Merge tag 'amd-drm-next-5.10-2020-09-03' of git://people.freedesktop.org/~agd5f/linux...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / va_layout.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/kvm_host.h>
8 #include <linux/random.h>
9 #include <linux/memblock.h>
10 #include <asm/alternative.h>
11 #include <asm/debug-monitors.h>
12 #include <asm/insn.h>
13 #include <asm/kvm_mmu.h>
14
15 /*
16  * The LSB of the HYP VA tag
17  */
18 static u8 tag_lsb;
19 /*
20  * The HYP VA tag value with the region bit
21  */
22 static u64 tag_val;
23 static u64 va_mask;
24
25 /*
26  * We want to generate a hyp VA with the following format (with V ==
27  * vabits_actual):
28  *
29  *  63 ... V |     V-1    | V-2 .. tag_lsb | tag_lsb - 1 .. 0
30  *  ---------------------------------------------------------
31  * | 0000000 | hyp_va_msb |   random tag   |  kern linear VA |
32  *           |--------- tag_val -----------|----- va_mask ---|
33  *
34  * which does not conflict with the idmap regions.
35  */
36 __init void kvm_compute_layout(void)
37 {
38         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
39         u64 hyp_va_msb;
40
41         /* Where is my RAM region? */
42         hyp_va_msb  = idmap_addr & BIT(vabits_actual - 1);
43         hyp_va_msb ^= BIT(vabits_actual - 1);
44
45         tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
46                         (u64)(high_memory - 1));
47
48         va_mask = GENMASK_ULL(tag_lsb - 1, 0);
49         tag_val = hyp_va_msb;
50
51         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) {
52                 /* We have some free bits to insert a random tag. */
53                 tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb);
54         }
55         tag_val >>= tag_lsb;
56 }
57
58 static u32 compute_instruction(int n, u32 rd, u32 rn)
59 {
60         u32 insn = AARCH64_BREAK_FAULT;
61
62         switch (n) {
63         case 0:
64                 insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
65                                                           AARCH64_INSN_VARIANT_64BIT,
66                                                           rn, rd, va_mask);
67                 break;
68
69         case 1:
70                 /* ROR is a variant of EXTR with Rm = Rn */
71                 insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
72                                              rn, rn, rd,
73                                              tag_lsb);
74                 break;
75
76         case 2:
77                 insn = aarch64_insn_gen_add_sub_imm(rd, rn,
78                                                     tag_val & GENMASK(11, 0),
79                                                     AARCH64_INSN_VARIANT_64BIT,
80                                                     AARCH64_INSN_ADSB_ADD);
81                 break;
82
83         case 3:
84                 insn = aarch64_insn_gen_add_sub_imm(rd, rn,
85                                                     tag_val & GENMASK(23, 12),
86                                                     AARCH64_INSN_VARIANT_64BIT,
87                                                     AARCH64_INSN_ADSB_ADD);
88                 break;
89
90         case 4:
91                 /* ROR is a variant of EXTR with Rm = Rn */
92                 insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
93                                              rn, rn, rd, 64 - tag_lsb);
94                 break;
95         }
96
97         return insn;
98 }
99
100 void __init kvm_update_va_mask(struct alt_instr *alt,
101                                __le32 *origptr, __le32 *updptr, int nr_inst)
102 {
103         int i;
104
105         BUG_ON(nr_inst != 5);
106
107         for (i = 0; i < nr_inst; i++) {
108                 u32 rd, rn, insn, oinsn;
109
110                 /*
111                  * VHE doesn't need any address translation, let's NOP
112                  * everything.
113                  *
114                  * Alternatively, if the tag is zero (because the layout
115                  * dictates it and we don't have any spare bits in the
116                  * address), NOP everything after masking the kernel VA.
117                  */
118                 if (has_vhe() || (!tag_val && i > 0)) {
119                         updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
120                         continue;
121                 }
122
123                 oinsn = le32_to_cpu(origptr[i]);
124                 rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
125                 rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
126
127                 insn = compute_instruction(i, rd, rn);
128                 BUG_ON(insn == AARCH64_BREAK_FAULT);
129
130                 updptr[i] = cpu_to_le32(insn);
131         }
132 }
133
134 void *__kvm_bp_vect_base;
135 int __kvm_harden_el2_vector_slot;
136
137 void kvm_patch_vector_branch(struct alt_instr *alt,
138                              __le32 *origptr, __le32 *updptr, int nr_inst)
139 {
140         u64 addr;
141         u32 insn;
142
143         BUG_ON(nr_inst != 5);
144
145         if (has_vhe() || !cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
146                 WARN_ON_ONCE(cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS));
147                 return;
148         }
149
150         /*
151          * Compute HYP VA by using the same computation as kern_hyp_va()
152          */
153         addr = (uintptr_t)kvm_ksym_ref(__kvm_hyp_vector);
154         addr &= va_mask;
155         addr |= tag_val << tag_lsb;
156
157         /* Use PC[10:7] to branch to the same vector in KVM */
158         addr |= ((u64)origptr & GENMASK_ULL(10, 7));
159
160         /*
161          * Branch over the preamble in order to avoid the initial store on
162          * the stack (which we already perform in the hardening vectors).
163          */
164         addr += KVM_VECTOR_PREAMBLE;
165
166         /* stp x0, x1, [sp, #-16]! */
167         insn = aarch64_insn_gen_load_store_pair(AARCH64_INSN_REG_0,
168                                                 AARCH64_INSN_REG_1,
169                                                 AARCH64_INSN_REG_SP,
170                                                 -16,
171                                                 AARCH64_INSN_VARIANT_64BIT,
172                                                 AARCH64_INSN_LDST_STORE_PAIR_PRE_INDEX);
173         *updptr++ = cpu_to_le32(insn);
174
175         /* movz x0, #(addr & 0xffff) */
176         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
177                                          (u16)addr,
178                                          0,
179                                          AARCH64_INSN_VARIANT_64BIT,
180                                          AARCH64_INSN_MOVEWIDE_ZERO);
181         *updptr++ = cpu_to_le32(insn);
182
183         /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
184         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
185                                          (u16)(addr >> 16),
186                                          16,
187                                          AARCH64_INSN_VARIANT_64BIT,
188                                          AARCH64_INSN_MOVEWIDE_KEEP);
189         *updptr++ = cpu_to_le32(insn);
190
191         /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
192         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
193                                          (u16)(addr >> 32),
194                                          32,
195                                          AARCH64_INSN_VARIANT_64BIT,
196                                          AARCH64_INSN_MOVEWIDE_KEEP);
197         *updptr++ = cpu_to_le32(insn);
198
199         /* br x0 */
200         insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
201                                            AARCH64_INSN_BRANCH_NOLINK);
202         *updptr++ = cpu_to_le32(insn);
203 }