KVM: arm64: Move double-checked lock to kvm_vgic_map_resources()
[linux-2.6-microblaze.git] / arch / arm64 / kvm / vgic / vgic-init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5
6 #include <linux/uaccess.h>
7 #include <linux/interrupt.h>
8 #include <linux/cpu.h>
9 #include <linux/kvm_host.h>
10 #include <kvm/arm_vgic.h>
11 #include <asm/kvm_emulate.h>
12 #include <asm/kvm_mmu.h>
13 #include "vgic.h"
14
15 /*
16  * Initialization rules: there are multiple stages to the vgic
17  * initialization, both for the distributor and the CPU interfaces.  The basic
18  * idea is that even though the VGIC is not functional or not requested from
19  * user space, the critical path of the run loop can still call VGIC functions
20  * that just won't do anything, without them having to check additional
21  * initialization flags to ensure they don't look at uninitialized data
22  * structures.
23  *
24  * Distributor:
25  *
26  * - kvm_vgic_early_init(): initialization of static data that doesn't
27  *   depend on any sizing information or emulation type. No allocation
28  *   is allowed there.
29  *
30  * - vgic_init(): allocation and initialization of the generic data
31  *   structures that depend on sizing information (number of CPUs,
32  *   number of interrupts). Also initializes the vcpu specific data
33  *   structures. Can be executed lazily for GICv2.
34  *
35  * CPU Interface:
36  *
37  * - kvm_vgic_vcpu_init(): initialization of static data that
38  *   doesn't depend on any sizing information or emulation type. No
39  *   allocation is allowed there.
40  */
41
42 /* EARLY INIT */
43
44 /**
45  * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
46  * @kvm: The VM whose VGIC districutor should be initialized
47  *
48  * Only do initialization of static structures that don't require any
49  * allocation or sizing information from userspace.  vgic_init() called
50  * kvm_vgic_dist_init() which takes care of the rest.
51  */
52 void kvm_vgic_early_init(struct kvm *kvm)
53 {
54         struct vgic_dist *dist = &kvm->arch.vgic;
55
56         INIT_LIST_HEAD(&dist->lpi_list_head);
57         INIT_LIST_HEAD(&dist->lpi_translation_cache);
58         raw_spin_lock_init(&dist->lpi_list_lock);
59 }
60
61 /* CREATION */
62
63 /**
64  * kvm_vgic_create: triggered by the instantiation of the VGIC device by
65  * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
66  * or through the generic KVM_CREATE_DEVICE API ioctl.
67  * irqchip_in_kernel() tells you if this function succeeded or not.
68  * @kvm: kvm struct pointer
69  * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
70  */
71 int kvm_vgic_create(struct kvm *kvm, u32 type)
72 {
73         int i, ret;
74         struct kvm_vcpu *vcpu;
75
76         if (irqchip_in_kernel(kvm))
77                 return -EEXIST;
78
79         /*
80          * This function is also called by the KVM_CREATE_IRQCHIP handler,
81          * which had no chance yet to check the availability of the GICv2
82          * emulation. So check this here again. KVM_CREATE_DEVICE does
83          * the proper checks already.
84          */
85         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
86                 !kvm_vgic_global_state.can_emulate_gicv2)
87                 return -ENODEV;
88
89         ret = -EBUSY;
90         if (!lock_all_vcpus(kvm))
91                 return ret;
92
93         kvm_for_each_vcpu(i, vcpu, kvm) {
94                 if (vcpu->arch.has_run_once)
95                         goto out_unlock;
96         }
97         ret = 0;
98
99         if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
100                 kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
101         else
102                 kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS;
103
104         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) {
105                 ret = -E2BIG;
106                 goto out_unlock;
107         }
108
109         kvm->arch.vgic.in_kernel = true;
110         kvm->arch.vgic.vgic_model = type;
111
112         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
113
114         if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
115                 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
116         else
117                 INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions);
118
119 out_unlock:
120         unlock_all_vcpus(kvm);
121         return ret;
122 }
123
124 /* INIT/DESTROY */
125
126 /**
127  * kvm_vgic_dist_init: initialize the dist data structures
128  * @kvm: kvm struct pointer
129  * @nr_spis: number of spis, frozen by caller
130  */
131 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
132 {
133         struct vgic_dist *dist = &kvm->arch.vgic;
134         struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
135         int i;
136
137         dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL);
138         if (!dist->spis)
139                 return  -ENOMEM;
140
141         /*
142          * In the following code we do not take the irq struct lock since
143          * no other action on irq structs can happen while the VGIC is
144          * not initialized yet:
145          * If someone wants to inject an interrupt or does a MMIO access, we
146          * require prior initialization in case of a virtual GICv3 or trigger
147          * initialization when using a virtual GICv2.
148          */
149         for (i = 0; i < nr_spis; i++) {
150                 struct vgic_irq *irq = &dist->spis[i];
151
152                 irq->intid = i + VGIC_NR_PRIVATE_IRQS;
153                 INIT_LIST_HEAD(&irq->ap_list);
154                 raw_spin_lock_init(&irq->irq_lock);
155                 irq->vcpu = NULL;
156                 irq->target_vcpu = vcpu0;
157                 kref_init(&irq->refcount);
158                 switch (dist->vgic_model) {
159                 case KVM_DEV_TYPE_ARM_VGIC_V2:
160                         irq->targets = 0;
161                         irq->group = 0;
162                         break;
163                 case KVM_DEV_TYPE_ARM_VGIC_V3:
164                         irq->mpidr = 0;
165                         irq->group = 1;
166                         break;
167                 default:
168                         kfree(dist->spis);
169                         dist->spis = NULL;
170                         return -EINVAL;
171                 }
172         }
173         return 0;
174 }
175
176 /**
177  * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data
178  * structures and register VCPU-specific KVM iodevs
179  *
180  * @vcpu: pointer to the VCPU being created and initialized
181  *
182  * Only do initialization, but do not actually enable the
183  * VGIC CPU interface
184  */
185 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
186 {
187         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
188         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
189         int ret = 0;
190         int i;
191
192         vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
193
194         INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
195         raw_spin_lock_init(&vgic_cpu->ap_list_lock);
196         atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0);
197
198         /*
199          * Enable and configure all SGIs to be edge-triggered and
200          * configure all PPIs as level-triggered.
201          */
202         for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
203                 struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
204
205                 INIT_LIST_HEAD(&irq->ap_list);
206                 raw_spin_lock_init(&irq->irq_lock);
207                 irq->intid = i;
208                 irq->vcpu = NULL;
209                 irq->target_vcpu = vcpu;
210                 kref_init(&irq->refcount);
211                 if (vgic_irq_is_sgi(i)) {
212                         /* SGIs */
213                         irq->enabled = 1;
214                         irq->config = VGIC_CONFIG_EDGE;
215                 } else {
216                         /* PPIs */
217                         irq->config = VGIC_CONFIG_LEVEL;
218                 }
219         }
220
221         if (!irqchip_in_kernel(vcpu->kvm))
222                 return 0;
223
224         /*
225          * If we are creating a VCPU with a GICv3 we must also register the
226          * KVM io device for the redistributor that belongs to this VCPU.
227          */
228         if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
229                 mutex_lock(&vcpu->kvm->lock);
230                 ret = vgic_register_redist_iodev(vcpu);
231                 mutex_unlock(&vcpu->kvm->lock);
232         }
233         return ret;
234 }
235
236 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
237 {
238         if (kvm_vgic_global_state.type == VGIC_V2)
239                 vgic_v2_enable(vcpu);
240         else
241                 vgic_v3_enable(vcpu);
242 }
243
244 /*
245  * vgic_init: allocates and initializes dist and vcpu data structures
246  * depending on two dimensioning parameters:
247  * - the number of spis
248  * - the number of vcpus
249  * The function is generally called when nr_spis has been explicitly set
250  * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
251  * vgic_initialized() returns true when this function has succeeded.
252  * Must be called with kvm->lock held!
253  */
254 int vgic_init(struct kvm *kvm)
255 {
256         struct vgic_dist *dist = &kvm->arch.vgic;
257         struct kvm_vcpu *vcpu;
258         int ret = 0, i, idx;
259
260         if (vgic_initialized(kvm))
261                 return 0;
262
263         /* Are we also in the middle of creating a VCPU? */
264         if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus))
265                 return -EBUSY;
266
267         /* freeze the number of spis */
268         if (!dist->nr_spis)
269                 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
270
271         ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
272         if (ret)
273                 goto out;
274
275         /* Initialize groups on CPUs created before the VGIC type was known */
276         kvm_for_each_vcpu(idx, vcpu, kvm) {
277                 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
278
279                 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
280                         struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
281                         switch (dist->vgic_model) {
282                         case KVM_DEV_TYPE_ARM_VGIC_V3:
283                                 irq->group = 1;
284                                 irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
285                                 break;
286                         case KVM_DEV_TYPE_ARM_VGIC_V2:
287                                 irq->group = 0;
288                                 irq->targets = 1U << idx;
289                                 break;
290                         default:
291                                 ret = -EINVAL;
292                                 goto out;
293                         }
294                 }
295         }
296
297         if (vgic_has_its(kvm))
298                 vgic_lpi_translation_cache_init(kvm);
299
300         /*
301          * If we have GICv4.1 enabled, unconditionnaly request enable the
302          * v4 support so that we get HW-accelerated vSGIs. Otherwise, only
303          * enable it if we present a virtual ITS to the guest.
304          */
305         if (vgic_supports_direct_msis(kvm)) {
306                 ret = vgic_v4_init(kvm);
307                 if (ret)
308                         goto out;
309         }
310
311         kvm_for_each_vcpu(i, vcpu, kvm)
312                 kvm_vgic_vcpu_enable(vcpu);
313
314         ret = kvm_vgic_setup_default_irq_routing(kvm);
315         if (ret)
316                 goto out;
317
318         vgic_debug_init(kvm);
319
320         dist->implementation_rev = 2;
321         dist->initialized = true;
322
323 out:
324         return ret;
325 }
326
327 static void kvm_vgic_dist_destroy(struct kvm *kvm)
328 {
329         struct vgic_dist *dist = &kvm->arch.vgic;
330         struct vgic_redist_region *rdreg, *next;
331
332         dist->ready = false;
333         dist->initialized = false;
334
335         kfree(dist->spis);
336         dist->spis = NULL;
337         dist->nr_spis = 0;
338
339         if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
340                 list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list) {
341                         list_del(&rdreg->list);
342                         kfree(rdreg);
343                 }
344                 INIT_LIST_HEAD(&dist->rd_regions);
345         }
346
347         if (vgic_has_its(kvm))
348                 vgic_lpi_translation_cache_destroy(kvm);
349
350         if (vgic_supports_direct_msis(kvm))
351                 vgic_v4_teardown(kvm);
352 }
353
354 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
355 {
356         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
357
358         /*
359          * Retire all pending LPIs on this vcpu anyway as we're
360          * going to destroy it.
361          */
362         vgic_flush_pending_lpis(vcpu);
363
364         INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
365 }
366
367 /* To be called with kvm->lock held */
368 static void __kvm_vgic_destroy(struct kvm *kvm)
369 {
370         struct kvm_vcpu *vcpu;
371         int i;
372
373         vgic_debug_destroy(kvm);
374
375         kvm_for_each_vcpu(i, vcpu, kvm)
376                 kvm_vgic_vcpu_destroy(vcpu);
377
378         kvm_vgic_dist_destroy(kvm);
379 }
380
381 void kvm_vgic_destroy(struct kvm *kvm)
382 {
383         mutex_lock(&kvm->lock);
384         __kvm_vgic_destroy(kvm);
385         mutex_unlock(&kvm->lock);
386 }
387
388 /**
389  * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
390  * is a GICv2. A GICv3 must be explicitly initialized by the guest using the
391  * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
392  * @kvm: kvm struct pointer
393  */
394 int vgic_lazy_init(struct kvm *kvm)
395 {
396         int ret = 0;
397
398         if (unlikely(!vgic_initialized(kvm))) {
399                 /*
400                  * We only provide the automatic initialization of the VGIC
401                  * for the legacy case of a GICv2. Any other type must
402                  * be explicitly initialized once setup with the respective
403                  * KVM device call.
404                  */
405                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
406                         return -EBUSY;
407
408                 mutex_lock(&kvm->lock);
409                 ret = vgic_init(kvm);
410                 mutex_unlock(&kvm->lock);
411         }
412
413         return ret;
414 }
415
416 /* RESOURCE MAPPING */
417
418 /**
419  * Map the MMIO regions depending on the VGIC model exposed to the guest
420  * called on the first VCPU run.
421  * Also map the virtual CPU interface into the VM.
422  * v2/v3 derivatives call vgic_init if not already done.
423  * vgic_ready() returns true if this function has succeeded.
424  * @kvm: kvm struct pointer
425  */
426 int kvm_vgic_map_resources(struct kvm *kvm)
427 {
428         struct vgic_dist *dist = &kvm->arch.vgic;
429         int ret = 0;
430
431         if (likely(vgic_ready(kvm)))
432                 return 0;
433
434         mutex_lock(&kvm->lock);
435         if (vgic_ready(kvm))
436                 goto out;
437
438         if (!irqchip_in_kernel(kvm))
439                 goto out;
440
441         if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
442                 ret = vgic_v2_map_resources(kvm);
443         else
444                 ret = vgic_v3_map_resources(kvm);
445
446         if (ret)
447                 __kvm_vgic_destroy(kvm);
448
449 out:
450         mutex_unlock(&kvm->lock);
451         return ret;
452 }
453
454 /* GENERIC PROBE */
455
456 static int vgic_init_cpu_starting(unsigned int cpu)
457 {
458         enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
459         return 0;
460 }
461
462
463 static int vgic_init_cpu_dying(unsigned int cpu)
464 {
465         disable_percpu_irq(kvm_vgic_global_state.maint_irq);
466         return 0;
467 }
468
469 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
470 {
471         /*
472          * We cannot rely on the vgic maintenance interrupt to be
473          * delivered synchronously. This means we can only use it to
474          * exit the VM, and we perform the handling of EOIed
475          * interrupts on the exit path (see vgic_fold_lr_state).
476          */
477         return IRQ_HANDLED;
478 }
479
480 /**
481  * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware
482  *
483  * For a specific CPU, initialize the GIC VE hardware.
484  */
485 void kvm_vgic_init_cpu_hardware(void)
486 {
487         BUG_ON(preemptible());
488
489         /*
490          * We want to make sure the list registers start out clear so that we
491          * only have the program the used registers.
492          */
493         if (kvm_vgic_global_state.type == VGIC_V2)
494                 vgic_v2_init_lrs();
495         else
496                 kvm_call_hyp(__vgic_v3_init_lrs);
497 }
498
499 /**
500  * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
501  * according to the host GIC model. Accordingly calls either
502  * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
503  * instantiated by a guest later on .
504  */
505 int kvm_vgic_hyp_init(void)
506 {
507         const struct gic_kvm_info *gic_kvm_info;
508         int ret;
509
510         gic_kvm_info = gic_get_kvm_info();
511         if (!gic_kvm_info)
512                 return -ENODEV;
513
514         if (!gic_kvm_info->maint_irq) {
515                 kvm_err("No vgic maintenance irq\n");
516                 return -ENXIO;
517         }
518
519         switch (gic_kvm_info->type) {
520         case GIC_V2:
521                 ret = vgic_v2_probe(gic_kvm_info);
522                 break;
523         case GIC_V3:
524                 ret = vgic_v3_probe(gic_kvm_info);
525                 if (!ret) {
526                         static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
527                         kvm_info("GIC system register CPU interface enabled\n");
528                 }
529                 break;
530         default:
531                 ret = -ENODEV;
532         }
533
534         if (ret)
535                 return ret;
536
537         kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
538         ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
539                                  vgic_maintenance_handler,
540                                  "vgic", kvm_get_running_vcpus());
541         if (ret) {
542                 kvm_err("Cannot register interrupt %d\n",
543                         kvm_vgic_global_state.maint_irq);
544                 return ret;
545         }
546
547         ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING,
548                                 "kvm/arm/vgic:starting",
549                                 vgic_init_cpu_starting, vgic_init_cpu_dying);
550         if (ret) {
551                 kvm_err("Cannot register vgic CPU notifier\n");
552                 goto out_free_irq;
553         }
554
555         kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
556         return 0;
557
558 out_free_irq:
559         free_percpu_irq(kvm_vgic_global_state.maint_irq,
560                         kvm_get_running_vcpus());
561         return ret;
562 }