Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_hyp.h>
25 #include <asm/kvm_mmu.h>
26 #include <asm/perf_event.h>
27 #include <asm/sysreg.h>
28
29 #include <trace/events/kvm.h>
30
31 #include "sys_regs.h"
32
33 #include "trace.h"
34
35 /*
36  * All of this file is extremely similar to the ARM coproc.c, but the
37  * types are different. My gut feeling is that it should be pretty
38  * easy to merge, but that would be an ABI breakage -- again. VFP
39  * would also need to be abstracted.
40  *
41  * For AArch32, we only take care of what is being trapped. Anything
42  * that has to do with init and userspace access has to go via the
43  * 64bit interface.
44  */
45
46 static bool read_from_write_only(struct kvm_vcpu *vcpu,
47                                  struct sys_reg_params *params,
48                                  const struct sys_reg_desc *r)
49 {
50         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
51         print_sys_reg_instr(params);
52         kvm_inject_undefined(vcpu);
53         return false;
54 }
55
56 static bool write_to_read_only(struct kvm_vcpu *vcpu,
57                                struct sys_reg_params *params,
58                                const struct sys_reg_desc *r)
59 {
60         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
61         print_sys_reg_instr(params);
62         kvm_inject_undefined(vcpu);
63         return false;
64 }
65
66 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
67 {
68         u64 val = 0x8badf00d8badf00d;
69
70         if (vcpu->arch.sysregs_loaded_on_cpu &&
71             __vcpu_read_sys_reg_from_cpu(reg, &val))
72                 return val;
73
74         return __vcpu_sys_reg(vcpu, reg);
75 }
76
77 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
78 {
79         if (vcpu->arch.sysregs_loaded_on_cpu &&
80             __vcpu_write_sys_reg_to_cpu(val, reg))
81                 return;
82
83          __vcpu_sys_reg(vcpu, reg) = val;
84 }
85
86 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
87 static u32 cache_levels;
88
89 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
90 #define CSSELR_MAX 14
91
92 /* Which cache CCSIDR represents depends on CSSELR value. */
93 static u32 get_ccsidr(u32 csselr)
94 {
95         u32 ccsidr;
96
97         /* Make sure noone else changes CSSELR during this! */
98         local_irq_disable();
99         write_sysreg(csselr, csselr_el1);
100         isb();
101         ccsidr = read_sysreg(ccsidr_el1);
102         local_irq_enable();
103
104         return ccsidr;
105 }
106
107 /*
108  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
109  */
110 static bool access_dcsw(struct kvm_vcpu *vcpu,
111                         struct sys_reg_params *p,
112                         const struct sys_reg_desc *r)
113 {
114         if (!p->is_write)
115                 return read_from_write_only(vcpu, p, r);
116
117         /*
118          * Only track S/W ops if we don't have FWB. It still indicates
119          * that the guest is a bit broken (S/W operations should only
120          * be done by firmware, knowing that there is only a single
121          * CPU left in the system, and certainly not from non-secure
122          * software).
123          */
124         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
125                 kvm_set_way_flush(vcpu);
126
127         return true;
128 }
129
130 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
131 {
132         switch (r->aarch32_map) {
133         case AA32_LO:
134                 *mask = GENMASK_ULL(31, 0);
135                 *shift = 0;
136                 break;
137         case AA32_HI:
138                 *mask = GENMASK_ULL(63, 32);
139                 *shift = 32;
140                 break;
141         default:
142                 *mask = GENMASK_ULL(63, 0);
143                 *shift = 0;
144                 break;
145         }
146 }
147
148 /*
149  * Generic accessor for VM registers. Only called as long as HCR_TVM
150  * is set. If the guest enables the MMU, we stop trapping the VM
151  * sys_regs and leave it in complete control of the caches.
152  */
153 static bool access_vm_reg(struct kvm_vcpu *vcpu,
154                           struct sys_reg_params *p,
155                           const struct sys_reg_desc *r)
156 {
157         bool was_enabled = vcpu_has_cache_enabled(vcpu);
158         u64 val, mask, shift;
159
160         BUG_ON(!p->is_write);
161
162         get_access_mask(r, &mask, &shift);
163
164         if (~mask) {
165                 val = vcpu_read_sys_reg(vcpu, r->reg);
166                 val &= ~mask;
167         } else {
168                 val = 0;
169         }
170
171         val |= (p->regval & (mask >> shift)) << shift;
172         vcpu_write_sys_reg(vcpu, val, r->reg);
173
174         kvm_toggle_cache(vcpu, was_enabled);
175         return true;
176 }
177
178 static bool access_actlr(struct kvm_vcpu *vcpu,
179                          struct sys_reg_params *p,
180                          const struct sys_reg_desc *r)
181 {
182         u64 mask, shift;
183
184         if (p->is_write)
185                 return ignore_write(vcpu, p);
186
187         get_access_mask(r, &mask, &shift);
188         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
189
190         return true;
191 }
192
193 /*
194  * Trap handler for the GICv3 SGI generation system register.
195  * Forward the request to the VGIC emulation.
196  * The cp15_64 code makes sure this automatically works
197  * for both AArch64 and AArch32 accesses.
198  */
199 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
200                            struct sys_reg_params *p,
201                            const struct sys_reg_desc *r)
202 {
203         bool g1;
204
205         if (!p->is_write)
206                 return read_from_write_only(vcpu, p, r);
207
208         /*
209          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
210          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
211          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
212          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
213          * group.
214          */
215         if (p->Op0 == 0) {              /* AArch32 */
216                 switch (p->Op1) {
217                 default:                /* Keep GCC quiet */
218                 case 0:                 /* ICC_SGI1R */
219                         g1 = true;
220                         break;
221                 case 1:                 /* ICC_ASGI1R */
222                 case 2:                 /* ICC_SGI0R */
223                         g1 = false;
224                         break;
225                 }
226         } else {                        /* AArch64 */
227                 switch (p->Op2) {
228                 default:                /* Keep GCC quiet */
229                 case 5:                 /* ICC_SGI1R_EL1 */
230                         g1 = true;
231                         break;
232                 case 6:                 /* ICC_ASGI1R_EL1 */
233                 case 7:                 /* ICC_SGI0R_EL1 */
234                         g1 = false;
235                         break;
236                 }
237         }
238
239         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
240
241         return true;
242 }
243
244 static bool access_gic_sre(struct kvm_vcpu *vcpu,
245                            struct sys_reg_params *p,
246                            const struct sys_reg_desc *r)
247 {
248         if (p->is_write)
249                 return ignore_write(vcpu, p);
250
251         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
252         return true;
253 }
254
255 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
256                         struct sys_reg_params *p,
257                         const struct sys_reg_desc *r)
258 {
259         if (p->is_write)
260                 return ignore_write(vcpu, p);
261         else
262                 return read_zero(vcpu, p);
263 }
264
265 /*
266  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
267  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
268  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
269  * treat it separately.
270  */
271 static bool trap_loregion(struct kvm_vcpu *vcpu,
272                           struct sys_reg_params *p,
273                           const struct sys_reg_desc *r)
274 {
275         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
276         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
277                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
278
279         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
280                 kvm_inject_undefined(vcpu);
281                 return false;
282         }
283
284         if (p->is_write && sr == SYS_LORID_EL1)
285                 return write_to_read_only(vcpu, p, r);
286
287         return trap_raz_wi(vcpu, p, r);
288 }
289
290 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
291                            struct sys_reg_params *p,
292                            const struct sys_reg_desc *r)
293 {
294         if (p->is_write) {
295                 return ignore_write(vcpu, p);
296         } else {
297                 p->regval = (1 << 3);
298                 return true;
299         }
300 }
301
302 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
303                                    struct sys_reg_params *p,
304                                    const struct sys_reg_desc *r)
305 {
306         if (p->is_write) {
307                 return ignore_write(vcpu, p);
308         } else {
309                 p->regval = read_sysreg(dbgauthstatus_el1);
310                 return true;
311         }
312 }
313
314 /*
315  * We want to avoid world-switching all the DBG registers all the
316  * time:
317  * 
318  * - If we've touched any debug register, it is likely that we're
319  *   going to touch more of them. It then makes sense to disable the
320  *   traps and start doing the save/restore dance
321  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
322  *   then mandatory to save/restore the registers, as the guest
323  *   depends on them.
324  * 
325  * For this, we use a DIRTY bit, indicating the guest has modified the
326  * debug registers, used as follow:
327  *
328  * On guest entry:
329  * - If the dirty bit is set (because we're coming back from trapping),
330  *   disable the traps, save host registers, restore guest registers.
331  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
332  *   set the dirty bit, disable the traps, save host registers,
333  *   restore guest registers.
334  * - Otherwise, enable the traps
335  *
336  * On guest exit:
337  * - If the dirty bit is set, save guest registers, restore host
338  *   registers and clear the dirty bit. This ensure that the host can
339  *   now use the debug registers.
340  */
341 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
342                             struct sys_reg_params *p,
343                             const struct sys_reg_desc *r)
344 {
345         if (p->is_write) {
346                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
347                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
348         } else {
349                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
350         }
351
352         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
353
354         return true;
355 }
356
357 /*
358  * reg_to_dbg/dbg_to_reg
359  *
360  * A 32 bit write to a debug register leave top bits alone
361  * A 32 bit read from a debug register only returns the bottom bits
362  *
363  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
364  * hyp.S code switches between host and guest values in future.
365  */
366 static void reg_to_dbg(struct kvm_vcpu *vcpu,
367                        struct sys_reg_params *p,
368                        const struct sys_reg_desc *rd,
369                        u64 *dbg_reg)
370 {
371         u64 mask, shift, val;
372
373         get_access_mask(rd, &mask, &shift);
374
375         val = *dbg_reg;
376         val &= ~mask;
377         val |= (p->regval & (mask >> shift)) << shift;
378         *dbg_reg = val;
379
380         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
381 }
382
383 static void dbg_to_reg(struct kvm_vcpu *vcpu,
384                        struct sys_reg_params *p,
385                        const struct sys_reg_desc *rd,
386                        u64 *dbg_reg)
387 {
388         u64 mask, shift;
389
390         get_access_mask(rd, &mask, &shift);
391         p->regval = (*dbg_reg & mask) >> shift;
392 }
393
394 static bool trap_bvr(struct kvm_vcpu *vcpu,
395                      struct sys_reg_params *p,
396                      const struct sys_reg_desc *rd)
397 {
398         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
399
400         if (p->is_write)
401                 reg_to_dbg(vcpu, p, rd, dbg_reg);
402         else
403                 dbg_to_reg(vcpu, p, rd, dbg_reg);
404
405         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
406
407         return true;
408 }
409
410 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411                 const struct kvm_one_reg *reg, void __user *uaddr)
412 {
413         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
414
415         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
416                 return -EFAULT;
417         return 0;
418 }
419
420 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
421         const struct kvm_one_reg *reg, void __user *uaddr)
422 {
423         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
424
425         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
426                 return -EFAULT;
427         return 0;
428 }
429
430 static void reset_bvr(struct kvm_vcpu *vcpu,
431                       const struct sys_reg_desc *rd)
432 {
433         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
434 }
435
436 static bool trap_bcr(struct kvm_vcpu *vcpu,
437                      struct sys_reg_params *p,
438                      const struct sys_reg_desc *rd)
439 {
440         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
441
442         if (p->is_write)
443                 reg_to_dbg(vcpu, p, rd, dbg_reg);
444         else
445                 dbg_to_reg(vcpu, p, rd, dbg_reg);
446
447         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
448
449         return true;
450 }
451
452 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
453                 const struct kvm_one_reg *reg, void __user *uaddr)
454 {
455         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
456
457         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
458                 return -EFAULT;
459
460         return 0;
461 }
462
463 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464         const struct kvm_one_reg *reg, void __user *uaddr)
465 {
466         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
467
468         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469                 return -EFAULT;
470         return 0;
471 }
472
473 static void reset_bcr(struct kvm_vcpu *vcpu,
474                       const struct sys_reg_desc *rd)
475 {
476         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
477 }
478
479 static bool trap_wvr(struct kvm_vcpu *vcpu,
480                      struct sys_reg_params *p,
481                      const struct sys_reg_desc *rd)
482 {
483         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
484
485         if (p->is_write)
486                 reg_to_dbg(vcpu, p, rd, dbg_reg);
487         else
488                 dbg_to_reg(vcpu, p, rd, dbg_reg);
489
490         trace_trap_reg(__func__, rd->reg, p->is_write,
491                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
492
493         return true;
494 }
495
496 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
497                 const struct kvm_one_reg *reg, void __user *uaddr)
498 {
499         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
500
501         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
502                 return -EFAULT;
503         return 0;
504 }
505
506 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507         const struct kvm_one_reg *reg, void __user *uaddr)
508 {
509         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
510
511         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512                 return -EFAULT;
513         return 0;
514 }
515
516 static void reset_wvr(struct kvm_vcpu *vcpu,
517                       const struct sys_reg_desc *rd)
518 {
519         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
520 }
521
522 static bool trap_wcr(struct kvm_vcpu *vcpu,
523                      struct sys_reg_params *p,
524                      const struct sys_reg_desc *rd)
525 {
526         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
527
528         if (p->is_write)
529                 reg_to_dbg(vcpu, p, rd, dbg_reg);
530         else
531                 dbg_to_reg(vcpu, p, rd, dbg_reg);
532
533         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
534
535         return true;
536 }
537
538 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
539                 const struct kvm_one_reg *reg, void __user *uaddr)
540 {
541         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
542
543         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
544                 return -EFAULT;
545         return 0;
546 }
547
548 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
549         const struct kvm_one_reg *reg, void __user *uaddr)
550 {
551         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
552
553         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
554                 return -EFAULT;
555         return 0;
556 }
557
558 static void reset_wcr(struct kvm_vcpu *vcpu,
559                       const struct sys_reg_desc *rd)
560 {
561         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
562 }
563
564 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
565 {
566         u64 amair = read_sysreg(amair_el1);
567         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
568 }
569
570 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
571 {
572         u64 actlr = read_sysreg(actlr_el1);
573         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
574 }
575
576 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
577 {
578         u64 mpidr;
579
580         /*
581          * Map the vcpu_id into the first three affinity level fields of
582          * the MPIDR. We limit the number of VCPUs in level 0 due to a
583          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
584          * of the GICv3 to be able to address each CPU directly when
585          * sending IPIs.
586          */
587         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
588         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
589         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
590         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
591 }
592
593 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
594 {
595         u64 pmcr, val;
596
597         /* No PMU available, PMCR_EL0 may UNDEF... */
598         if (!kvm_arm_support_pmu_v3())
599                 return;
600
601         pmcr = read_sysreg(pmcr_el0);
602         /*
603          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
604          * except PMCR.E resetting to zero.
605          */
606         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
607                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
608         if (!system_supports_32bit_el0())
609                 val |= ARMV8_PMU_PMCR_LC;
610         __vcpu_sys_reg(vcpu, r->reg) = val;
611 }
612
613 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
614 {
615         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
616         bool enabled = kvm_vcpu_has_pmu(vcpu);
617
618         enabled &= (reg & flags) || vcpu_mode_priv(vcpu);
619         if (!enabled)
620                 kvm_inject_undefined(vcpu);
621
622         return !enabled;
623 }
624
625 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
626 {
627         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
628 }
629
630 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
631 {
632         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
633 }
634
635 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
636 {
637         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
638 }
639
640 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
641 {
642         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
643 }
644
645 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
646                         const struct sys_reg_desc *r)
647 {
648         u64 val;
649
650         if (pmu_access_el0_disabled(vcpu))
651                 return false;
652
653         if (p->is_write) {
654                 /* Only update writeable bits of PMCR */
655                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
656                 val &= ~ARMV8_PMU_PMCR_MASK;
657                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
658                 if (!system_supports_32bit_el0())
659                         val |= ARMV8_PMU_PMCR_LC;
660                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
661                 kvm_pmu_handle_pmcr(vcpu, val);
662                 kvm_vcpu_pmu_restore_guest(vcpu);
663         } else {
664                 /* PMCR.P & PMCR.C are RAZ */
665                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
666                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
667                 p->regval = val;
668         }
669
670         return true;
671 }
672
673 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
674                           const struct sys_reg_desc *r)
675 {
676         if (pmu_access_event_counter_el0_disabled(vcpu))
677                 return false;
678
679         if (p->is_write)
680                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
681         else
682                 /* return PMSELR.SEL field */
683                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
684                             & ARMV8_PMU_COUNTER_MASK;
685
686         return true;
687 }
688
689 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
690                           const struct sys_reg_desc *r)
691 {
692         u64 pmceid;
693
694         BUG_ON(p->is_write);
695
696         if (pmu_access_el0_disabled(vcpu))
697                 return false;
698
699         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
700
701         p->regval = pmceid;
702
703         return true;
704 }
705
706 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
707 {
708         u64 pmcr, val;
709
710         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
711         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
712         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
713                 kvm_inject_undefined(vcpu);
714                 return false;
715         }
716
717         return true;
718 }
719
720 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
721                               struct sys_reg_params *p,
722                               const struct sys_reg_desc *r)
723 {
724         u64 idx = ~0UL;
725
726         if (r->CRn == 9 && r->CRm == 13) {
727                 if (r->Op2 == 2) {
728                         /* PMXEVCNTR_EL0 */
729                         if (pmu_access_event_counter_el0_disabled(vcpu))
730                                 return false;
731
732                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
733                               & ARMV8_PMU_COUNTER_MASK;
734                 } else if (r->Op2 == 0) {
735                         /* PMCCNTR_EL0 */
736                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
737                                 return false;
738
739                         idx = ARMV8_PMU_CYCLE_IDX;
740                 }
741         } else if (r->CRn == 0 && r->CRm == 9) {
742                 /* PMCCNTR */
743                 if (pmu_access_event_counter_el0_disabled(vcpu))
744                         return false;
745
746                 idx = ARMV8_PMU_CYCLE_IDX;
747         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
748                 /* PMEVCNTRn_EL0 */
749                 if (pmu_access_event_counter_el0_disabled(vcpu))
750                         return false;
751
752                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
753         }
754
755         /* Catch any decoding mistake */
756         WARN_ON(idx == ~0UL);
757
758         if (!pmu_counter_idx_valid(vcpu, idx))
759                 return false;
760
761         if (p->is_write) {
762                 if (pmu_access_el0_disabled(vcpu))
763                         return false;
764
765                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
766         } else {
767                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
768         }
769
770         return true;
771 }
772
773 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
774                                const struct sys_reg_desc *r)
775 {
776         u64 idx, reg;
777
778         if (pmu_access_el0_disabled(vcpu))
779                 return false;
780
781         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
782                 /* PMXEVTYPER_EL0 */
783                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
784                 reg = PMEVTYPER0_EL0 + idx;
785         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
786                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
787                 if (idx == ARMV8_PMU_CYCLE_IDX)
788                         reg = PMCCFILTR_EL0;
789                 else
790                         /* PMEVTYPERn_EL0 */
791                         reg = PMEVTYPER0_EL0 + idx;
792         } else {
793                 BUG();
794         }
795
796         if (!pmu_counter_idx_valid(vcpu, idx))
797                 return false;
798
799         if (p->is_write) {
800                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
801                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
802                 kvm_vcpu_pmu_restore_guest(vcpu);
803         } else {
804                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
805         }
806
807         return true;
808 }
809
810 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
811                            const struct sys_reg_desc *r)
812 {
813         u64 val, mask;
814
815         if (pmu_access_el0_disabled(vcpu))
816                 return false;
817
818         mask = kvm_pmu_valid_counter_mask(vcpu);
819         if (p->is_write) {
820                 val = p->regval & mask;
821                 if (r->Op2 & 0x1) {
822                         /* accessing PMCNTENSET_EL0 */
823                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
824                         kvm_pmu_enable_counter_mask(vcpu, val);
825                         kvm_vcpu_pmu_restore_guest(vcpu);
826                 } else {
827                         /* accessing PMCNTENCLR_EL0 */
828                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
829                         kvm_pmu_disable_counter_mask(vcpu, val);
830                 }
831         } else {
832                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
833         }
834
835         return true;
836 }
837
838 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
839                            const struct sys_reg_desc *r)
840 {
841         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
842
843         if (check_pmu_access_disabled(vcpu, 0))
844                 return false;
845
846         if (p->is_write) {
847                 u64 val = p->regval & mask;
848
849                 if (r->Op2 & 0x1)
850                         /* accessing PMINTENSET_EL1 */
851                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
852                 else
853                         /* accessing PMINTENCLR_EL1 */
854                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
855         } else {
856                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
857         }
858
859         return true;
860 }
861
862 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
863                          const struct sys_reg_desc *r)
864 {
865         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
866
867         if (pmu_access_el0_disabled(vcpu))
868                 return false;
869
870         if (p->is_write) {
871                 if (r->CRm & 0x2)
872                         /* accessing PMOVSSET_EL0 */
873                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
874                 else
875                         /* accessing PMOVSCLR_EL0 */
876                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
877         } else {
878                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
879         }
880
881         return true;
882 }
883
884 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
885                            const struct sys_reg_desc *r)
886 {
887         u64 mask;
888
889         if (!p->is_write)
890                 return read_from_write_only(vcpu, p, r);
891
892         if (pmu_write_swinc_el0_disabled(vcpu))
893                 return false;
894
895         mask = kvm_pmu_valid_counter_mask(vcpu);
896         kvm_pmu_software_increment(vcpu, p->regval & mask);
897         return true;
898 }
899
900 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
901                              const struct sys_reg_desc *r)
902 {
903         if (!kvm_vcpu_has_pmu(vcpu)) {
904                 kvm_inject_undefined(vcpu);
905                 return false;
906         }
907
908         if (p->is_write) {
909                 if (!vcpu_mode_priv(vcpu)) {
910                         kvm_inject_undefined(vcpu);
911                         return false;
912                 }
913
914                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
915                                p->regval & ARMV8_PMU_USERENR_MASK;
916         } else {
917                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
918                             & ARMV8_PMU_USERENR_MASK;
919         }
920
921         return true;
922 }
923
924 #define reg_to_encoding(x)                                              \
925         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
926                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2)
927
928 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
929 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
930         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
931           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
932         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
933           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
934         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
935           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
936         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
937           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
938
939 /* Macro to expand the PMEVCNTRn_EL0 register */
940 #define PMU_PMEVCNTR_EL0(n)                                             \
941         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
942           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
943
944 /* Macro to expand the PMEVTYPERn_EL0 register */
945 #define PMU_PMEVTYPER_EL0(n)                                            \
946         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
947           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
948
949 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
950                          const struct sys_reg_desc *r)
951 {
952         kvm_inject_undefined(vcpu);
953
954         return false;
955 }
956
957 /* Macro to expand the AMU counter and type registers*/
958 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
959 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
960 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
961 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
962
963 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
964                         const struct sys_reg_desc *rd)
965 {
966         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
967 }
968
969 /*
970  * If we land here on a PtrAuth access, that is because we didn't
971  * fixup the access on exit by allowing the PtrAuth sysregs. The only
972  * way this happens is when the guest does not have PtrAuth support
973  * enabled.
974  */
975 #define __PTRAUTH_KEY(k)                                                \
976         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
977         .visibility = ptrauth_visibility}
978
979 #define PTRAUTH_KEY(k)                                                  \
980         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
981         __PTRAUTH_KEY(k ## KEYHI_EL1)
982
983 static bool access_arch_timer(struct kvm_vcpu *vcpu,
984                               struct sys_reg_params *p,
985                               const struct sys_reg_desc *r)
986 {
987         enum kvm_arch_timers tmr;
988         enum kvm_arch_timer_regs treg;
989         u64 reg = reg_to_encoding(r);
990
991         switch (reg) {
992         case SYS_CNTP_TVAL_EL0:
993         case SYS_AARCH32_CNTP_TVAL:
994                 tmr = TIMER_PTIMER;
995                 treg = TIMER_REG_TVAL;
996                 break;
997         case SYS_CNTP_CTL_EL0:
998         case SYS_AARCH32_CNTP_CTL:
999                 tmr = TIMER_PTIMER;
1000                 treg = TIMER_REG_CTL;
1001                 break;
1002         case SYS_CNTP_CVAL_EL0:
1003         case SYS_AARCH32_CNTP_CVAL:
1004                 tmr = TIMER_PTIMER;
1005                 treg = TIMER_REG_CVAL;
1006                 break;
1007         default:
1008                 BUG();
1009         }
1010
1011         if (p->is_write)
1012                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1013         else
1014                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1015
1016         return true;
1017 }
1018
1019 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1020 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1021                 struct sys_reg_desc const *r, bool raz)
1022 {
1023         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1024                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1025         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1026
1027         if (id == SYS_ID_AA64PFR0_EL1) {
1028                 if (!vcpu_has_sve(vcpu))
1029                         val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1030                 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1031                 val &= ~(0xfUL << ID_AA64PFR0_CSV2_SHIFT);
1032                 val |= ((u64)vcpu->kvm->arch.pfr0_csv2 << ID_AA64PFR0_CSV2_SHIFT);
1033                 val &= ~(0xfUL << ID_AA64PFR0_CSV3_SHIFT);
1034                 val |= ((u64)vcpu->kvm->arch.pfr0_csv3 << ID_AA64PFR0_CSV3_SHIFT);
1035         } else if (id == SYS_ID_AA64PFR1_EL1) {
1036                 val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1037         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1038                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1039                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1040                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1041                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1042         } else if (id == SYS_ID_AA64DFR0_EL1) {
1043                 u64 cap = 0;
1044
1045                 /* Limit guests to PMUv3 for ARMv8.1 */
1046                 if (kvm_vcpu_has_pmu(vcpu))
1047                         cap = ID_AA64DFR0_PMUVER_8_1;
1048
1049                 val = cpuid_feature_cap_perfmon_field(val,
1050                                                 ID_AA64DFR0_PMUVER_SHIFT,
1051                                                 cap);
1052         } else if (id == SYS_ID_DFR0_EL1) {
1053                 /* Limit guests to PMUv3 for ARMv8.1 */
1054                 val = cpuid_feature_cap_perfmon_field(val,
1055                                                 ID_DFR0_PERFMON_SHIFT,
1056                                                 ID_DFR0_PERFMON_8_1);
1057         }
1058
1059         return val;
1060 }
1061
1062 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1063                                   const struct sys_reg_desc *r)
1064 {
1065         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1066                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1067
1068         switch (id) {
1069         case SYS_ID_AA64ZFR0_EL1:
1070                 if (!vcpu_has_sve(vcpu))
1071                         return REG_RAZ;
1072                 break;
1073         }
1074
1075         return 0;
1076 }
1077
1078 /* cpufeature ID register access trap handlers */
1079
1080 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1081                             struct sys_reg_params *p,
1082                             const struct sys_reg_desc *r,
1083                             bool raz)
1084 {
1085         if (p->is_write)
1086                 return write_to_read_only(vcpu, p, r);
1087
1088         p->regval = read_id_reg(vcpu, r, raz);
1089         return true;
1090 }
1091
1092 static bool access_id_reg(struct kvm_vcpu *vcpu,
1093                           struct sys_reg_params *p,
1094                           const struct sys_reg_desc *r)
1095 {
1096         bool raz = sysreg_visible_as_raz(vcpu, r);
1097
1098         return __access_id_reg(vcpu, p, r, raz);
1099 }
1100
1101 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1102                               struct sys_reg_params *p,
1103                               const struct sys_reg_desc *r)
1104 {
1105         return __access_id_reg(vcpu, p, r, true);
1106 }
1107
1108 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1109 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1110 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1111
1112 /* Visibility overrides for SVE-specific control registers */
1113 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1114                                    const struct sys_reg_desc *rd)
1115 {
1116         if (vcpu_has_sve(vcpu))
1117                 return 0;
1118
1119         return REG_HIDDEN;
1120 }
1121
1122 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1123                                const struct sys_reg_desc *rd,
1124                                const struct kvm_one_reg *reg, void __user *uaddr)
1125 {
1126         const u64 id = sys_reg_to_index(rd);
1127         u8 csv2, csv3;
1128         int err;
1129         u64 val;
1130
1131         err = reg_from_user(&val, uaddr, id);
1132         if (err)
1133                 return err;
1134
1135         /*
1136          * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1137          * it doesn't promise more than what is actually provided (the
1138          * guest could otherwise be covered in ectoplasmic residue).
1139          */
1140         csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1141         if (csv2 > 1 ||
1142             (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1143                 return -EINVAL;
1144
1145         /* Same thing for CSV3 */
1146         csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1147         if (csv3 > 1 ||
1148             (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1149                 return -EINVAL;
1150
1151         /* We can only differ with CSV[23], and anything else is an error */
1152         val ^= read_id_reg(vcpu, rd, false);
1153         val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1154                  (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1155         if (val)
1156                 return -EINVAL;
1157
1158         vcpu->kvm->arch.pfr0_csv2 = csv2;
1159         vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1160
1161         return 0;
1162 }
1163
1164 /*
1165  * cpufeature ID register user accessors
1166  *
1167  * For now, these registers are immutable for userspace, so no values
1168  * are stored, and for set_id_reg() we don't allow the effective value
1169  * to be changed.
1170  */
1171 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1172                         const struct sys_reg_desc *rd, void __user *uaddr,
1173                         bool raz)
1174 {
1175         const u64 id = sys_reg_to_index(rd);
1176         const u64 val = read_id_reg(vcpu, rd, raz);
1177
1178         return reg_to_user(uaddr, &val, id);
1179 }
1180
1181 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1182                         const struct sys_reg_desc *rd, void __user *uaddr,
1183                         bool raz)
1184 {
1185         const u64 id = sys_reg_to_index(rd);
1186         int err;
1187         u64 val;
1188
1189         err = reg_from_user(&val, uaddr, id);
1190         if (err)
1191                 return err;
1192
1193         /* This is what we mean by invariant: you can't change it. */
1194         if (val != read_id_reg(vcpu, rd, raz))
1195                 return -EINVAL;
1196
1197         return 0;
1198 }
1199
1200 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1201                       const struct kvm_one_reg *reg, void __user *uaddr)
1202 {
1203         bool raz = sysreg_visible_as_raz(vcpu, rd);
1204
1205         return __get_id_reg(vcpu, rd, uaddr, raz);
1206 }
1207
1208 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1209                       const struct kvm_one_reg *reg, void __user *uaddr)
1210 {
1211         bool raz = sysreg_visible_as_raz(vcpu, rd);
1212
1213         return __set_id_reg(vcpu, rd, uaddr, raz);
1214 }
1215
1216 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1217                           const struct kvm_one_reg *reg, void __user *uaddr)
1218 {
1219         return __get_id_reg(vcpu, rd, uaddr, true);
1220 }
1221
1222 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1223                           const struct kvm_one_reg *reg, void __user *uaddr)
1224 {
1225         return __set_id_reg(vcpu, rd, uaddr, true);
1226 }
1227
1228 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1229                        const struct sys_reg_desc *r)
1230 {
1231         if (p->is_write)
1232                 return write_to_read_only(vcpu, p, r);
1233
1234         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1235         return true;
1236 }
1237
1238 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1239                          const struct sys_reg_desc *r)
1240 {
1241         if (p->is_write)
1242                 return write_to_read_only(vcpu, p, r);
1243
1244         p->regval = read_sysreg(clidr_el1);
1245         return true;
1246 }
1247
1248 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1249                           const struct sys_reg_desc *r)
1250 {
1251         int reg = r->reg;
1252
1253         if (p->is_write)
1254                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1255         else
1256                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1257         return true;
1258 }
1259
1260 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1261                           const struct sys_reg_desc *r)
1262 {
1263         u32 csselr;
1264
1265         if (p->is_write)
1266                 return write_to_read_only(vcpu, p, r);
1267
1268         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1269         p->regval = get_ccsidr(csselr);
1270
1271         /*
1272          * Guests should not be doing cache operations by set/way at all, and
1273          * for this reason, we trap them and attempt to infer the intent, so
1274          * that we can flush the entire guest's address space at the appropriate
1275          * time.
1276          * To prevent this trapping from causing performance problems, let's
1277          * expose the geometry of all data and unified caches (which are
1278          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1279          * [If guests should attempt to infer aliasing properties from the
1280          * geometry (which is not permitted by the architecture), they would
1281          * only do so for virtually indexed caches.]
1282          */
1283         if (!(csselr & 1)) // data or unified cache
1284                 p->regval &= ~GENMASK(27, 3);
1285         return true;
1286 }
1287
1288 /* sys_reg_desc initialiser for known cpufeature ID registers */
1289 #define ID_SANITISED(name) {                    \
1290         SYS_DESC(SYS_##name),                   \
1291         .access = access_id_reg,                \
1292         .get_user = get_id_reg,                 \
1293         .set_user = set_id_reg,                 \
1294         .visibility = id_visibility,            \
1295 }
1296
1297 /*
1298  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1299  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1300  * (1 <= crm < 8, 0 <= Op2 < 8).
1301  */
1302 #define ID_UNALLOCATED(crm, op2) {                      \
1303         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1304         .access = access_raz_id_reg,                    \
1305         .get_user = get_raz_id_reg,                     \
1306         .set_user = set_raz_id_reg,                     \
1307 }
1308
1309 /*
1310  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1311  * For now, these are exposed just like unallocated ID regs: they appear
1312  * RAZ for the guest.
1313  */
1314 #define ID_HIDDEN(name) {                       \
1315         SYS_DESC(SYS_##name),                   \
1316         .access = access_raz_id_reg,            \
1317         .get_user = get_raz_id_reg,             \
1318         .set_user = set_raz_id_reg,             \
1319 }
1320
1321 /*
1322  * Architected system registers.
1323  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1324  *
1325  * Debug handling: We do trap most, if not all debug related system
1326  * registers. The implementation is good enough to ensure that a guest
1327  * can use these with minimal performance degradation. The drawback is
1328  * that we don't implement any of the external debug, none of the
1329  * OSlock protocol. This should be revisited if we ever encounter a
1330  * more demanding guest...
1331  */
1332 static const struct sys_reg_desc sys_reg_descs[] = {
1333         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1334         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1335         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1336
1337         DBG_BCR_BVR_WCR_WVR_EL1(0),
1338         DBG_BCR_BVR_WCR_WVR_EL1(1),
1339         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1340         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1341         DBG_BCR_BVR_WCR_WVR_EL1(2),
1342         DBG_BCR_BVR_WCR_WVR_EL1(3),
1343         DBG_BCR_BVR_WCR_WVR_EL1(4),
1344         DBG_BCR_BVR_WCR_WVR_EL1(5),
1345         DBG_BCR_BVR_WCR_WVR_EL1(6),
1346         DBG_BCR_BVR_WCR_WVR_EL1(7),
1347         DBG_BCR_BVR_WCR_WVR_EL1(8),
1348         DBG_BCR_BVR_WCR_WVR_EL1(9),
1349         DBG_BCR_BVR_WCR_WVR_EL1(10),
1350         DBG_BCR_BVR_WCR_WVR_EL1(11),
1351         DBG_BCR_BVR_WCR_WVR_EL1(12),
1352         DBG_BCR_BVR_WCR_WVR_EL1(13),
1353         DBG_BCR_BVR_WCR_WVR_EL1(14),
1354         DBG_BCR_BVR_WCR_WVR_EL1(15),
1355
1356         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1357         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1358         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1359         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1360         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1361         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1362         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1363         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1364
1365         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1366         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1367         // DBGDTR[TR]X_EL0 share the same encoding
1368         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1369
1370         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1371
1372         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1373
1374         /*
1375          * ID regs: all ID_SANITISED() entries here must have corresponding
1376          * entries in arm64_ftr_regs[].
1377          */
1378
1379         /* AArch64 mappings of the AArch32 ID registers */
1380         /* CRm=1 */
1381         ID_SANITISED(ID_PFR0_EL1),
1382         ID_SANITISED(ID_PFR1_EL1),
1383         ID_SANITISED(ID_DFR0_EL1),
1384         ID_HIDDEN(ID_AFR0_EL1),
1385         ID_SANITISED(ID_MMFR0_EL1),
1386         ID_SANITISED(ID_MMFR1_EL1),
1387         ID_SANITISED(ID_MMFR2_EL1),
1388         ID_SANITISED(ID_MMFR3_EL1),
1389
1390         /* CRm=2 */
1391         ID_SANITISED(ID_ISAR0_EL1),
1392         ID_SANITISED(ID_ISAR1_EL1),
1393         ID_SANITISED(ID_ISAR2_EL1),
1394         ID_SANITISED(ID_ISAR3_EL1),
1395         ID_SANITISED(ID_ISAR4_EL1),
1396         ID_SANITISED(ID_ISAR5_EL1),
1397         ID_SANITISED(ID_MMFR4_EL1),
1398         ID_SANITISED(ID_ISAR6_EL1),
1399
1400         /* CRm=3 */
1401         ID_SANITISED(MVFR0_EL1),
1402         ID_SANITISED(MVFR1_EL1),
1403         ID_SANITISED(MVFR2_EL1),
1404         ID_UNALLOCATED(3,3),
1405         ID_SANITISED(ID_PFR2_EL1),
1406         ID_HIDDEN(ID_DFR1_EL1),
1407         ID_SANITISED(ID_MMFR5_EL1),
1408         ID_UNALLOCATED(3,7),
1409
1410         /* AArch64 ID registers */
1411         /* CRm=4 */
1412         { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1413           .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1414         ID_SANITISED(ID_AA64PFR1_EL1),
1415         ID_UNALLOCATED(4,2),
1416         ID_UNALLOCATED(4,3),
1417         ID_SANITISED(ID_AA64ZFR0_EL1),
1418         ID_UNALLOCATED(4,5),
1419         ID_UNALLOCATED(4,6),
1420         ID_UNALLOCATED(4,7),
1421
1422         /* CRm=5 */
1423         ID_SANITISED(ID_AA64DFR0_EL1),
1424         ID_SANITISED(ID_AA64DFR1_EL1),
1425         ID_UNALLOCATED(5,2),
1426         ID_UNALLOCATED(5,3),
1427         ID_HIDDEN(ID_AA64AFR0_EL1),
1428         ID_HIDDEN(ID_AA64AFR1_EL1),
1429         ID_UNALLOCATED(5,6),
1430         ID_UNALLOCATED(5,7),
1431
1432         /* CRm=6 */
1433         ID_SANITISED(ID_AA64ISAR0_EL1),
1434         ID_SANITISED(ID_AA64ISAR1_EL1),
1435         ID_UNALLOCATED(6,2),
1436         ID_UNALLOCATED(6,3),
1437         ID_UNALLOCATED(6,4),
1438         ID_UNALLOCATED(6,5),
1439         ID_UNALLOCATED(6,6),
1440         ID_UNALLOCATED(6,7),
1441
1442         /* CRm=7 */
1443         ID_SANITISED(ID_AA64MMFR0_EL1),
1444         ID_SANITISED(ID_AA64MMFR1_EL1),
1445         ID_SANITISED(ID_AA64MMFR2_EL1),
1446         ID_UNALLOCATED(7,3),
1447         ID_UNALLOCATED(7,4),
1448         ID_UNALLOCATED(7,5),
1449         ID_UNALLOCATED(7,6),
1450         ID_UNALLOCATED(7,7),
1451
1452         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1453         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1454         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1455
1456         { SYS_DESC(SYS_RGSR_EL1), undef_access },
1457         { SYS_DESC(SYS_GCR_EL1), undef_access },
1458
1459         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1460         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1461         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1462         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1463
1464         PTRAUTH_KEY(APIA),
1465         PTRAUTH_KEY(APIB),
1466         PTRAUTH_KEY(APDA),
1467         PTRAUTH_KEY(APDB),
1468         PTRAUTH_KEY(APGA),
1469
1470         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1471         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1472         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1473
1474         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1475         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1476         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1477         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1478         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1479         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1480         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1481         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1482
1483         { SYS_DESC(SYS_TFSR_EL1), undef_access },
1484         { SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1485
1486         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1487         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1488
1489         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1490         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1491
1492         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1493         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1494
1495         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1496         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1497         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1498         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1499         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1500
1501         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1502         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1503
1504         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1505         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1506         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1507         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1508         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1509         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1510         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1511         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1512         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1513         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1514         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1515         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1516
1517         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1518         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1519
1520         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1521
1522         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1523
1524         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1525         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1526         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1527         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1528
1529         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1530         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1531         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1532         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1533         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1534         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1535         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1536         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1537         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1538         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1539         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1540         /*
1541          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1542          * in 32bit mode. Here we choose to reset it as zero for consistency.
1543          */
1544         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1545         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1546
1547         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1548         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1549
1550         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1551
1552         { SYS_DESC(SYS_AMCR_EL0), undef_access },
1553         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1554         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1555         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1556         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1557         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1558         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1559         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1560         AMU_AMEVCNTR0_EL0(0),
1561         AMU_AMEVCNTR0_EL0(1),
1562         AMU_AMEVCNTR0_EL0(2),
1563         AMU_AMEVCNTR0_EL0(3),
1564         AMU_AMEVCNTR0_EL0(4),
1565         AMU_AMEVCNTR0_EL0(5),
1566         AMU_AMEVCNTR0_EL0(6),
1567         AMU_AMEVCNTR0_EL0(7),
1568         AMU_AMEVCNTR0_EL0(8),
1569         AMU_AMEVCNTR0_EL0(9),
1570         AMU_AMEVCNTR0_EL0(10),
1571         AMU_AMEVCNTR0_EL0(11),
1572         AMU_AMEVCNTR0_EL0(12),
1573         AMU_AMEVCNTR0_EL0(13),
1574         AMU_AMEVCNTR0_EL0(14),
1575         AMU_AMEVCNTR0_EL0(15),
1576         AMU_AMEVTYPER0_EL0(0),
1577         AMU_AMEVTYPER0_EL0(1),
1578         AMU_AMEVTYPER0_EL0(2),
1579         AMU_AMEVTYPER0_EL0(3),
1580         AMU_AMEVTYPER0_EL0(4),
1581         AMU_AMEVTYPER0_EL0(5),
1582         AMU_AMEVTYPER0_EL0(6),
1583         AMU_AMEVTYPER0_EL0(7),
1584         AMU_AMEVTYPER0_EL0(8),
1585         AMU_AMEVTYPER0_EL0(9),
1586         AMU_AMEVTYPER0_EL0(10),
1587         AMU_AMEVTYPER0_EL0(11),
1588         AMU_AMEVTYPER0_EL0(12),
1589         AMU_AMEVTYPER0_EL0(13),
1590         AMU_AMEVTYPER0_EL0(14),
1591         AMU_AMEVTYPER0_EL0(15),
1592         AMU_AMEVCNTR1_EL0(0),
1593         AMU_AMEVCNTR1_EL0(1),
1594         AMU_AMEVCNTR1_EL0(2),
1595         AMU_AMEVCNTR1_EL0(3),
1596         AMU_AMEVCNTR1_EL0(4),
1597         AMU_AMEVCNTR1_EL0(5),
1598         AMU_AMEVCNTR1_EL0(6),
1599         AMU_AMEVCNTR1_EL0(7),
1600         AMU_AMEVCNTR1_EL0(8),
1601         AMU_AMEVCNTR1_EL0(9),
1602         AMU_AMEVCNTR1_EL0(10),
1603         AMU_AMEVCNTR1_EL0(11),
1604         AMU_AMEVCNTR1_EL0(12),
1605         AMU_AMEVCNTR1_EL0(13),
1606         AMU_AMEVCNTR1_EL0(14),
1607         AMU_AMEVCNTR1_EL0(15),
1608         AMU_AMEVTYPER1_EL0(0),
1609         AMU_AMEVTYPER1_EL0(1),
1610         AMU_AMEVTYPER1_EL0(2),
1611         AMU_AMEVTYPER1_EL0(3),
1612         AMU_AMEVTYPER1_EL0(4),
1613         AMU_AMEVTYPER1_EL0(5),
1614         AMU_AMEVTYPER1_EL0(6),
1615         AMU_AMEVTYPER1_EL0(7),
1616         AMU_AMEVTYPER1_EL0(8),
1617         AMU_AMEVTYPER1_EL0(9),
1618         AMU_AMEVTYPER1_EL0(10),
1619         AMU_AMEVTYPER1_EL0(11),
1620         AMU_AMEVTYPER1_EL0(12),
1621         AMU_AMEVTYPER1_EL0(13),
1622         AMU_AMEVTYPER1_EL0(14),
1623         AMU_AMEVTYPER1_EL0(15),
1624
1625         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1626         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1627         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1628
1629         /* PMEVCNTRn_EL0 */
1630         PMU_PMEVCNTR_EL0(0),
1631         PMU_PMEVCNTR_EL0(1),
1632         PMU_PMEVCNTR_EL0(2),
1633         PMU_PMEVCNTR_EL0(3),
1634         PMU_PMEVCNTR_EL0(4),
1635         PMU_PMEVCNTR_EL0(5),
1636         PMU_PMEVCNTR_EL0(6),
1637         PMU_PMEVCNTR_EL0(7),
1638         PMU_PMEVCNTR_EL0(8),
1639         PMU_PMEVCNTR_EL0(9),
1640         PMU_PMEVCNTR_EL0(10),
1641         PMU_PMEVCNTR_EL0(11),
1642         PMU_PMEVCNTR_EL0(12),
1643         PMU_PMEVCNTR_EL0(13),
1644         PMU_PMEVCNTR_EL0(14),
1645         PMU_PMEVCNTR_EL0(15),
1646         PMU_PMEVCNTR_EL0(16),
1647         PMU_PMEVCNTR_EL0(17),
1648         PMU_PMEVCNTR_EL0(18),
1649         PMU_PMEVCNTR_EL0(19),
1650         PMU_PMEVCNTR_EL0(20),
1651         PMU_PMEVCNTR_EL0(21),
1652         PMU_PMEVCNTR_EL0(22),
1653         PMU_PMEVCNTR_EL0(23),
1654         PMU_PMEVCNTR_EL0(24),
1655         PMU_PMEVCNTR_EL0(25),
1656         PMU_PMEVCNTR_EL0(26),
1657         PMU_PMEVCNTR_EL0(27),
1658         PMU_PMEVCNTR_EL0(28),
1659         PMU_PMEVCNTR_EL0(29),
1660         PMU_PMEVCNTR_EL0(30),
1661         /* PMEVTYPERn_EL0 */
1662         PMU_PMEVTYPER_EL0(0),
1663         PMU_PMEVTYPER_EL0(1),
1664         PMU_PMEVTYPER_EL0(2),
1665         PMU_PMEVTYPER_EL0(3),
1666         PMU_PMEVTYPER_EL0(4),
1667         PMU_PMEVTYPER_EL0(5),
1668         PMU_PMEVTYPER_EL0(6),
1669         PMU_PMEVTYPER_EL0(7),
1670         PMU_PMEVTYPER_EL0(8),
1671         PMU_PMEVTYPER_EL0(9),
1672         PMU_PMEVTYPER_EL0(10),
1673         PMU_PMEVTYPER_EL0(11),
1674         PMU_PMEVTYPER_EL0(12),
1675         PMU_PMEVTYPER_EL0(13),
1676         PMU_PMEVTYPER_EL0(14),
1677         PMU_PMEVTYPER_EL0(15),
1678         PMU_PMEVTYPER_EL0(16),
1679         PMU_PMEVTYPER_EL0(17),
1680         PMU_PMEVTYPER_EL0(18),
1681         PMU_PMEVTYPER_EL0(19),
1682         PMU_PMEVTYPER_EL0(20),
1683         PMU_PMEVTYPER_EL0(21),
1684         PMU_PMEVTYPER_EL0(22),
1685         PMU_PMEVTYPER_EL0(23),
1686         PMU_PMEVTYPER_EL0(24),
1687         PMU_PMEVTYPER_EL0(25),
1688         PMU_PMEVTYPER_EL0(26),
1689         PMU_PMEVTYPER_EL0(27),
1690         PMU_PMEVTYPER_EL0(28),
1691         PMU_PMEVTYPER_EL0(29),
1692         PMU_PMEVTYPER_EL0(30),
1693         /*
1694          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1695          * in 32bit mode. Here we choose to reset it as zero for consistency.
1696          */
1697         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1698
1699         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1700         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1701         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1702 };
1703
1704 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1705                         struct sys_reg_params *p,
1706                         const struct sys_reg_desc *r)
1707 {
1708         if (p->is_write) {
1709                 return ignore_write(vcpu, p);
1710         } else {
1711                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1712                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1713                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1714
1715                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1716                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1717                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1718                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1719                 return true;
1720         }
1721 }
1722
1723 /*
1724  * AArch32 debug register mappings
1725  *
1726  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1727  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1728  *
1729  * None of the other registers share their location, so treat them as
1730  * if they were 64bit.
1731  */
1732 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
1733         /* DBGBVRn */                                                         \
1734         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1735         /* DBGBCRn */                                                         \
1736         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
1737         /* DBGWVRn */                                                         \
1738         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
1739         /* DBGWCRn */                                                         \
1740         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1741
1742 #define DBGBXVR(n)                                                            \
1743         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1744
1745 /*
1746  * Trapped cp14 registers. We generally ignore most of the external
1747  * debug, on the principle that they don't really make sense to a
1748  * guest. Revisit this one day, would this principle change.
1749  */
1750 static const struct sys_reg_desc cp14_regs[] = {
1751         /* DBGIDR */
1752         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1753         /* DBGDTRRXext */
1754         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1755
1756         DBG_BCR_BVR_WCR_WVR(0),
1757         /* DBGDSCRint */
1758         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1759         DBG_BCR_BVR_WCR_WVR(1),
1760         /* DBGDCCINT */
1761         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1762         /* DBGDSCRext */
1763         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1764         DBG_BCR_BVR_WCR_WVR(2),
1765         /* DBGDTR[RT]Xint */
1766         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1767         /* DBGDTR[RT]Xext */
1768         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1769         DBG_BCR_BVR_WCR_WVR(3),
1770         DBG_BCR_BVR_WCR_WVR(4),
1771         DBG_BCR_BVR_WCR_WVR(5),
1772         /* DBGWFAR */
1773         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1774         /* DBGOSECCR */
1775         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1776         DBG_BCR_BVR_WCR_WVR(6),
1777         /* DBGVCR */
1778         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1779         DBG_BCR_BVR_WCR_WVR(7),
1780         DBG_BCR_BVR_WCR_WVR(8),
1781         DBG_BCR_BVR_WCR_WVR(9),
1782         DBG_BCR_BVR_WCR_WVR(10),
1783         DBG_BCR_BVR_WCR_WVR(11),
1784         DBG_BCR_BVR_WCR_WVR(12),
1785         DBG_BCR_BVR_WCR_WVR(13),
1786         DBG_BCR_BVR_WCR_WVR(14),
1787         DBG_BCR_BVR_WCR_WVR(15),
1788
1789         /* DBGDRAR (32bit) */
1790         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1791
1792         DBGBXVR(0),
1793         /* DBGOSLAR */
1794         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1795         DBGBXVR(1),
1796         /* DBGOSLSR */
1797         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1798         DBGBXVR(2),
1799         DBGBXVR(3),
1800         /* DBGOSDLR */
1801         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1802         DBGBXVR(4),
1803         /* DBGPRCR */
1804         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1805         DBGBXVR(5),
1806         DBGBXVR(6),
1807         DBGBXVR(7),
1808         DBGBXVR(8),
1809         DBGBXVR(9),
1810         DBGBXVR(10),
1811         DBGBXVR(11),
1812         DBGBXVR(12),
1813         DBGBXVR(13),
1814         DBGBXVR(14),
1815         DBGBXVR(15),
1816
1817         /* DBGDSAR (32bit) */
1818         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1819
1820         /* DBGDEVID2 */
1821         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1822         /* DBGDEVID1 */
1823         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1824         /* DBGDEVID */
1825         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1826         /* DBGCLAIMSET */
1827         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1828         /* DBGCLAIMCLR */
1829         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1830         /* DBGAUTHSTATUS */
1831         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1832 };
1833
1834 /* Trapped cp14 64bit registers */
1835 static const struct sys_reg_desc cp14_64_regs[] = {
1836         /* DBGDRAR (64bit) */
1837         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1838
1839         /* DBGDSAR (64bit) */
1840         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1841 };
1842
1843 /* Macro to expand the PMEVCNTRn register */
1844 #define PMU_PMEVCNTR(n)                                                 \
1845         /* PMEVCNTRn */                                                 \
1846         { Op1(0), CRn(0b1110),                                          \
1847           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1848           access_pmu_evcntr }
1849
1850 /* Macro to expand the PMEVTYPERn register */
1851 #define PMU_PMEVTYPER(n)                                                \
1852         /* PMEVTYPERn */                                                \
1853         { Op1(0), CRn(0b1110),                                          \
1854           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1855           access_pmu_evtyper }
1856
1857 /*
1858  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1859  * depending on the way they are accessed (as a 32bit or a 64bit
1860  * register).
1861  */
1862 static const struct sys_reg_desc cp15_regs[] = {
1863         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1864         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1865         /* ACTLR */
1866         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1867         /* ACTLR2 */
1868         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1869         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1870         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1871         /* TTBCR */
1872         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1873         /* TTBCR2 */
1874         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1875         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1876         /* DFSR */
1877         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1878         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1879         /* ADFSR */
1880         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1881         /* AIFSR */
1882         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
1883         /* DFAR */
1884         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
1885         /* IFAR */
1886         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
1887
1888         /*
1889          * DC{C,I,CI}SW operations:
1890          */
1891         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1892         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1893         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1894
1895         /* PMU */
1896         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1897         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1898         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1899         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1900         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1901         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1902         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1903         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1904         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1905         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1906         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1907         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1908         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1909         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1910         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1911
1912         /* PRRR/MAIR0 */
1913         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
1914         /* NMRR/MAIR1 */
1915         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
1916         /* AMAIR0 */
1917         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
1918         /* AMAIR1 */
1919         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
1920
1921         /* ICC_SRE */
1922         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1923
1924         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
1925
1926         /* Arch Tmers */
1927         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1928         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1929
1930         /* PMEVCNTRn */
1931         PMU_PMEVCNTR(0),
1932         PMU_PMEVCNTR(1),
1933         PMU_PMEVCNTR(2),
1934         PMU_PMEVCNTR(3),
1935         PMU_PMEVCNTR(4),
1936         PMU_PMEVCNTR(5),
1937         PMU_PMEVCNTR(6),
1938         PMU_PMEVCNTR(7),
1939         PMU_PMEVCNTR(8),
1940         PMU_PMEVCNTR(9),
1941         PMU_PMEVCNTR(10),
1942         PMU_PMEVCNTR(11),
1943         PMU_PMEVCNTR(12),
1944         PMU_PMEVCNTR(13),
1945         PMU_PMEVCNTR(14),
1946         PMU_PMEVCNTR(15),
1947         PMU_PMEVCNTR(16),
1948         PMU_PMEVCNTR(17),
1949         PMU_PMEVCNTR(18),
1950         PMU_PMEVCNTR(19),
1951         PMU_PMEVCNTR(20),
1952         PMU_PMEVCNTR(21),
1953         PMU_PMEVCNTR(22),
1954         PMU_PMEVCNTR(23),
1955         PMU_PMEVCNTR(24),
1956         PMU_PMEVCNTR(25),
1957         PMU_PMEVCNTR(26),
1958         PMU_PMEVCNTR(27),
1959         PMU_PMEVCNTR(28),
1960         PMU_PMEVCNTR(29),
1961         PMU_PMEVCNTR(30),
1962         /* PMEVTYPERn */
1963         PMU_PMEVTYPER(0),
1964         PMU_PMEVTYPER(1),
1965         PMU_PMEVTYPER(2),
1966         PMU_PMEVTYPER(3),
1967         PMU_PMEVTYPER(4),
1968         PMU_PMEVTYPER(5),
1969         PMU_PMEVTYPER(6),
1970         PMU_PMEVTYPER(7),
1971         PMU_PMEVTYPER(8),
1972         PMU_PMEVTYPER(9),
1973         PMU_PMEVTYPER(10),
1974         PMU_PMEVTYPER(11),
1975         PMU_PMEVTYPER(12),
1976         PMU_PMEVTYPER(13),
1977         PMU_PMEVTYPER(14),
1978         PMU_PMEVTYPER(15),
1979         PMU_PMEVTYPER(16),
1980         PMU_PMEVTYPER(17),
1981         PMU_PMEVTYPER(18),
1982         PMU_PMEVTYPER(19),
1983         PMU_PMEVTYPER(20),
1984         PMU_PMEVTYPER(21),
1985         PMU_PMEVTYPER(22),
1986         PMU_PMEVTYPER(23),
1987         PMU_PMEVTYPER(24),
1988         PMU_PMEVTYPER(25),
1989         PMU_PMEVTYPER(26),
1990         PMU_PMEVTYPER(27),
1991         PMU_PMEVTYPER(28),
1992         PMU_PMEVTYPER(29),
1993         PMU_PMEVTYPER(30),
1994         /* PMCCFILTR */
1995         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1996
1997         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1998         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1999         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2000 };
2001
2002 static const struct sys_reg_desc cp15_64_regs[] = {
2003         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2004         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2005         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2006         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2007         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2008         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2009         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2010 };
2011
2012 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2013                               bool is_32)
2014 {
2015         unsigned int i;
2016
2017         for (i = 0; i < n; i++) {
2018                 if (!is_32 && table[i].reg && !table[i].reset) {
2019                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2020                                 table, i);
2021                         return 1;
2022                 }
2023
2024                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2025                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2026                         return 1;
2027                 }
2028         }
2029
2030         return 0;
2031 }
2032
2033 static int match_sys_reg(const void *key, const void *elt)
2034 {
2035         const unsigned long pval = (unsigned long)key;
2036         const struct sys_reg_desc *r = elt;
2037
2038         return pval - reg_to_encoding(r);
2039 }
2040
2041 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2042                                          const struct sys_reg_desc table[],
2043                                          unsigned int num)
2044 {
2045         unsigned long pval = reg_to_encoding(params);
2046
2047         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2048 }
2049
2050 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2051 {
2052         kvm_inject_undefined(vcpu);
2053         return 1;
2054 }
2055
2056 static void perform_access(struct kvm_vcpu *vcpu,
2057                            struct sys_reg_params *params,
2058                            const struct sys_reg_desc *r)
2059 {
2060         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2061
2062         /* Check for regs disabled by runtime config */
2063         if (sysreg_hidden(vcpu, r)) {
2064                 kvm_inject_undefined(vcpu);
2065                 return;
2066         }
2067
2068         /*
2069          * Not having an accessor means that we have configured a trap
2070          * that we don't know how to handle. This certainly qualifies
2071          * as a gross bug that should be fixed right away.
2072          */
2073         BUG_ON(!r->access);
2074
2075         /* Skip instruction if instructed so */
2076         if (likely(r->access(vcpu, params, r)))
2077                 kvm_incr_pc(vcpu);
2078 }
2079
2080 /*
2081  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2082  *                call the corresponding trap handler.
2083  *
2084  * @params: pointer to the descriptor of the access
2085  * @table: array of trap descriptors
2086  * @num: size of the trap descriptor array
2087  *
2088  * Return 0 if the access has been handled, and -1 if not.
2089  */
2090 static int emulate_cp(struct kvm_vcpu *vcpu,
2091                       struct sys_reg_params *params,
2092                       const struct sys_reg_desc *table,
2093                       size_t num)
2094 {
2095         const struct sys_reg_desc *r;
2096
2097         if (!table)
2098                 return -1;      /* Not handled */
2099
2100         r = find_reg(params, table, num);
2101
2102         if (r) {
2103                 perform_access(vcpu, params, r);
2104                 return 0;
2105         }
2106
2107         /* Not handled */
2108         return -1;
2109 }
2110
2111 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2112                                 struct sys_reg_params *params)
2113 {
2114         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2115         int cp = -1;
2116
2117         switch (esr_ec) {
2118         case ESR_ELx_EC_CP15_32:
2119         case ESR_ELx_EC_CP15_64:
2120                 cp = 15;
2121                 break;
2122         case ESR_ELx_EC_CP14_MR:
2123         case ESR_ELx_EC_CP14_64:
2124                 cp = 14;
2125                 break;
2126         default:
2127                 WARN_ON(1);
2128         }
2129
2130         print_sys_reg_msg(params,
2131                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2132                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2133         kvm_inject_undefined(vcpu);
2134 }
2135
2136 /**
2137  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2138  * @vcpu: The VCPU pointer
2139  * @run:  The kvm_run struct
2140  */
2141 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2142                             const struct sys_reg_desc *global,
2143                             size_t nr_global)
2144 {
2145         struct sys_reg_params params;
2146         u32 esr = kvm_vcpu_get_esr(vcpu);
2147         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2148         int Rt2 = (esr >> 10) & 0x1f;
2149
2150         params.CRm = (esr >> 1) & 0xf;
2151         params.is_write = ((esr & 1) == 0);
2152
2153         params.Op0 = 0;
2154         params.Op1 = (esr >> 16) & 0xf;
2155         params.Op2 = 0;
2156         params.CRn = 0;
2157
2158         /*
2159          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2160          * backends between AArch32 and AArch64, we get away with it.
2161          */
2162         if (params.is_write) {
2163                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2164                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2165         }
2166
2167         /*
2168          * If the table contains a handler, handle the
2169          * potential register operation in the case of a read and return
2170          * with success.
2171          */
2172         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2173                 /* Split up the value between registers for the read side */
2174                 if (!params.is_write) {
2175                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2176                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2177                 }
2178
2179                 return 1;
2180         }
2181
2182         unhandled_cp_access(vcpu, &params);
2183         return 1;
2184 }
2185
2186 /**
2187  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2188  * @vcpu: The VCPU pointer
2189  * @run:  The kvm_run struct
2190  */
2191 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2192                             const struct sys_reg_desc *global,
2193                             size_t nr_global)
2194 {
2195         struct sys_reg_params params;
2196         u32 esr = kvm_vcpu_get_esr(vcpu);
2197         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2198
2199         params.CRm = (esr >> 1) & 0xf;
2200         params.regval = vcpu_get_reg(vcpu, Rt);
2201         params.is_write = ((esr & 1) == 0);
2202         params.CRn = (esr >> 10) & 0xf;
2203         params.Op0 = 0;
2204         params.Op1 = (esr >> 14) & 0x7;
2205         params.Op2 = (esr >> 17) & 0x7;
2206
2207         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2208                 if (!params.is_write)
2209                         vcpu_set_reg(vcpu, Rt, params.regval);
2210                 return 1;
2211         }
2212
2213         unhandled_cp_access(vcpu, &params);
2214         return 1;
2215 }
2216
2217 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2218 {
2219         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2220 }
2221
2222 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2223 {
2224         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2225 }
2226
2227 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2228 {
2229         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2230 }
2231
2232 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2233 {
2234         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2235 }
2236
2237 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2238 {
2239         // See ARM DDI 0487E.a, section D12.3.2
2240         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2241 }
2242
2243 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2244                            struct sys_reg_params *params)
2245 {
2246         const struct sys_reg_desc *r;
2247
2248         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2249
2250         if (likely(r)) {
2251                 perform_access(vcpu, params, r);
2252         } else if (is_imp_def_sys_reg(params)) {
2253                 kvm_inject_undefined(vcpu);
2254         } else {
2255                 print_sys_reg_msg(params,
2256                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2257                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2258                 kvm_inject_undefined(vcpu);
2259         }
2260         return 1;
2261 }
2262
2263 /**
2264  * kvm_reset_sys_regs - sets system registers to reset value
2265  * @vcpu: The VCPU pointer
2266  *
2267  * This function finds the right table above and sets the registers on the
2268  * virtual CPU struct to their architecturally defined reset values.
2269  */
2270 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2271 {
2272         unsigned long i;
2273
2274         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2275                 if (sys_reg_descs[i].reset)
2276                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2277 }
2278
2279 /**
2280  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2281  * @vcpu: The VCPU pointer
2282  */
2283 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2284 {
2285         struct sys_reg_params params;
2286         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2287         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2288         int ret;
2289
2290         trace_kvm_handle_sys_reg(esr);
2291
2292         params.Op0 = (esr >> 20) & 3;
2293         params.Op1 = (esr >> 14) & 0x7;
2294         params.CRn = (esr >> 10) & 0xf;
2295         params.CRm = (esr >> 1) & 0xf;
2296         params.Op2 = (esr >> 17) & 0x7;
2297         params.regval = vcpu_get_reg(vcpu, Rt);
2298         params.is_write = !(esr & 1);
2299
2300         ret = emulate_sys_reg(vcpu, &params);
2301
2302         if (!params.is_write)
2303                 vcpu_set_reg(vcpu, Rt, params.regval);
2304         return ret;
2305 }
2306
2307 /******************************************************************************
2308  * Userspace API
2309  *****************************************************************************/
2310
2311 static bool index_to_params(u64 id, struct sys_reg_params *params)
2312 {
2313         switch (id & KVM_REG_SIZE_MASK) {
2314         case KVM_REG_SIZE_U64:
2315                 /* Any unused index bits means it's not valid. */
2316                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2317                               | KVM_REG_ARM_COPROC_MASK
2318                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2319                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2320                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2321                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2322                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2323                         return false;
2324                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2325                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2326                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2327                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2328                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2329                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2330                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2331                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2332                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2333                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2334                 return true;
2335         default:
2336                 return false;
2337         }
2338 }
2339
2340 const struct sys_reg_desc *find_reg_by_id(u64 id,
2341                                           struct sys_reg_params *params,
2342                                           const struct sys_reg_desc table[],
2343                                           unsigned int num)
2344 {
2345         if (!index_to_params(id, params))
2346                 return NULL;
2347
2348         return find_reg(params, table, num);
2349 }
2350
2351 /* Decode an index value, and find the sys_reg_desc entry. */
2352 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2353                                                     u64 id)
2354 {
2355         const struct sys_reg_desc *r;
2356         struct sys_reg_params params;
2357
2358         /* We only do sys_reg for now. */
2359         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2360                 return NULL;
2361
2362         if (!index_to_params(id, &params))
2363                 return NULL;
2364
2365         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2366
2367         /* Not saved in the sys_reg array and not otherwise accessible? */
2368         if (r && !(r->reg || r->get_user))
2369                 r = NULL;
2370
2371         return r;
2372 }
2373
2374 /*
2375  * These are the invariant sys_reg registers: we let the guest see the
2376  * host versions of these, so they're part of the guest state.
2377  *
2378  * A future CPU may provide a mechanism to present different values to
2379  * the guest, or a future kvm may trap them.
2380  */
2381
2382 #define FUNCTION_INVARIANT(reg)                                         \
2383         static void get_##reg(struct kvm_vcpu *v,                       \
2384                               const struct sys_reg_desc *r)             \
2385         {                                                               \
2386                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2387         }
2388
2389 FUNCTION_INVARIANT(midr_el1)
2390 FUNCTION_INVARIANT(revidr_el1)
2391 FUNCTION_INVARIANT(clidr_el1)
2392 FUNCTION_INVARIANT(aidr_el1)
2393
2394 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2395 {
2396         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2397 }
2398
2399 /* ->val is filled in by kvm_sys_reg_table_init() */
2400 static struct sys_reg_desc invariant_sys_regs[] = {
2401         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2402         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2403         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2404         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2405         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2406 };
2407
2408 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2409 {
2410         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2411                 return -EFAULT;
2412         return 0;
2413 }
2414
2415 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2416 {
2417         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2418                 return -EFAULT;
2419         return 0;
2420 }
2421
2422 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2423 {
2424         struct sys_reg_params params;
2425         const struct sys_reg_desc *r;
2426
2427         r = find_reg_by_id(id, &params, invariant_sys_regs,
2428                            ARRAY_SIZE(invariant_sys_regs));
2429         if (!r)
2430                 return -ENOENT;
2431
2432         return reg_to_user(uaddr, &r->val, id);
2433 }
2434
2435 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2436 {
2437         struct sys_reg_params params;
2438         const struct sys_reg_desc *r;
2439         int err;
2440         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2441
2442         r = find_reg_by_id(id, &params, invariant_sys_regs,
2443                            ARRAY_SIZE(invariant_sys_regs));
2444         if (!r)
2445                 return -ENOENT;
2446
2447         err = reg_from_user(&val, uaddr, id);
2448         if (err)
2449                 return err;
2450
2451         /* This is what we mean by invariant: you can't change it. */
2452         if (r->val != val)
2453                 return -EINVAL;
2454
2455         return 0;
2456 }
2457
2458 static bool is_valid_cache(u32 val)
2459 {
2460         u32 level, ctype;
2461
2462         if (val >= CSSELR_MAX)
2463                 return false;
2464
2465         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2466         level = (val >> 1);
2467         ctype = (cache_levels >> (level * 3)) & 7;
2468
2469         switch (ctype) {
2470         case 0: /* No cache */
2471                 return false;
2472         case 1: /* Instruction cache only */
2473                 return (val & 1);
2474         case 2: /* Data cache only */
2475         case 4: /* Unified cache */
2476                 return !(val & 1);
2477         case 3: /* Separate instruction and data caches */
2478                 return true;
2479         default: /* Reserved: we can't know instruction or data. */
2480                 return false;
2481         }
2482 }
2483
2484 static int demux_c15_get(u64 id, void __user *uaddr)
2485 {
2486         u32 val;
2487         u32 __user *uval = uaddr;
2488
2489         /* Fail if we have unknown bits set. */
2490         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2491                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2492                 return -ENOENT;
2493
2494         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2495         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2496                 if (KVM_REG_SIZE(id) != 4)
2497                         return -ENOENT;
2498                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2499                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2500                 if (!is_valid_cache(val))
2501                         return -ENOENT;
2502
2503                 return put_user(get_ccsidr(val), uval);
2504         default:
2505                 return -ENOENT;
2506         }
2507 }
2508
2509 static int demux_c15_set(u64 id, void __user *uaddr)
2510 {
2511         u32 val, newval;
2512         u32 __user *uval = uaddr;
2513
2514         /* Fail if we have unknown bits set. */
2515         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2516                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2517                 return -ENOENT;
2518
2519         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2520         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2521                 if (KVM_REG_SIZE(id) != 4)
2522                         return -ENOENT;
2523                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2524                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2525                 if (!is_valid_cache(val))
2526                         return -ENOENT;
2527
2528                 if (get_user(newval, uval))
2529                         return -EFAULT;
2530
2531                 /* This is also invariant: you can't change it. */
2532                 if (newval != get_ccsidr(val))
2533                         return -EINVAL;
2534                 return 0;
2535         default:
2536                 return -ENOENT;
2537         }
2538 }
2539
2540 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2541 {
2542         const struct sys_reg_desc *r;
2543         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2544
2545         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2546                 return demux_c15_get(reg->id, uaddr);
2547
2548         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2549                 return -ENOENT;
2550
2551         r = index_to_sys_reg_desc(vcpu, reg->id);
2552         if (!r)
2553                 return get_invariant_sys_reg(reg->id, uaddr);
2554
2555         /* Check for regs disabled by runtime config */
2556         if (sysreg_hidden(vcpu, r))
2557                 return -ENOENT;
2558
2559         if (r->get_user)
2560                 return (r->get_user)(vcpu, r, reg, uaddr);
2561
2562         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2563 }
2564
2565 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2566 {
2567         const struct sys_reg_desc *r;
2568         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2569
2570         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2571                 return demux_c15_set(reg->id, uaddr);
2572
2573         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2574                 return -ENOENT;
2575
2576         r = index_to_sys_reg_desc(vcpu, reg->id);
2577         if (!r)
2578                 return set_invariant_sys_reg(reg->id, uaddr);
2579
2580         /* Check for regs disabled by runtime config */
2581         if (sysreg_hidden(vcpu, r))
2582                 return -ENOENT;
2583
2584         if (r->set_user)
2585                 return (r->set_user)(vcpu, r, reg, uaddr);
2586
2587         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2588 }
2589
2590 static unsigned int num_demux_regs(void)
2591 {
2592         unsigned int i, count = 0;
2593
2594         for (i = 0; i < CSSELR_MAX; i++)
2595                 if (is_valid_cache(i))
2596                         count++;
2597
2598         return count;
2599 }
2600
2601 static int write_demux_regids(u64 __user *uindices)
2602 {
2603         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2604         unsigned int i;
2605
2606         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2607         for (i = 0; i < CSSELR_MAX; i++) {
2608                 if (!is_valid_cache(i))
2609                         continue;
2610                 if (put_user(val | i, uindices))
2611                         return -EFAULT;
2612                 uindices++;
2613         }
2614         return 0;
2615 }
2616
2617 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2618 {
2619         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2620                 KVM_REG_ARM64_SYSREG |
2621                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2622                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2623                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2624                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2625                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2626 }
2627
2628 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2629 {
2630         if (!*uind)
2631                 return true;
2632
2633         if (put_user(sys_reg_to_index(reg), *uind))
2634                 return false;
2635
2636         (*uind)++;
2637         return true;
2638 }
2639
2640 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2641                             const struct sys_reg_desc *rd,
2642                             u64 __user **uind,
2643                             unsigned int *total)
2644 {
2645         /*
2646          * Ignore registers we trap but don't save,
2647          * and for which no custom user accessor is provided.
2648          */
2649         if (!(rd->reg || rd->get_user))
2650                 return 0;
2651
2652         if (sysreg_hidden(vcpu, rd))
2653                 return 0;
2654
2655         if (!copy_reg_to_user(rd, uind))
2656                 return -EFAULT;
2657
2658         (*total)++;
2659         return 0;
2660 }
2661
2662 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2663 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2664 {
2665         const struct sys_reg_desc *i2, *end2;
2666         unsigned int total = 0;
2667         int err;
2668
2669         i2 = sys_reg_descs;
2670         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2671
2672         while (i2 != end2) {
2673                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2674                 if (err)
2675                         return err;
2676         }
2677         return total;
2678 }
2679
2680 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2681 {
2682         return ARRAY_SIZE(invariant_sys_regs)
2683                 + num_demux_regs()
2684                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2685 }
2686
2687 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2688 {
2689         unsigned int i;
2690         int err;
2691
2692         /* Then give them all the invariant registers' indices. */
2693         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2694                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2695                         return -EFAULT;
2696                 uindices++;
2697         }
2698
2699         err = walk_sys_regs(vcpu, uindices);
2700         if (err < 0)
2701                 return err;
2702         uindices += err;
2703
2704         return write_demux_regids(uindices);
2705 }
2706
2707 void kvm_sys_reg_table_init(void)
2708 {
2709         unsigned int i;
2710         struct sys_reg_desc clidr;
2711
2712         /* Make sure tables are unique and in order. */
2713         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2714         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2715         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2716         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2717         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2718         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2719
2720         /* We abuse the reset function to overwrite the table itself. */
2721         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2722                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2723
2724         /*
2725          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2726          *
2727          *   If software reads the Cache Type fields from Ctype1
2728          *   upwards, once it has seen a value of 0b000, no caches
2729          *   exist at further-out levels of the hierarchy. So, for
2730          *   example, if Ctype3 is the first Cache Type field with a
2731          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2732          *   ignored.
2733          */
2734         get_clidr_el1(NULL, &clidr); /* Ugly... */
2735         cache_levels = clidr.val;
2736         for (i = 0; i < 7; i++)
2737                 if (((cache_levels >> (i*3)) & 7) == 0)
2738                         break;
2739         /* Clear all higher bits. */
2740         cache_levels &= (1 << (i*3))-1;
2741 }