /*
845          * GICv2 can always be accessed from the kernel because it is
846          * memory-mapped, and VHE systems can access GICv3 EL2 system
847          * registers.
848          */
849         return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
850 }
851
852 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
853 {
854         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
855                 vgic_v2_save_state(vcpu);
856         else
857                 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
858 }
859
860 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
861 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
862 {
863         int used_lrs;
864
865         /* An empty ap_list_head implies used_lrs == 0 */
866         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
867                 return;
868
869         if (can_access_vgic_from_kernel())
870                 vgic_save_state(vcpu);
871
872         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
873                 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
874         else
875                 used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
876
877         if (used_lrs)
878                 vgic_fold_lr_state(vcpu);
879         vgic_prune_ap_list(vcpu);
880 }
881
882 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
883 {
884         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
885                 vgic_v2_restore_state(vcpu);
886         else
887                 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
888 }
889
890 /* Flush our emulation state into the GIC hardware before entering the guest. */
891 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
892 {
893         /*
894          * If there are no virtual interrupts active or pending for this
895          * VCPU, then there is no work to do and we can bail out without
896          * taking any lock.  There is a potential race with someone injecting
897          * interrupts to the VCPU, but it is a benign race as the VCPU will
898          * either observe the new interrupt before or after doing this check,
899          * and introducing additional synchronization mechanism doesn't change
900          * this.
901          *
902          * Note that we still need to go through the whole thing if anything
903          * can be directly injected (GICv4).
904          */
905         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
906             !vgic_supports_direct_msis(vcpu->kvm))
907                 return;
908
909         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
910
911         if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
912                 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
913                 vgic_flush_lr_state(vcpu);
914                 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
915         }
916
917         if (can_access_vgic_from_kernel())
918                 vgic_restore_state(vcpu);
919
920         if (vgic_supports_direct_msis(vcpu->kvm))
921                 vgic_v4_commit(vcpu);
922 }
923
924 void kvm_vgic_load(struct kvm_vcpu *vcpu)
925 {
926         if (unlikely(!vgic_initialized(vcpu->kvm)))
927                 return;
928
929         if (kvm_vgic_global_state.type == VGIC_V2)
930                 vgic_v2_load(vcpu);
931         else
932                 vgic_v3_load(vcpu);
933 }
934
935 void kvm_vgic_put(struct kvm_vcpu *vcpu)
936 {
937         if (unlikely(!vgic_initialized(vcpu->kvm)))
938                 return;
939
940         if (kvm_vgic_global_state.type == VGIC_V2)
941                 vgic_v2_put(vcpu);
942         else
943                 vgic_v3_put(vcpu);
944 }
945
946 void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
947 {
948         if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
949                 return;
950
951         if (kvm_vgic_global_state.type == VGIC_V2)
952                 vgic_v2_vmcr_sync(vcpu);
953         else
954                 vgic_v3_vmcr_sync(vcpu);
955 }
956
957 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
958 {
959         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
960         struct vgic_irq *irq;
961         bool pending = false;
962         unsigned long flags;
963         struct vgic_vmcr vmcr;
964
965         if (!vcpu->kvm->arch.vgic.enabled)
966                 return false;
967
968         if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
969                 return true;
970
971         vgic_get_vmcr(vcpu, &vmcr);
972
973         raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
974
975         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
976                 raw_spin_lock(&irq->irq_lock);
977                 pending = irq_is_pending(irq) && irq->enabled &&
978                           !irq->active &&
979                           irq->priority < vmcr.pmr;
980                 raw_spin_unlock(&irq->irq_lock);
981
982                 if (pending)
983                         break;
984         }
985
986         raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
987
988         return pending;
989 }
990
991 void vgic_kick_vcpus(struct kvm *kvm)
992 {
993         struct kvm_vcpu *vcpu;
994         int c;
995
996         /*
997          * We've injected an interrupt, time to find out who deserves
998          * a good kick...
999          */
1000         kvm_for_each_vcpu(c, vcpu, kvm) {
1001                 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
1002                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1003                         kvm_vcpu_kick(vcpu);
1004                 }
1005         }
1006 }
1007
1008 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1009 {
1010         struct vgic_irq *irq;
1011         bool map_is_active;
1012         unsigned long flags;
1013
1014         if (!vgic_initialized(vcpu->kvm))
1015                 return false;
1016
1017         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
1018         raw_spin_lock_irqsave(&irq->irq_lock, flags);
1019         map_is_active = irq->hw && irq->active;
1020         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1021         vgic_put_irq(vcpu->kvm, irq);
1022
1023         return map_is_active;
1024 }