ARC: [plat-hsdk]: unify memory apertures configuration
[linux-2.6-microblaze.git] / arch / arm64 / kvm / va_layout.c
1 /*
2  * Copyright (C) 2017 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/random.h>
20 #include <linux/memblock.h>
21 #include <asm/alternative.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/insn.h>
24 #include <asm/kvm_mmu.h>
25
26 /*
27  * The LSB of the random hyp VA tag or 0 if no randomization is used.
28  */
29 static u8 tag_lsb;
30 /*
31  * The random hyp VA tag value with the region bit if hyp randomization is used
32  */
33 static u64 tag_val;
34 static u64 va_mask;
35
36 static void compute_layout(void)
37 {
38         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
39         u64 hyp_va_msb;
40         int kva_msb;
41
42         /* Where is my RAM region? */
43         hyp_va_msb  = idmap_addr & BIT(VA_BITS - 1);
44         hyp_va_msb ^= BIT(VA_BITS - 1);
45
46         kva_msb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
47                         (u64)(high_memory - 1));
48
49         if (kva_msb == (VA_BITS - 1)) {
50                 /*
51                  * No space in the address, let's compute the mask so
52                  * that it covers (VA_BITS - 1) bits, and the region
53                  * bit. The tag stays set to zero.
54                  */
55                 va_mask  = BIT(VA_BITS - 1) - 1;
56                 va_mask |= hyp_va_msb;
57         } else {
58                 /*
59                  * We do have some free bits to insert a random tag.
60                  * Hyp VAs are now created from kernel linear map VAs
61                  * using the following formula (with V == VA_BITS):
62                  *
63                  *  63 ... V |     V-1    | V-2 .. tag_lsb | tag_lsb - 1 .. 0
64                  *  ---------------------------------------------------------
65                  * | 0000000 | hyp_va_msb |    random tag  |  kern linear VA |
66                  */
67                 tag_lsb = kva_msb;
68                 va_mask = GENMASK_ULL(tag_lsb - 1, 0);
69                 tag_val = get_random_long() & GENMASK_ULL(VA_BITS - 2, tag_lsb);
70                 tag_val |= hyp_va_msb;
71                 tag_val >>= tag_lsb;
72         }
73 }
74
75 static u32 compute_instruction(int n, u32 rd, u32 rn)
76 {
77         u32 insn = AARCH64_BREAK_FAULT;
78
79         switch (n) {
80         case 0:
81                 insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
82                                                           AARCH64_INSN_VARIANT_64BIT,
83                                                           rn, rd, va_mask);
84                 break;
85
86         case 1:
87                 /* ROR is a variant of EXTR with Rm = Rn */
88                 insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
89                                              rn, rn, rd,
90                                              tag_lsb);
91                 break;
92
93         case 2:
94                 insn = aarch64_insn_gen_add_sub_imm(rd, rn,
95                                                     tag_val & GENMASK(11, 0),
96                                                     AARCH64_INSN_VARIANT_64BIT,
97                                                     AARCH64_INSN_ADSB_ADD);
98                 break;
99
100         case 3:
101                 insn = aarch64_insn_gen_add_sub_imm(rd, rn,
102                                                     tag_val & GENMASK(23, 12),
103                                                     AARCH64_INSN_VARIANT_64BIT,
104                                                     AARCH64_INSN_ADSB_ADD);
105                 break;
106
107         case 4:
108                 /* ROR is a variant of EXTR with Rm = Rn */
109                 insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
110                                              rn, rn, rd, 64 - tag_lsb);
111                 break;
112         }
113
114         return insn;
115 }
116
117 void __init kvm_update_va_mask(struct alt_instr *alt,
118                                __le32 *origptr, __le32 *updptr, int nr_inst)
119 {
120         int i;
121
122         BUG_ON(nr_inst != 5);
123
124         if (!has_vhe() && !va_mask)
125                 compute_layout();
126
127         for (i = 0; i < nr_inst; i++) {
128                 u32 rd, rn, insn, oinsn;
129
130                 /*
131                  * VHE doesn't need any address translation, let's NOP
132                  * everything.
133                  *
134                  * Alternatively, if we don't have any spare bits in
135                  * the address, NOP everything after masking that
136                  * kernel VA.
137                  */
138                 if (has_vhe() || (!tag_lsb && i > 0)) {
139                         updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
140                         continue;
141                 }
142
143                 oinsn = le32_to_cpu(origptr[i]);
144                 rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
145                 rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
146
147                 insn = compute_instruction(i, rd, rn);
148                 BUG_ON(insn == AARCH64_BREAK_FAULT);
149
150                 updptr[i] = cpu_to_le32(insn);
151         }
152 }
153
154 void *__kvm_bp_vect_base;
155 int __kvm_harden_el2_vector_slot;
156
157 void kvm_patch_vector_branch(struct alt_instr *alt,
158                              __le32 *origptr, __le32 *updptr, int nr_inst)
159 {
160         u64 addr;
161         u32 insn;
162
163         BUG_ON(nr_inst != 5);
164
165         if (has_vhe() || !cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
166                 WARN_ON_ONCE(cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS));
167                 return;
168         }
169
170         if (!va_mask)
171                 compute_layout();
172
173         /*
174          * Compute HYP VA by using the same computation as kern_hyp_va()
175          */
176         addr = (uintptr_t)kvm_ksym_ref(__kvm_hyp_vector);
177         addr &= va_mask;
178         addr |= tag_val << tag_lsb;
179
180         /* Use PC[10:7] to branch to the same vector in KVM */
181         addr |= ((u64)origptr & GENMASK_ULL(10, 7));
182
183         /*
184          * Branch to the second instruction in the vectors in order to
185          * avoid the initial store on the stack (which we already
186          * perform in the hardening vectors).
187          */
188         addr += AARCH64_INSN_SIZE;
189
190         /* stp x0, x1, [sp, #-16]! */
191         insn = aarch64_insn_gen_load_store_pair(AARCH64_INSN_REG_0,
192                                                 AARCH64_INSN_REG_1,
193                                                 AARCH64_INSN_REG_SP,
194                                                 -16,
195                                                 AARCH64_INSN_VARIANT_64BIT,
196                                                 AARCH64_INSN_LDST_STORE_PAIR_PRE_INDEX);
197         *updptr++ = cpu_to_le32(insn);
198
199         /* movz x0, #(addr & 0xffff) */
200         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
201                                          (u16)addr,
202                                          0,
203                                          AARCH64_INSN_VARIANT_64BIT,
204                                          AARCH64_INSN_MOVEWIDE_ZERO);
205         *updptr++ = cpu_to_le32(insn);
206
207         /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
208         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
209                                          (u16)(addr >> 16),
210                                          16,
211                                          AARCH64_INSN_VARIANT_64BIT,
212                                          AARCH64_INSN_MOVEWIDE_KEEP);
213         *updptr++ = cpu_to_le32(insn);
214
215         /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
216         insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
217                                          (u16)(addr >> 32),
218                                          32,
219                                          AARCH64_INSN_VARIANT_64BIT,
220                                          AARCH64_INSN_MOVEWIDE_KEEP);
221         *updptr++ = cpu_to_le32(insn);
222
223         /* br x0 */
224         insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
225                                            AARCH64_INSN_BRANCH_NOLINK);
226         *updptr++ = cpu_to_le32(insn);
227 }