Merge tag 'jfs-5.14' of git://github.com/kleikamp/linux-shaggy
[linux-2.6-microblaze.git] / arch / arm64 / kvm / vgic / vgic-mmio-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20
21 /* extract @num bytes at @offset bytes offset in data */
22 unsigned long extract_bytes(u64 data, unsigned int offset,
23                             unsigned int num)
24 {
25         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30                      unsigned long val)
31 {
32         int lower = (offset & 4) * 8;
33         int upper = lower + 8 * len - 1;
34
35         reg &= ~GENMASK_ULL(upper, lower);
36         val &= GENMASK_ULL(len * 8 - 1, 0);
37
38         return reg | ((u64)val << lower);
39 }
40
41 bool vgic_has_its(struct kvm *kvm)
42 {
43         struct vgic_dist *dist = &kvm->arch.vgic;
44
45         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46                 return false;
47
48         return dist->has_its;
49 }
50
51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53         return (kvm_vgic_global_state.has_gicv4_1 ||
54                 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56
57 /*
58  * The Revision field in the IIDR have the following meanings:
59  *
60  * Revision 2: Interrupt groups are guest-configurable and signaled using
61  *             their configured groups.
62  */
63
64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65                                             gpa_t addr, unsigned int len)
66 {
67         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68         u32 value = 0;
69
70         switch (addr & 0x0c) {
71         case GICD_CTLR:
72                 if (vgic->enabled)
73                         value |= GICD_CTLR_ENABLE_SS_G1;
74                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75                 if (vgic->nassgireq)
76                         value |= GICD_CTLR_nASSGIreq;
77                 break;
78         case GICD_TYPER:
79                 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80                 value = (value >> 5) - 1;
81                 if (vgic_has_its(vcpu->kvm)) {
82                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83                         value |= GICD_TYPER_LPIS;
84                 } else {
85                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86                 }
87                 break;
88         case GICD_TYPER2:
89                 if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90                         value = GICD_TYPER2_nASSGIcap;
91                 break;
92         case GICD_IIDR:
93                 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94                         (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95                         (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96                 break;
97         default:
98                 return 0;
99         }
100
101         return value;
102 }
103
104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105                                     gpa_t addr, unsigned int len,
106                                     unsigned long val)
107 {
108         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110         switch (addr & 0x0c) {
111         case GICD_CTLR: {
112                 bool was_enabled, is_hwsgi;
113
114                 mutex_lock(&vcpu->kvm->lock);
115
116                 was_enabled = dist->enabled;
117                 is_hwsgi = dist->nassgireq;
118
119                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121                 /* Not a GICv4.1? No HW SGIs */
122                 if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123                         val &= ~GICD_CTLR_nASSGIreq;
124
125                 /* Dist stays enabled? nASSGIreq is RO */
126                 if (was_enabled && dist->enabled) {
127                         val &= ~GICD_CTLR_nASSGIreq;
128                         val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129                 }
130
131                 /* Switching HW SGIs? */
132                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133                 if (is_hwsgi != dist->nassgireq)
134                         vgic_v4_configure_vsgis(vcpu->kvm);
135
136                 if (kvm_vgic_global_state.has_gicv4_1 &&
137                     was_enabled != dist->enabled)
138                         kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139                 else if (!was_enabled && dist->enabled)
140                         vgic_kick_vcpus(vcpu->kvm);
141
142                 mutex_unlock(&vcpu->kvm->lock);
143                 break;
144         }
145         case GICD_TYPER:
146         case GICD_TYPER2:
147         case GICD_IIDR:
148                 /* This is at best for documentation purposes... */
149                 return;
150         }
151 }
152
153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154                                            gpa_t addr, unsigned int len,
155                                            unsigned long val)
156 {
157         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158
159         switch (addr & 0x0c) {
160         case GICD_TYPER2:
161         case GICD_IIDR:
162                 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163                         return -EINVAL;
164                 return 0;
165         case GICD_CTLR:
166                 /* Not a GICv4.1? No HW SGIs */
167                 if (!kvm_vgic_global_state.has_gicv4_1)
168                         val &= ~GICD_CTLR_nASSGIreq;
169
170                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
171                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
172                 return 0;
173         }
174
175         vgic_mmio_write_v3_misc(vcpu, addr, len, val);
176         return 0;
177 }
178
179 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
180                                             gpa_t addr, unsigned int len)
181 {
182         int intid = VGIC_ADDR_TO_INTID(addr, 64);
183         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
184         unsigned long ret = 0;
185
186         if (!irq)
187                 return 0;
188
189         /* The upper word is RAZ for us. */
190         if (!(addr & 4))
191                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
192
193         vgic_put_irq(vcpu->kvm, irq);
194         return ret;
195 }
196
197 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
198                                     gpa_t addr, unsigned int len,
199                                     unsigned long val)
200 {
201         int intid = VGIC_ADDR_TO_INTID(addr, 64);
202         struct vgic_irq *irq;
203         unsigned long flags;
204
205         /* The upper word is WI for us since we don't implement Aff3. */
206         if (addr & 4)
207                 return;
208
209         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
210
211         if (!irq)
212                 return;
213
214         raw_spin_lock_irqsave(&irq->irq_lock, flags);
215
216         /* We only care about and preserve Aff0, Aff1 and Aff2. */
217         irq->mpidr = val & GENMASK(23, 0);
218         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
219
220         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
221         vgic_put_irq(vcpu->kvm, irq);
222 }
223
224 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
225                                              gpa_t addr, unsigned int len)
226 {
227         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
228
229         return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
230 }
231
232
233 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
234                                      gpa_t addr, unsigned int len,
235                                      unsigned long val)
236 {
237         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
238         bool was_enabled = vgic_cpu->lpis_enabled;
239
240         if (!vgic_has_its(vcpu->kvm))
241                 return;
242
243         vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
244
245         if (was_enabled && !vgic_cpu->lpis_enabled) {
246                 vgic_flush_pending_lpis(vcpu);
247                 vgic_its_invalidate_cache(vcpu->kvm);
248         }
249
250         if (!was_enabled && vgic_cpu->lpis_enabled)
251                 vgic_enable_lpis(vcpu);
252 }
253
254 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
255 {
256         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
257         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
258         struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
259
260         if (!rdreg)
261                 return false;
262
263         if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
264                 return false;
265         } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
266                 struct list_head *rd_regions = &vgic->rd_regions;
267                 gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
268
269                 /*
270                  * the rdist is the last one of the redist region,
271                  * check whether there is no other contiguous rdist region
272                  */
273                 list_for_each_entry(iter, rd_regions, list) {
274                         if (iter->base == end && iter->free_index > 0)
275                                 return false;
276                 }
277         }
278         return true;
279 }
280
281 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
282                                               gpa_t addr, unsigned int len)
283 {
284         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
285         int target_vcpu_id = vcpu->vcpu_id;
286         u64 value;
287
288         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
289         value |= ((target_vcpu_id & 0xffff) << 8);
290
291         if (vgic_has_its(vcpu->kvm))
292                 value |= GICR_TYPER_PLPIS;
293
294         if (vgic_mmio_vcpu_rdist_is_last(vcpu))
295                 value |= GICR_TYPER_LAST;
296
297         return extract_bytes(value, addr & 7, len);
298 }
299
300 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
301                                              gpa_t addr, unsigned int len)
302 {
303         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
304 }
305
306 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
307                                               gpa_t addr, unsigned int len)
308 {
309         switch (addr & 0xffff) {
310         case GICD_PIDR2:
311                 /* report a GICv3 compliant implementation */
312                 return 0x3b;
313         }
314
315         return 0;
316 }
317
318 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
319                                                   gpa_t addr, unsigned int len)
320 {
321         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
322         u32 value = 0;
323         int i;
324
325         /*
326          * pending state of interrupt is latched in pending_latch variable.
327          * Userspace will save and restore pending state and line_level
328          * separately.
329          * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
330          * for handling of ISPENDR and ICPENDR.
331          */
332         for (i = 0; i < len * 8; i++) {
333                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
334                 bool state = irq->pending_latch;
335
336                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
337                         int err;
338
339                         err = irq_get_irqchip_state(irq->host_irq,
340                                                     IRQCHIP_STATE_PENDING,
341                                                     &state);
342                         WARN_ON(err);
343                 }
344
345                 if (state)
346                         value |= (1U << i);
347
348                 vgic_put_irq(vcpu->kvm, irq);
349         }
350
351         return value;
352 }
353
354 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
355                                          gpa_t addr, unsigned int len,
356                                          unsigned long val)
357 {
358         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
359         int i;
360         unsigned long flags;
361
362         for (i = 0; i < len * 8; i++) {
363                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
364
365                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
366                 if (test_bit(i, &val)) {
367                         /*
368                          * pending_latch is set irrespective of irq type
369                          * (level or edge) to avoid dependency that VM should
370                          * restore irq config before pending info.
371                          */
372                         irq->pending_latch = true;
373                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
374                 } else {
375                         irq->pending_latch = false;
376                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
377                 }
378
379                 vgic_put_irq(vcpu->kvm, irq);
380         }
381
382         return 0;
383 }
384
385 /* We want to avoid outer shareable. */
386 u64 vgic_sanitise_shareability(u64 field)
387 {
388         switch (field) {
389         case GIC_BASER_OuterShareable:
390                 return GIC_BASER_InnerShareable;
391         default:
392                 return field;
393         }
394 }
395
396 /* Avoid any inner non-cacheable mapping. */
397 u64 vgic_sanitise_inner_cacheability(u64 field)
398 {
399         switch (field) {
400         case GIC_BASER_CACHE_nCnB:
401         case GIC_BASER_CACHE_nC:
402                 return GIC_BASER_CACHE_RaWb;
403         default:
404                 return field;
405         }
406 }
407
408 /* Non-cacheable or same-as-inner are OK. */
409 u64 vgic_sanitise_outer_cacheability(u64 field)
410 {
411         switch (field) {
412         case GIC_BASER_CACHE_SameAsInner:
413         case GIC_BASER_CACHE_nC:
414                 return field;
415         default:
416                 return GIC_BASER_CACHE_SameAsInner;
417         }
418 }
419
420 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
421                         u64 (*sanitise_fn)(u64))
422 {
423         u64 field = (reg & field_mask) >> field_shift;
424
425         field = sanitise_fn(field) << field_shift;
426         return (reg & ~field_mask) | field;
427 }
428
429 #define PROPBASER_RES0_MASK                                             \
430         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
431 #define PENDBASER_RES0_MASK                                             \
432         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
433          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
434
435 static u64 vgic_sanitise_pendbaser(u64 reg)
436 {
437         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
438                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
439                                   vgic_sanitise_shareability);
440         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
441                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
442                                   vgic_sanitise_inner_cacheability);
443         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
444                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
445                                   vgic_sanitise_outer_cacheability);
446
447         reg &= ~PENDBASER_RES0_MASK;
448
449         return reg;
450 }
451
452 static u64 vgic_sanitise_propbaser(u64 reg)
453 {
454         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
455                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
456                                   vgic_sanitise_shareability);
457         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
458                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
459                                   vgic_sanitise_inner_cacheability);
460         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
461                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
462                                   vgic_sanitise_outer_cacheability);
463
464         reg &= ~PROPBASER_RES0_MASK;
465         return reg;
466 }
467
468 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
469                                              gpa_t addr, unsigned int len)
470 {
471         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
472
473         return extract_bytes(dist->propbaser, addr & 7, len);
474 }
475
476 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
477                                      gpa_t addr, unsigned int len,
478                                      unsigned long val)
479 {
480         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
481         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
482         u64 old_propbaser, propbaser;
483
484         /* Storing a value with LPIs already enabled is undefined */
485         if (vgic_cpu->lpis_enabled)
486                 return;
487
488         do {
489                 old_propbaser = READ_ONCE(dist->propbaser);
490                 propbaser = old_propbaser;
491                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
492                 propbaser = vgic_sanitise_propbaser(propbaser);
493         } while (cmpxchg64(&dist->propbaser, old_propbaser,
494                            propbaser) != old_propbaser);
495 }
496
497 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
498                                              gpa_t addr, unsigned int len)
499 {
500         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
501         u64 value = vgic_cpu->pendbaser;
502
503         value &= ~GICR_PENDBASER_PTZ;
504
505         return extract_bytes(value, addr & 7, len);
506 }
507
508 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
509                                      gpa_t addr, unsigned int len,
510                                      unsigned long val)
511 {
512         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
513         u64 old_pendbaser, pendbaser;
514
515         /* Storing a value with LPIs already enabled is undefined */
516         if (vgic_cpu->lpis_enabled)
517                 return;
518
519         do {
520                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
521                 pendbaser = old_pendbaser;
522                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
523                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
524         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
525                            pendbaser) != old_pendbaser);
526 }
527
528 /*
529  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
530  * redistributors, while SPIs are covered by registers in the distributor
531  * block. Trying to set private IRQs in this block gets ignored.
532  * We take some special care here to fix the calculation of the register
533  * offset.
534  */
535 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
536         {                                                               \
537                 .reg_offset = off,                                      \
538                 .bits_per_irq = bpi,                                    \
539                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
540                 .access_flags = acc,                                    \
541                 .read = vgic_mmio_read_raz,                             \
542                 .write = vgic_mmio_write_wi,                            \
543         }, {                                                            \
544                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
545                 .bits_per_irq = bpi,                                    \
546                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
547                 .access_flags = acc,                                    \
548                 .read = rd,                                             \
549                 .write = wr,                                            \
550                 .uaccess_read = ur,                                     \
551                 .uaccess_write = uw,                                    \
552         }
553
554 static const struct vgic_register_region vgic_v3_dist_registers[] = {
555         REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
556                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
557                 NULL, vgic_mmio_uaccess_write_v3_misc,
558                 16, VGIC_ACCESS_32bit),
559         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
560                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
561                 VGIC_ACCESS_32bit),
562         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
563                 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
564                 VGIC_ACCESS_32bit),
565         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
566                 vgic_mmio_read_enable, vgic_mmio_write_senable,
567                 NULL, vgic_uaccess_write_senable, 1,
568                 VGIC_ACCESS_32bit),
569         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
570                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
571                NULL, vgic_uaccess_write_cenable, 1,
572                 VGIC_ACCESS_32bit),
573         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
574                 vgic_mmio_read_pending, vgic_mmio_write_spending,
575                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
576                 VGIC_ACCESS_32bit),
577         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
578                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
579                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
580                 VGIC_ACCESS_32bit),
581         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
582                 vgic_mmio_read_active, vgic_mmio_write_sactive,
583                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
584                 VGIC_ACCESS_32bit),
585         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
586                 vgic_mmio_read_active, vgic_mmio_write_cactive,
587                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
588                 1, VGIC_ACCESS_32bit),
589         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
590                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
591                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
592         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
593                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
594                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
595         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
596                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
597                 VGIC_ACCESS_32bit),
598         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
599                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
600                 VGIC_ACCESS_32bit),
601         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
602                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
603                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
604         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
605                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
606                 VGIC_ACCESS_32bit),
607 };
608
609 static const struct vgic_register_region vgic_v3_rd_registers[] = {
610         /* RD_base registers */
611         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
612                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
613                 VGIC_ACCESS_32bit),
614         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
615                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
616                 VGIC_ACCESS_32bit),
617         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
618                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
619                 VGIC_ACCESS_32bit),
620         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
621                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
622                 NULL, vgic_mmio_uaccess_write_wi, 8,
623                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
624         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
625                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
626                 VGIC_ACCESS_32bit),
627         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
628                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
629                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
630         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
631                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
632                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
633         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
634                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
635                 VGIC_ACCESS_32bit),
636         /* SGI_base registers */
637         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
638                 vgic_mmio_read_group, vgic_mmio_write_group, 4,
639                 VGIC_ACCESS_32bit),
640         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
641                 vgic_mmio_read_enable, vgic_mmio_write_senable,
642                 NULL, vgic_uaccess_write_senable, 4,
643                 VGIC_ACCESS_32bit),
644         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
645                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
646                 NULL, vgic_uaccess_write_cenable, 4,
647                 VGIC_ACCESS_32bit),
648         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
649                 vgic_mmio_read_pending, vgic_mmio_write_spending,
650                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
651                 VGIC_ACCESS_32bit),
652         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
653                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
654                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
655                 VGIC_ACCESS_32bit),
656         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
657                 vgic_mmio_read_active, vgic_mmio_write_sactive,
658                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
659                 VGIC_ACCESS_32bit),
660         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
661                 vgic_mmio_read_active, vgic_mmio_write_cactive,
662                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
663                 VGIC_ACCESS_32bit),
664         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
665                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
666                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
667         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
668                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
669                 VGIC_ACCESS_32bit),
670         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
671                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
672                 VGIC_ACCESS_32bit),
673         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
674                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
675                 VGIC_ACCESS_32bit),
676 };
677
678 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
679 {
680         dev->regions = vgic_v3_dist_registers;
681         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
682
683         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
684
685         return SZ_64K;
686 }
687
688 /**
689  * vgic_register_redist_iodev - register a single redist iodev
690  * @vcpu:    The VCPU to which the redistributor belongs
691  *
692  * Register a KVM iodev for this VCPU's redistributor using the address
693  * provided.
694  *
695  * Return 0 on success, -ERRNO otherwise.
696  */
697 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
698 {
699         struct kvm *kvm = vcpu->kvm;
700         struct vgic_dist *vgic = &kvm->arch.vgic;
701         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
702         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
703         struct vgic_redist_region *rdreg;
704         gpa_t rd_base;
705         int ret;
706
707         if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
708                 return 0;
709
710         /*
711          * We may be creating VCPUs before having set the base address for the
712          * redistributor region, in which case we will come back to this
713          * function for all VCPUs when the base address is set.  Just return
714          * without doing any work for now.
715          */
716         rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
717         if (!rdreg)
718                 return 0;
719
720         if (!vgic_v3_check_base(kvm))
721                 return -EINVAL;
722
723         vgic_cpu->rdreg = rdreg;
724         vgic_cpu->rdreg_index = rdreg->free_index;
725
726         rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
727
728         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
729         rd_dev->base_addr = rd_base;
730         rd_dev->iodev_type = IODEV_REDIST;
731         rd_dev->regions = vgic_v3_rd_registers;
732         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
733         rd_dev->redist_vcpu = vcpu;
734
735         mutex_lock(&kvm->slots_lock);
736         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
737                                       2 * SZ_64K, &rd_dev->dev);
738         mutex_unlock(&kvm->slots_lock);
739
740         if (ret)
741                 return ret;
742
743         rdreg->free_index++;
744         return 0;
745 }
746
747 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
748 {
749         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
750
751         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
752 }
753
754 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
755 {
756         struct kvm_vcpu *vcpu;
757         int c, ret = 0;
758
759         kvm_for_each_vcpu(c, vcpu, kvm) {
760                 ret = vgic_register_redist_iodev(vcpu);
761                 if (ret)
762                         break;
763         }
764
765         if (ret) {
766                 /* The current c failed, so we start with the previous one. */
767                 mutex_lock(&kvm->slots_lock);
768                 for (c--; c >= 0; c--) {
769                         vcpu = kvm_get_vcpu(kvm, c);
770                         vgic_unregister_redist_iodev(vcpu);
771                 }
772                 mutex_unlock(&kvm->slots_lock);
773         }
774
775         return ret;
776 }
777
778 /**
779  * vgic_v3_alloc_redist_region - Allocate a new redistributor region
780  *
781  * Performs various checks before inserting the rdist region in the list.
782  * Those tests depend on whether the size of the rdist region is known
783  * (ie. count != 0). The list is sorted by rdist region index.
784  *
785  * @kvm: kvm handle
786  * @index: redist region index
787  * @base: base of the new rdist region
788  * @count: number of redistributors the region is made of (0 in the old style
789  * single region, whose size is induced from the number of vcpus)
790  *
791  * Return 0 on success, < 0 otherwise
792  */
793 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
794                                        gpa_t base, uint32_t count)
795 {
796         struct vgic_dist *d = &kvm->arch.vgic;
797         struct vgic_redist_region *rdreg;
798         struct list_head *rd_regions = &d->rd_regions;
799         size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
800         int ret;
801
802         /* cross the end of memory ? */
803         if (base + size < base)
804                 return -EINVAL;
805
806         if (list_empty(rd_regions)) {
807                 if (index != 0)
808                         return -EINVAL;
809         } else {
810                 rdreg = list_last_entry(rd_regions,
811                                         struct vgic_redist_region, list);
812
813                 /* Don't mix single region and discrete redist regions */
814                 if (!count && rdreg->count)
815                         return -EINVAL;
816
817                 if (!count)
818                         return -EEXIST;
819
820                 if (index != rdreg->index + 1)
821                         return -EINVAL;
822         }
823
824         /*
825          * For legacy single-region redistributor regions (!count),
826          * check that the redistributor region does not overlap with the
827          * distributor's address space.
828          */
829         if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
830                 vgic_dist_overlap(kvm, base, size))
831                 return -EINVAL;
832
833         /* collision with any other rdist region? */
834         if (vgic_v3_rdist_overlap(kvm, base, size))
835                 return -EINVAL;
836
837         rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
838         if (!rdreg)
839                 return -ENOMEM;
840
841         rdreg->base = VGIC_ADDR_UNDEF;
842
843         ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
844         if (ret)
845                 goto free;
846
847         rdreg->base = base;
848         rdreg->count = count;
849         rdreg->free_index = 0;
850         rdreg->index = index;
851
852         list_add_tail(&rdreg->list, rd_regions);
853         return 0;
854 free:
855         kfree(rdreg);
856         return ret;
857 }
858
859 void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
860 {
861         list_del(&rdreg->list);
862         kfree(rdreg);
863 }
864
865 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
866 {
867         int ret;
868
869         ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
870         if (ret)
871                 return ret;
872
873         /*
874          * Register iodevs for each existing VCPU.  Adding more VCPUs
875          * afterwards will register the iodevs when needed.
876          */
877         ret = vgic_register_all_redist_iodevs(kvm);
878         if (ret) {
879                 struct vgic_redist_region *rdreg;
880
881                 rdreg = vgic_v3_rdist_region_from_index(kvm, index);
882                 vgic_v3_free_redist_region(rdreg);
883                 return ret;
884         }
885
886         return 0;
887 }
888
889 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
890 {
891         const struct vgic_register_region *region;
892         struct vgic_io_device iodev;
893         struct vgic_reg_attr reg_attr;
894         struct kvm_vcpu *vcpu;
895         gpa_t addr;
896         int ret;
897
898         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
899         if (ret)
900                 return ret;
901
902         vcpu = reg_attr.vcpu;
903         addr = reg_attr.addr;
904
905         switch (attr->group) {
906         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
907                 iodev.regions = vgic_v3_dist_registers;
908                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
909                 iodev.base_addr = 0;
910                 break;
911         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
912                 iodev.regions = vgic_v3_rd_registers;
913                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
914                 iodev.base_addr = 0;
915                 break;
916         }
917         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
918                 u64 reg, id;
919
920                 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
921                 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
922         }
923         default:
924                 return -ENXIO;
925         }
926
927         /* We only support aligned 32-bit accesses. */
928         if (addr & 3)
929                 return -ENXIO;
930
931         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
932         if (!region)
933                 return -ENXIO;
934
935         return 0;
936 }
937 /*
938  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
939  * generation register ICC_SGI1R_EL1) with a given VCPU.
940  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
941  * return -1.
942  */
943 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
944 {
945         unsigned long affinity;
946         int level0;
947
948         /*
949          * Split the current VCPU's MPIDR into affinity level 0 and the
950          * rest as this is what we have to compare against.
951          */
952         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
953         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
954         affinity &= ~MPIDR_LEVEL_MASK;
955
956         /* bail out if the upper three levels don't match */
957         if (sgi_aff != affinity)
958                 return -1;
959
960         /* Is this VCPU's bit set in the mask ? */
961         if (!(sgi_cpu_mask & BIT(level0)))
962                 return -1;
963
964         return level0;
965 }
966
967 /*
968  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
969  * so provide a wrapper to use the existing defines to isolate a certain
970  * affinity level.
971  */
972 #define SGI_AFFINITY_LEVEL(reg, level) \
973         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
974         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
975
976 /**
977  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
978  * @vcpu: The VCPU requesting a SGI
979  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
980  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
981  *
982  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
983  * This will trap in sys_regs.c and call this function.
984  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
985  * target processors as well as a bitmask of 16 Aff0 CPUs.
986  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
987  * check for matching ones. If this bit is set, we signal all, but not the
988  * calling VCPU.
989  */
990 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
991 {
992         struct kvm *kvm = vcpu->kvm;
993         struct kvm_vcpu *c_vcpu;
994         u16 target_cpus;
995         u64 mpidr;
996         int sgi, c;
997         int vcpu_id = vcpu->vcpu_id;
998         bool broadcast;
999         unsigned long flags;
1000
1001         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
1002         broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
1003         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
1004         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1005         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1006         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1007
1008         /*
1009          * We iterate over all VCPUs to find the MPIDRs matching the request.
1010          * If we have handled one CPU, we clear its bit to detect early
1011          * if we are already finished. This avoids iterating through all
1012          * VCPUs when most of the times we just signal a single VCPU.
1013          */
1014         kvm_for_each_vcpu(c, c_vcpu, kvm) {
1015                 struct vgic_irq *irq;
1016
1017                 /* Exit early if we have dealt with all requested CPUs */
1018                 if (!broadcast && target_cpus == 0)
1019                         break;
1020
1021                 /* Don't signal the calling VCPU */
1022                 if (broadcast && c == vcpu_id)
1023                         continue;
1024
1025                 if (!broadcast) {
1026                         int level0;
1027
1028                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1029                         if (level0 == -1)
1030                                 continue;
1031
1032                         /* remove this matching VCPU from the mask */
1033                         target_cpus &= ~BIT(level0);
1034                 }
1035
1036                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1037
1038                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1039
1040                 /*
1041                  * An access targeting Group0 SGIs can only generate
1042                  * those, while an access targeting Group1 SGIs can
1043                  * generate interrupts of either group.
1044                  */
1045                 if (!irq->group || allow_group1) {
1046                         if (!irq->hw) {
1047                                 irq->pending_latch = true;
1048                                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1049                         } else {
1050                                 /* HW SGI? Ask the GIC to inject it */
1051                                 int err;
1052                                 err = irq_set_irqchip_state(irq->host_irq,
1053                                                             IRQCHIP_STATE_PENDING,
1054                                                             true);
1055                                 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1056                                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1057                         }
1058                 } else {
1059                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1060                 }
1061
1062                 vgic_put_irq(vcpu->kvm, irq);
1063         }
1064 }
1065
1066 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1067                          int offset, u32 *val)
1068 {
1069         struct vgic_io_device dev = {
1070                 .regions = vgic_v3_dist_registers,
1071                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1072         };
1073
1074         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1075 }
1076
1077 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1078                            int offset, u32 *val)
1079 {
1080         struct vgic_io_device rd_dev = {
1081                 .regions = vgic_v3_rd_registers,
1082                 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1083         };
1084
1085         return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1086 }
1087
1088 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1089                                     u32 intid, u64 *val)
1090 {
1091         if (intid % 32)
1092                 return -EINVAL;
1093
1094         if (is_write)
1095                 vgic_write_irq_line_level_info(vcpu, intid, *val);
1096         else
1097                 *val = vgic_read_irq_line_level_info(vcpu, intid);
1098
1099         return 0;
1100 }