Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / arch / arm64 / kvm / vgic / vgic-mmio-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20
21 /* extract @num bytes at @offset bytes offset in data */
22 unsigned long extract_bytes(u64 data, unsigned int offset,
23                             unsigned int num)
24 {
25         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30                      unsigned long val)
31 {
32         int lower = (offset & 4) * 8;
33         int upper = lower + 8 * len - 1;
34
35         reg &= ~GENMASK_ULL(upper, lower);
36         val &= GENMASK_ULL(len * 8 - 1, 0);
37
38         return reg | ((u64)val << lower);
39 }
40
41 bool vgic_has_its(struct kvm *kvm)
42 {
43         struct vgic_dist *dist = &kvm->arch.vgic;
44
45         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46                 return false;
47
48         return dist->has_its;
49 }
50
51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53         return (kvm_vgic_global_state.has_gicv4_1 ||
54                 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56
57 /*
58  * The Revision field in the IIDR have the following meanings:
59  *
60  * Revision 2: Interrupt groups are guest-configurable and signaled using
61  *             their configured groups.
62  */
63
64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65                                             gpa_t addr, unsigned int len)
66 {
67         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68         u32 value = 0;
69
70         switch (addr & 0x0c) {
71         case GICD_CTLR:
72                 if (vgic->enabled)
73                         value |= GICD_CTLR_ENABLE_SS_G1;
74                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75                 if (vgic->nassgireq)
76                         value |= GICD_CTLR_nASSGIreq;
77                 break;
78         case GICD_TYPER:
79                 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80                 value = (value >> 5) - 1;
81                 if (vgic_has_its(vcpu->kvm)) {
82                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83                         value |= GICD_TYPER_LPIS;
84                 } else {
85                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86                 }
87                 break;
88         case GICD_TYPER2:
89                 if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90                         value = GICD_TYPER2_nASSGIcap;
91                 break;
92         case GICD_IIDR:
93                 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94                         (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95                         (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96                 break;
97         default:
98                 return 0;
99         }
100
101         return value;
102 }
103
104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105                                     gpa_t addr, unsigned int len,
106                                     unsigned long val)
107 {
108         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110         switch (addr & 0x0c) {
111         case GICD_CTLR: {
112                 bool was_enabled, is_hwsgi;
113
114                 mutex_lock(&vcpu->kvm->lock);
115
116                 was_enabled = dist->enabled;
117                 is_hwsgi = dist->nassgireq;
118
119                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121                 /* Not a GICv4.1? No HW SGIs */
122                 if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123                         val &= ~GICD_CTLR_nASSGIreq;
124
125                 /* Dist stays enabled? nASSGIreq is RO */
126                 if (was_enabled && dist->enabled) {
127                         val &= ~GICD_CTLR_nASSGIreq;
128                         val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129                 }
130
131                 /* Switching HW SGIs? */
132                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133                 if (is_hwsgi != dist->nassgireq)
134                         vgic_v4_configure_vsgis(vcpu->kvm);
135
136                 if (kvm_vgic_global_state.has_gicv4_1 &&
137                     was_enabled != dist->enabled)
138                         kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139                 else if (!was_enabled && dist->enabled)
140                         vgic_kick_vcpus(vcpu->kvm);
141
142                 mutex_unlock(&vcpu->kvm->lock);
143                 break;
144         }
145         case GICD_TYPER:
146         case GICD_TYPER2:
147         case GICD_IIDR:
148                 /* This is at best for documentation purposes... */
149                 return;
150         }
151 }
152
153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154                                            gpa_t addr, unsigned int len,
155                                            unsigned long val)
156 {
157         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158
159         switch (addr & 0x0c) {
160         case GICD_TYPER2:
161         case GICD_IIDR:
162                 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163                         return -EINVAL;
164                 return 0;
165         case GICD_CTLR:
166                 /* Not a GICv4.1? No HW SGIs */
167                 if (!kvm_vgic_global_state.has_gicv4_1)
168                         val &= ~GICD_CTLR_nASSGIreq;
169
170                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
171                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
172                 return 0;
173         }
174
175         vgic_mmio_write_v3_misc(vcpu, addr, len, val);
176         return 0;
177 }
178
179 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
180                                             gpa_t addr, unsigned int len)
181 {
182         int intid = VGIC_ADDR_TO_INTID(addr, 64);
183         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
184         unsigned long ret = 0;
185
186         if (!irq)
187                 return 0;
188
189         /* The upper word is RAZ for us. */
190         if (!(addr & 4))
191                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
192
193         vgic_put_irq(vcpu->kvm, irq);
194         return ret;
195 }
196
197 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
198                                     gpa_t addr, unsigned int len,
199                                     unsigned long val)
200 {
201         int intid = VGIC_ADDR_TO_INTID(addr, 64);
202         struct vgic_irq *irq;
203         unsigned long flags;
204
205         /* The upper word is WI for us since we don't implement Aff3. */
206         if (addr & 4)
207                 return;
208
209         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
210
211         if (!irq)
212                 return;
213
214         raw_spin_lock_irqsave(&irq->irq_lock, flags);
215
216         /* We only care about and preserve Aff0, Aff1 and Aff2. */
217         irq->mpidr = val & GENMASK(23, 0);
218         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
219
220         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
221         vgic_put_irq(vcpu->kvm, irq);
222 }
223
224 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
225                                              gpa_t addr, unsigned int len)
226 {
227         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
228
229         return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
230 }
231
232
233 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
234                                      gpa_t addr, unsigned int len,
235                                      unsigned long val)
236 {
237         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
238         bool was_enabled = vgic_cpu->lpis_enabled;
239
240         if (!vgic_has_its(vcpu->kvm))
241                 return;
242
243         vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
244
245         if (was_enabled && !vgic_cpu->lpis_enabled) {
246                 vgic_flush_pending_lpis(vcpu);
247                 vgic_its_invalidate_cache(vcpu->kvm);
248         }
249
250         if (!was_enabled && vgic_cpu->lpis_enabled)
251                 vgic_enable_lpis(vcpu);
252 }
253
254 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
255                                               gpa_t addr, unsigned int len)
256 {
257         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
258         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
259         struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
260         int target_vcpu_id = vcpu->vcpu_id;
261         gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
262                         (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
263         u64 value;
264
265         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
266         value |= ((target_vcpu_id & 0xffff) << 8);
267
268         if (addr == last_rdist_typer)
269                 value |= GICR_TYPER_LAST;
270         if (vgic_has_its(vcpu->kvm))
271                 value |= GICR_TYPER_PLPIS;
272
273         return extract_bytes(value, addr & 7, len);
274 }
275
276 static unsigned long vgic_uaccess_read_v3r_typer(struct kvm_vcpu *vcpu,
277                                                  gpa_t addr, unsigned int len)
278 {
279         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
280         int target_vcpu_id = vcpu->vcpu_id;
281         u64 value;
282
283         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
284         value |= ((target_vcpu_id & 0xffff) << 8);
285
286         if (vgic_has_its(vcpu->kvm))
287                 value |= GICR_TYPER_PLPIS;
288
289         /* reporting of the Last bit is not supported for userspace */
290         return extract_bytes(value, addr & 7, len);
291 }
292
293 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
294                                              gpa_t addr, unsigned int len)
295 {
296         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
297 }
298
299 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
300                                               gpa_t addr, unsigned int len)
301 {
302         switch (addr & 0xffff) {
303         case GICD_PIDR2:
304                 /* report a GICv3 compliant implementation */
305                 return 0x3b;
306         }
307
308         return 0;
309 }
310
311 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
312                                                   gpa_t addr, unsigned int len)
313 {
314         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
315         u32 value = 0;
316         int i;
317
318         /*
319          * pending state of interrupt is latched in pending_latch variable.
320          * Userspace will save and restore pending state and line_level
321          * separately.
322          * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
323          * for handling of ISPENDR and ICPENDR.
324          */
325         for (i = 0; i < len * 8; i++) {
326                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
327                 bool state = irq->pending_latch;
328
329                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
330                         int err;
331
332                         err = irq_get_irqchip_state(irq->host_irq,
333                                                     IRQCHIP_STATE_PENDING,
334                                                     &state);
335                         WARN_ON(err);
336                 }
337
338                 if (state)
339                         value |= (1U << i);
340
341                 vgic_put_irq(vcpu->kvm, irq);
342         }
343
344         return value;
345 }
346
347 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
348                                          gpa_t addr, unsigned int len,
349                                          unsigned long val)
350 {
351         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
352         int i;
353         unsigned long flags;
354
355         for (i = 0; i < len * 8; i++) {
356                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
357
358                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
359                 if (test_bit(i, &val)) {
360                         /*
361                          * pending_latch is set irrespective of irq type
362                          * (level or edge) to avoid dependency that VM should
363                          * restore irq config before pending info.
364                          */
365                         irq->pending_latch = true;
366                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
367                 } else {
368                         irq->pending_latch = false;
369                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
370                 }
371
372                 vgic_put_irq(vcpu->kvm, irq);
373         }
374
375         return 0;
376 }
377
378 /* We want to avoid outer shareable. */
379 u64 vgic_sanitise_shareability(u64 field)
380 {
381         switch (field) {
382         case GIC_BASER_OuterShareable:
383                 return GIC_BASER_InnerShareable;
384         default:
385                 return field;
386         }
387 }
388
389 /* Avoid any inner non-cacheable mapping. */
390 u64 vgic_sanitise_inner_cacheability(u64 field)
391 {
392         switch (field) {
393         case GIC_BASER_CACHE_nCnB:
394         case GIC_BASER_CACHE_nC:
395                 return GIC_BASER_CACHE_RaWb;
396         default:
397                 return field;
398         }
399 }
400
401 /* Non-cacheable or same-as-inner are OK. */
402 u64 vgic_sanitise_outer_cacheability(u64 field)
403 {
404         switch (field) {
405         case GIC_BASER_CACHE_SameAsInner:
406         case GIC_BASER_CACHE_nC:
407                 return field;
408         default:
409                 return GIC_BASER_CACHE_SameAsInner;
410         }
411 }
412
413 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
414                         u64 (*sanitise_fn)(u64))
415 {
416         u64 field = (reg & field_mask) >> field_shift;
417
418         field = sanitise_fn(field) << field_shift;
419         return (reg & ~field_mask) | field;
420 }
421
422 #define PROPBASER_RES0_MASK                                             \
423         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
424 #define PENDBASER_RES0_MASK                                             \
425         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
426          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
427
428 static u64 vgic_sanitise_pendbaser(u64 reg)
429 {
430         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
431                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
432                                   vgic_sanitise_shareability);
433         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
434                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
435                                   vgic_sanitise_inner_cacheability);
436         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
437                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
438                                   vgic_sanitise_outer_cacheability);
439
440         reg &= ~PENDBASER_RES0_MASK;
441
442         return reg;
443 }
444
445 static u64 vgic_sanitise_propbaser(u64 reg)
446 {
447         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
448                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
449                                   vgic_sanitise_shareability);
450         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
451                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
452                                   vgic_sanitise_inner_cacheability);
453         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
454                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
455                                   vgic_sanitise_outer_cacheability);
456
457         reg &= ~PROPBASER_RES0_MASK;
458         return reg;
459 }
460
461 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
462                                              gpa_t addr, unsigned int len)
463 {
464         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
465
466         return extract_bytes(dist->propbaser, addr & 7, len);
467 }
468
469 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
470                                      gpa_t addr, unsigned int len,
471                                      unsigned long val)
472 {
473         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
474         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
475         u64 old_propbaser, propbaser;
476
477         /* Storing a value with LPIs already enabled is undefined */
478         if (vgic_cpu->lpis_enabled)
479                 return;
480
481         do {
482                 old_propbaser = READ_ONCE(dist->propbaser);
483                 propbaser = old_propbaser;
484                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
485                 propbaser = vgic_sanitise_propbaser(propbaser);
486         } while (cmpxchg64(&dist->propbaser, old_propbaser,
487                            propbaser) != old_propbaser);
488 }
489
490 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
491                                              gpa_t addr, unsigned int len)
492 {
493         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
494         u64 value = vgic_cpu->pendbaser;
495
496         value &= ~GICR_PENDBASER_PTZ;
497
498         return extract_bytes(value, addr & 7, len);
499 }
500
501 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
502                                      gpa_t addr, unsigned int len,
503                                      unsigned long val)
504 {
505         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
506         u64 old_pendbaser, pendbaser;
507
508         /* Storing a value with LPIs already enabled is undefined */
509         if (vgic_cpu->lpis_enabled)
510                 return;
511
512         do {
513                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
514                 pendbaser = old_pendbaser;
515                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
516                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
517         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
518                            pendbaser) != old_pendbaser);
519 }
520
521 /*
522  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
523  * redistributors, while SPIs are covered by registers in the distributor
524  * block. Trying to set private IRQs in this block gets ignored.
525  * We take some special care here to fix the calculation of the register
526  * offset.
527  */
528 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
529         {                                                               \
530                 .reg_offset = off,                                      \
531                 .bits_per_irq = bpi,                                    \
532                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
533                 .access_flags = acc,                                    \
534                 .read = vgic_mmio_read_raz,                             \
535                 .write = vgic_mmio_write_wi,                            \
536         }, {                                                            \
537                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
538                 .bits_per_irq = bpi,                                    \
539                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
540                 .access_flags = acc,                                    \
541                 .read = rd,                                             \
542                 .write = wr,                                            \
543                 .uaccess_read = ur,                                     \
544                 .uaccess_write = uw,                                    \
545         }
546
547 static const struct vgic_register_region vgic_v3_dist_registers[] = {
548         REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
549                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
550                 NULL, vgic_mmio_uaccess_write_v3_misc,
551                 16, VGIC_ACCESS_32bit),
552         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
553                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
554                 VGIC_ACCESS_32bit),
555         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
556                 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
557                 VGIC_ACCESS_32bit),
558         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
559                 vgic_mmio_read_enable, vgic_mmio_write_senable,
560                 NULL, vgic_uaccess_write_senable, 1,
561                 VGIC_ACCESS_32bit),
562         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
563                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
564                NULL, vgic_uaccess_write_cenable, 1,
565                 VGIC_ACCESS_32bit),
566         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
567                 vgic_mmio_read_pending, vgic_mmio_write_spending,
568                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
569                 VGIC_ACCESS_32bit),
570         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
571                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
572                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
573                 VGIC_ACCESS_32bit),
574         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
575                 vgic_mmio_read_active, vgic_mmio_write_sactive,
576                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
577                 VGIC_ACCESS_32bit),
578         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
579                 vgic_mmio_read_active, vgic_mmio_write_cactive,
580                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
581                 1, VGIC_ACCESS_32bit),
582         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
583                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
584                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
585         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
586                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
587                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
588         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
589                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
590                 VGIC_ACCESS_32bit),
591         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
592                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
593                 VGIC_ACCESS_32bit),
594         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
595                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
596                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
597         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
598                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
599                 VGIC_ACCESS_32bit),
600 };
601
602 static const struct vgic_register_region vgic_v3_rd_registers[] = {
603         /* RD_base registers */
604         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
605                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
606                 VGIC_ACCESS_32bit),
607         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
608                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
609                 VGIC_ACCESS_32bit),
610         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
611                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
612                 VGIC_ACCESS_32bit),
613         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
614                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
615                 vgic_uaccess_read_v3r_typer, vgic_mmio_uaccess_write_wi, 8,
616                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
617         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
618                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
619                 VGIC_ACCESS_32bit),
620         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
621                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
622                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
623         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
624                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
625                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
626         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
627                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
628                 VGIC_ACCESS_32bit),
629         /* SGI_base registers */
630         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
631                 vgic_mmio_read_group, vgic_mmio_write_group, 4,
632                 VGIC_ACCESS_32bit),
633         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
634                 vgic_mmio_read_enable, vgic_mmio_write_senable,
635                 NULL, vgic_uaccess_write_senable, 4,
636                 VGIC_ACCESS_32bit),
637         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
638                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
639                 NULL, vgic_uaccess_write_cenable, 4,
640                 VGIC_ACCESS_32bit),
641         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
642                 vgic_mmio_read_pending, vgic_mmio_write_spending,
643                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
644                 VGIC_ACCESS_32bit),
645         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
646                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
647                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
648                 VGIC_ACCESS_32bit),
649         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
650                 vgic_mmio_read_active, vgic_mmio_write_sactive,
651                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
652                 VGIC_ACCESS_32bit),
653         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
654                 vgic_mmio_read_active, vgic_mmio_write_cactive,
655                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
656                 VGIC_ACCESS_32bit),
657         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
658                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
659                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
660         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
661                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
662                 VGIC_ACCESS_32bit),
663         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
664                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
665                 VGIC_ACCESS_32bit),
666         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
667                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
668                 VGIC_ACCESS_32bit),
669 };
670
671 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
672 {
673         dev->regions = vgic_v3_dist_registers;
674         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
675
676         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
677
678         return SZ_64K;
679 }
680
681 /**
682  * vgic_register_redist_iodev - register a single redist iodev
683  * @vcpu:    The VCPU to which the redistributor belongs
684  *
685  * Register a KVM iodev for this VCPU's redistributor using the address
686  * provided.
687  *
688  * Return 0 on success, -ERRNO otherwise.
689  */
690 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
691 {
692         struct kvm *kvm = vcpu->kvm;
693         struct vgic_dist *vgic = &kvm->arch.vgic;
694         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
695         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
696         struct vgic_redist_region *rdreg;
697         gpa_t rd_base;
698         int ret;
699
700         if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
701                 return 0;
702
703         /*
704          * We may be creating VCPUs before having set the base address for the
705          * redistributor region, in which case we will come back to this
706          * function for all VCPUs when the base address is set.  Just return
707          * without doing any work for now.
708          */
709         rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
710         if (!rdreg)
711                 return 0;
712
713         if (!vgic_v3_check_base(kvm))
714                 return -EINVAL;
715
716         vgic_cpu->rdreg = rdreg;
717
718         rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
719
720         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
721         rd_dev->base_addr = rd_base;
722         rd_dev->iodev_type = IODEV_REDIST;
723         rd_dev->regions = vgic_v3_rd_registers;
724         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
725         rd_dev->redist_vcpu = vcpu;
726
727         mutex_lock(&kvm->slots_lock);
728         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
729                                       2 * SZ_64K, &rd_dev->dev);
730         mutex_unlock(&kvm->slots_lock);
731
732         if (ret)
733                 return ret;
734
735         rdreg->free_index++;
736         return 0;
737 }
738
739 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
740 {
741         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
742
743         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
744 }
745
746 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
747 {
748         struct kvm_vcpu *vcpu;
749         int c, ret = 0;
750
751         kvm_for_each_vcpu(c, vcpu, kvm) {
752                 ret = vgic_register_redist_iodev(vcpu);
753                 if (ret)
754                         break;
755         }
756
757         if (ret) {
758                 /* The current c failed, so we start with the previous one. */
759                 mutex_lock(&kvm->slots_lock);
760                 for (c--; c >= 0; c--) {
761                         vcpu = kvm_get_vcpu(kvm, c);
762                         vgic_unregister_redist_iodev(vcpu);
763                 }
764                 mutex_unlock(&kvm->slots_lock);
765         }
766
767         return ret;
768 }
769
770 /**
771  * vgic_v3_insert_redist_region - Insert a new redistributor region
772  *
773  * Performs various checks before inserting the rdist region in the list.
774  * Those tests depend on whether the size of the rdist region is known
775  * (ie. count != 0). The list is sorted by rdist region index.
776  *
777  * @kvm: kvm handle
778  * @index: redist region index
779  * @base: base of the new rdist region
780  * @count: number of redistributors the region is made of (0 in the old style
781  * single region, whose size is induced from the number of vcpus)
782  *
783  * Return 0 on success, < 0 otherwise
784  */
785 static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
786                                         gpa_t base, uint32_t count)
787 {
788         struct vgic_dist *d = &kvm->arch.vgic;
789         struct vgic_redist_region *rdreg;
790         struct list_head *rd_regions = &d->rd_regions;
791         size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
792         int ret;
793
794         /* single rdist region already set ?*/
795         if (!count && !list_empty(rd_regions))
796                 return -EINVAL;
797
798         /* cross the end of memory ? */
799         if (base + size < base)
800                 return -EINVAL;
801
802         if (list_empty(rd_regions)) {
803                 if (index != 0)
804                         return -EINVAL;
805         } else {
806                 rdreg = list_last_entry(rd_regions,
807                                         struct vgic_redist_region, list);
808                 if (index != rdreg->index + 1)
809                         return -EINVAL;
810
811                 /* Cannot add an explicitly sized regions after legacy region */
812                 if (!rdreg->count)
813                         return -EINVAL;
814         }
815
816         /*
817          * For legacy single-region redistributor regions (!count),
818          * check that the redistributor region does not overlap with the
819          * distributor's address space.
820          */
821         if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
822                 vgic_dist_overlap(kvm, base, size))
823                 return -EINVAL;
824
825         /* collision with any other rdist region? */
826         if (vgic_v3_rdist_overlap(kvm, base, size))
827                 return -EINVAL;
828
829         rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
830         if (!rdreg)
831                 return -ENOMEM;
832
833         rdreg->base = VGIC_ADDR_UNDEF;
834
835         ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
836         if (ret)
837                 goto free;
838
839         rdreg->base = base;
840         rdreg->count = count;
841         rdreg->free_index = 0;
842         rdreg->index = index;
843
844         list_add_tail(&rdreg->list, rd_regions);
845         return 0;
846 free:
847         kfree(rdreg);
848         return ret;
849 }
850
851 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
852 {
853         int ret;
854
855         ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
856         if (ret)
857                 return ret;
858
859         /*
860          * Register iodevs for each existing VCPU.  Adding more VCPUs
861          * afterwards will register the iodevs when needed.
862          */
863         ret = vgic_register_all_redist_iodevs(kvm);
864         if (ret)
865                 return ret;
866
867         return 0;
868 }
869
870 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
871 {
872         const struct vgic_register_region *region;
873         struct vgic_io_device iodev;
874         struct vgic_reg_attr reg_attr;
875         struct kvm_vcpu *vcpu;
876         gpa_t addr;
877         int ret;
878
879         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
880         if (ret)
881                 return ret;
882
883         vcpu = reg_attr.vcpu;
884         addr = reg_attr.addr;
885
886         switch (attr->group) {
887         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
888                 iodev.regions = vgic_v3_dist_registers;
889                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
890                 iodev.base_addr = 0;
891                 break;
892         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
893                 iodev.regions = vgic_v3_rd_registers;
894                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
895                 iodev.base_addr = 0;
896                 break;
897         }
898         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
899                 u64 reg, id;
900
901                 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
902                 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
903         }
904         default:
905                 return -ENXIO;
906         }
907
908         /* We only support aligned 32-bit accesses. */
909         if (addr & 3)
910                 return -ENXIO;
911
912         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
913         if (!region)
914                 return -ENXIO;
915
916         return 0;
917 }
918 /*
919  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
920  * generation register ICC_SGI1R_EL1) with a given VCPU.
921  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
922  * return -1.
923  */
924 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
925 {
926         unsigned long affinity;
927         int level0;
928
929         /*
930          * Split the current VCPU's MPIDR into affinity level 0 and the
931          * rest as this is what we have to compare against.
932          */
933         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
934         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
935         affinity &= ~MPIDR_LEVEL_MASK;
936
937         /* bail out if the upper three levels don't match */
938         if (sgi_aff != affinity)
939                 return -1;
940
941         /* Is this VCPU's bit set in the mask ? */
942         if (!(sgi_cpu_mask & BIT(level0)))
943                 return -1;
944
945         return level0;
946 }
947
948 /*
949  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
950  * so provide a wrapper to use the existing defines to isolate a certain
951  * affinity level.
952  */
953 #define SGI_AFFINITY_LEVEL(reg, level) \
954         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
955         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
956
957 /**
958  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
959  * @vcpu: The VCPU requesting a SGI
960  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
961  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
962  *
963  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
964  * This will trap in sys_regs.c and call this function.
965  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
966  * target processors as well as a bitmask of 16 Aff0 CPUs.
967  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
968  * check for matching ones. If this bit is set, we signal all, but not the
969  * calling VCPU.
970  */
971 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
972 {
973         struct kvm *kvm = vcpu->kvm;
974         struct kvm_vcpu *c_vcpu;
975         u16 target_cpus;
976         u64 mpidr;
977         int sgi, c;
978         int vcpu_id = vcpu->vcpu_id;
979         bool broadcast;
980         unsigned long flags;
981
982         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
983         broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
984         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
985         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
986         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
987         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
988
989         /*
990          * We iterate over all VCPUs to find the MPIDRs matching the request.
991          * If we have handled one CPU, we clear its bit to detect early
992          * if we are already finished. This avoids iterating through all
993          * VCPUs when most of the times we just signal a single VCPU.
994          */
995         kvm_for_each_vcpu(c, c_vcpu, kvm) {
996                 struct vgic_irq *irq;
997
998                 /* Exit early if we have dealt with all requested CPUs */
999                 if (!broadcast && target_cpus == 0)
1000                         break;
1001
1002                 /* Don't signal the calling VCPU */
1003                 if (broadcast && c == vcpu_id)
1004                         continue;
1005
1006                 if (!broadcast) {
1007                         int level0;
1008
1009                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1010                         if (level0 == -1)
1011                                 continue;
1012
1013                         /* remove this matching VCPU from the mask */
1014                         target_cpus &= ~BIT(level0);
1015                 }
1016
1017                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1018
1019                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1020
1021                 /*
1022                  * An access targeting Group0 SGIs can only generate
1023                  * those, while an access targeting Group1 SGIs can
1024                  * generate interrupts of either group.
1025                  */
1026                 if (!irq->group || allow_group1) {
1027                         if (!irq->hw) {
1028                                 irq->pending_latch = true;
1029                                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1030                         } else {
1031                                 /* HW SGI? Ask the GIC to inject it */
1032                                 int err;
1033                                 err = irq_set_irqchip_state(irq->host_irq,
1034                                                             IRQCHIP_STATE_PENDING,
1035                                                             true);
1036                                 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1037                                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1038                         }
1039                 } else {
1040                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1041                 }
1042
1043                 vgic_put_irq(vcpu->kvm, irq);
1044         }
1045 }
1046
1047 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1048                          int offset, u32 *val)
1049 {
1050         struct vgic_io_device dev = {
1051                 .regions = vgic_v3_dist_registers,
1052                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1053         };
1054
1055         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1056 }
1057
1058 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1059                            int offset, u32 *val)
1060 {
1061         struct vgic_io_device rd_dev = {
1062                 .regions = vgic_v3_rd_registers,
1063                 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1064         };
1065
1066         return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1067 }
1068
1069 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1070                                     u32 intid, u64 *val)
1071 {
1072         if (intid % 32)
1073                 return -EINVAL;
1074
1075         if (is_write)
1076                 vgic_write_irq_line_level_info(vcpu, intid, *val);
1077         else
1078                 *val = vgic_read_irq_line_level_info(vcpu, intid);
1079
1080         return 0;
1081 }