Merge remote-tracking branch 'arm64/for-next/neon-softirqs-disabled' into kvmarm...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 #define reg_to_encoding(x)                                              \
48         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
49                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2)
50
51 static bool read_from_write_only(struct kvm_vcpu *vcpu,
52                                  struct sys_reg_params *params,
53                                  const struct sys_reg_desc *r)
54 {
55         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
56         print_sys_reg_instr(params);
57         kvm_inject_undefined(vcpu);
58         return false;
59 }
60
61 static bool write_to_read_only(struct kvm_vcpu *vcpu,
62                                struct sys_reg_params *params,
63                                const struct sys_reg_desc *r)
64 {
65         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
66         print_sys_reg_instr(params);
67         kvm_inject_undefined(vcpu);
68         return false;
69 }
70
71 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
72 {
73         u64 val = 0x8badf00d8badf00d;
74
75         if (vcpu->arch.sysregs_loaded_on_cpu &&
76             __vcpu_read_sys_reg_from_cpu(reg, &val))
77                 return val;
78
79         return __vcpu_sys_reg(vcpu, reg);
80 }
81
82 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
83 {
84         if (vcpu->arch.sysregs_loaded_on_cpu &&
85             __vcpu_write_sys_reg_to_cpu(val, reg))
86                 return;
87
88          __vcpu_sys_reg(vcpu, reg) = val;
89 }
90
91 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
92 static u32 cache_levels;
93
94 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
95 #define CSSELR_MAX 14
96
97 /* Which cache CCSIDR represents depends on CSSELR value. */
98 static u32 get_ccsidr(u32 csselr)
99 {
100         u32 ccsidr;
101
102         /* Make sure noone else changes CSSELR during this! */
103         local_irq_disable();
104         write_sysreg(csselr, csselr_el1);
105         isb();
106         ccsidr = read_sysreg(ccsidr_el1);
107         local_irq_enable();
108
109         return ccsidr;
110 }
111
112 /*
113  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
114  */
115 static bool access_dcsw(struct kvm_vcpu *vcpu,
116                         struct sys_reg_params *p,
117                         const struct sys_reg_desc *r)
118 {
119         if (!p->is_write)
120                 return read_from_write_only(vcpu, p, r);
121
122         /*
123          * Only track S/W ops if we don't have FWB. It still indicates
124          * that the guest is a bit broken (S/W operations should only
125          * be done by firmware, knowing that there is only a single
126          * CPU left in the system, and certainly not from non-secure
127          * software).
128          */
129         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
130                 kvm_set_way_flush(vcpu);
131
132         return true;
133 }
134
135 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
136 {
137         switch (r->aarch32_map) {
138         case AA32_LO:
139                 *mask = GENMASK_ULL(31, 0);
140                 *shift = 0;
141                 break;
142         case AA32_HI:
143                 *mask = GENMASK_ULL(63, 32);
144                 *shift = 32;
145                 break;
146         default:
147                 *mask = GENMASK_ULL(63, 0);
148                 *shift = 0;
149                 break;
150         }
151 }
152
153 /*
154  * Generic accessor for VM registers. Only called as long as HCR_TVM
155  * is set. If the guest enables the MMU, we stop trapping the VM
156  * sys_regs and leave it in complete control of the caches.
157  */
158 static bool access_vm_reg(struct kvm_vcpu *vcpu,
159                           struct sys_reg_params *p,
160                           const struct sys_reg_desc *r)
161 {
162         bool was_enabled = vcpu_has_cache_enabled(vcpu);
163         u64 val, mask, shift;
164
165         BUG_ON(!p->is_write);
166
167         get_access_mask(r, &mask, &shift);
168
169         if (~mask) {
170                 val = vcpu_read_sys_reg(vcpu, r->reg);
171                 val &= ~mask;
172         } else {
173                 val = 0;
174         }
175
176         val |= (p->regval & (mask >> shift)) << shift;
177         vcpu_write_sys_reg(vcpu, val, r->reg);
178
179         kvm_toggle_cache(vcpu, was_enabled);
180         return true;
181 }
182
183 static bool access_actlr(struct kvm_vcpu *vcpu,
184                          struct sys_reg_params *p,
185                          const struct sys_reg_desc *r)
186 {
187         u64 mask, shift;
188
189         if (p->is_write)
190                 return ignore_write(vcpu, p);
191
192         get_access_mask(r, &mask, &shift);
193         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
194
195         return true;
196 }
197
198 /*
199  * Trap handler for the GICv3 SGI generation system register.
200  * Forward the request to the VGIC emulation.
201  * The cp15_64 code makes sure this automatically works
202  * for both AArch64 and AArch32 accesses.
203  */
204 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
205                            struct sys_reg_params *p,
206                            const struct sys_reg_desc *r)
207 {
208         bool g1;
209
210         if (!p->is_write)
211                 return read_from_write_only(vcpu, p, r);
212
213         /*
214          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
215          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
216          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
217          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
218          * group.
219          */
220         if (p->Op0 == 0) {              /* AArch32 */
221                 switch (p->Op1) {
222                 default:                /* Keep GCC quiet */
223                 case 0:                 /* ICC_SGI1R */
224                         g1 = true;
225                         break;
226                 case 1:                 /* ICC_ASGI1R */
227                 case 2:                 /* ICC_SGI0R */
228                         g1 = false;
229                         break;
230                 }
231         } else {                        /* AArch64 */
232                 switch (p->Op2) {
233                 default:                /* Keep GCC quiet */
234                 case 5:                 /* ICC_SGI1R_EL1 */
235                         g1 = true;
236                         break;
237                 case 6:                 /* ICC_ASGI1R_EL1 */
238                 case 7:                 /* ICC_SGI0R_EL1 */
239                         g1 = false;
240                         break;
241                 }
242         }
243
244         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
245
246         return true;
247 }
248
249 static bool access_gic_sre(struct kvm_vcpu *vcpu,
250                            struct sys_reg_params *p,
251                            const struct sys_reg_desc *r)
252 {
253         if (p->is_write)
254                 return ignore_write(vcpu, p);
255
256         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
257         return true;
258 }
259
260 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
261                         struct sys_reg_params *p,
262                         const struct sys_reg_desc *r)
263 {
264         if (p->is_write)
265                 return ignore_write(vcpu, p);
266         else
267                 return read_zero(vcpu, p);
268 }
269
270 /*
271  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
272  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
273  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
274  * treat it separately.
275  */
276 static bool trap_loregion(struct kvm_vcpu *vcpu,
277                           struct sys_reg_params *p,
278                           const struct sys_reg_desc *r)
279 {
280         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
281         u32 sr = reg_to_encoding(r);
282
283         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
284                 kvm_inject_undefined(vcpu);
285                 return false;
286         }
287
288         if (p->is_write && sr == SYS_LORID_EL1)
289                 return write_to_read_only(vcpu, p, r);
290
291         return trap_raz_wi(vcpu, p, r);
292 }
293
294 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
295                            struct sys_reg_params *p,
296                            const struct sys_reg_desc *r)
297 {
298         if (p->is_write) {
299                 return ignore_write(vcpu, p);
300         } else {
301                 p->regval = (1 << 3);
302                 return true;
303         }
304 }
305
306 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
307                                    struct sys_reg_params *p,
308                                    const struct sys_reg_desc *r)
309 {
310         if (p->is_write) {
311                 return ignore_write(vcpu, p);
312         } else {
313                 p->regval = read_sysreg(dbgauthstatus_el1);
314                 return true;
315         }
316 }
317
318 /*
319  * We want to avoid world-switching all the DBG registers all the
320  * time:
321  * 
322  * - If we've touched any debug register, it is likely that we're
323  *   going to touch more of them. It then makes sense to disable the
324  *   traps and start doing the save/restore dance
325  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
326  *   then mandatory to save/restore the registers, as the guest
327  *   depends on them.
328  * 
329  * For this, we use a DIRTY bit, indicating the guest has modified the
330  * debug registers, used as follow:
331  *
332  * On guest entry:
333  * - If the dirty bit is set (because we're coming back from trapping),
334  *   disable the traps, save host registers, restore guest registers.
335  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
336  *   set the dirty bit, disable the traps, save host registers,
337  *   restore guest registers.
338  * - Otherwise, enable the traps
339  *
340  * On guest exit:
341  * - If the dirty bit is set, save guest registers, restore host
342  *   registers and clear the dirty bit. This ensure that the host can
343  *   now use the debug registers.
344  */
345 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
346                             struct sys_reg_params *p,
347                             const struct sys_reg_desc *r)
348 {
349         if (p->is_write) {
350                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
351                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
352         } else {
353                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
354         }
355
356         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
357
358         return true;
359 }
360
361 /*
362  * reg_to_dbg/dbg_to_reg
363  *
364  * A 32 bit write to a debug register leave top bits alone
365  * A 32 bit read from a debug register only returns the bottom bits
366  *
367  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
368  * hyp.S code switches between host and guest values in future.
369  */
370 static void reg_to_dbg(struct kvm_vcpu *vcpu,
371                        struct sys_reg_params *p,
372                        const struct sys_reg_desc *rd,
373                        u64 *dbg_reg)
374 {
375         u64 mask, shift, val;
376
377         get_access_mask(rd, &mask, &shift);
378
379         val = *dbg_reg;
380         val &= ~mask;
381         val |= (p->regval & (mask >> shift)) << shift;
382         *dbg_reg = val;
383
384         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
385 }
386
387 static void dbg_to_reg(struct kvm_vcpu *vcpu,
388                        struct sys_reg_params *p,
389                        const struct sys_reg_desc *rd,
390                        u64 *dbg_reg)
391 {
392         u64 mask, shift;
393
394         get_access_mask(rd, &mask, &shift);
395         p->regval = (*dbg_reg & mask) >> shift;
396 }
397
398 static bool trap_bvr(struct kvm_vcpu *vcpu,
399                      struct sys_reg_params *p,
400                      const struct sys_reg_desc *rd)
401 {
402         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
403
404         if (p->is_write)
405                 reg_to_dbg(vcpu, p, rd, dbg_reg);
406         else
407                 dbg_to_reg(vcpu, p, rd, dbg_reg);
408
409         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
410
411         return true;
412 }
413
414 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
415                 const struct kvm_one_reg *reg, void __user *uaddr)
416 {
417         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
418
419         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
420                 return -EFAULT;
421         return 0;
422 }
423
424 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
425         const struct kvm_one_reg *reg, void __user *uaddr)
426 {
427         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
428
429         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
430                 return -EFAULT;
431         return 0;
432 }
433
434 static void reset_bvr(struct kvm_vcpu *vcpu,
435                       const struct sys_reg_desc *rd)
436 {
437         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
438 }
439
440 static bool trap_bcr(struct kvm_vcpu *vcpu,
441                      struct sys_reg_params *p,
442                      const struct sys_reg_desc *rd)
443 {
444         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
445
446         if (p->is_write)
447                 reg_to_dbg(vcpu, p, rd, dbg_reg);
448         else
449                 dbg_to_reg(vcpu, p, rd, dbg_reg);
450
451         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
452
453         return true;
454 }
455
456 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
457                 const struct kvm_one_reg *reg, void __user *uaddr)
458 {
459         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
460
461         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
462                 return -EFAULT;
463
464         return 0;
465 }
466
467 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
468         const struct kvm_one_reg *reg, void __user *uaddr)
469 {
470         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
471
472         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
473                 return -EFAULT;
474         return 0;
475 }
476
477 static void reset_bcr(struct kvm_vcpu *vcpu,
478                       const struct sys_reg_desc *rd)
479 {
480         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
481 }
482
483 static bool trap_wvr(struct kvm_vcpu *vcpu,
484                      struct sys_reg_params *p,
485                      const struct sys_reg_desc *rd)
486 {
487         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
488
489         if (p->is_write)
490                 reg_to_dbg(vcpu, p, rd, dbg_reg);
491         else
492                 dbg_to_reg(vcpu, p, rd, dbg_reg);
493
494         trace_trap_reg(__func__, rd->reg, p->is_write,
495                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
496
497         return true;
498 }
499
500 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501                 const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
504
505         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
506                 return -EFAULT;
507         return 0;
508 }
509
510 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
511         const struct kvm_one_reg *reg, void __user *uaddr)
512 {
513         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
514
515         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
516                 return -EFAULT;
517         return 0;
518 }
519
520 static void reset_wvr(struct kvm_vcpu *vcpu,
521                       const struct sys_reg_desc *rd)
522 {
523         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
524 }
525
526 static bool trap_wcr(struct kvm_vcpu *vcpu,
527                      struct sys_reg_params *p,
528                      const struct sys_reg_desc *rd)
529 {
530         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
531
532         if (p->is_write)
533                 reg_to_dbg(vcpu, p, rd, dbg_reg);
534         else
535                 dbg_to_reg(vcpu, p, rd, dbg_reg);
536
537         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
538
539         return true;
540 }
541
542 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
543                 const struct kvm_one_reg *reg, void __user *uaddr)
544 {
545         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
546
547         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
548                 return -EFAULT;
549         return 0;
550 }
551
552 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
553         const struct kvm_one_reg *reg, void __user *uaddr)
554 {
555         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
556
557         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
558                 return -EFAULT;
559         return 0;
560 }
561
562 static void reset_wcr(struct kvm_vcpu *vcpu,
563                       const struct sys_reg_desc *rd)
564 {
565         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
566 }
567
568 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
569 {
570         u64 amair = read_sysreg(amair_el1);
571         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
572 }
573
574 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
575 {
576         u64 actlr = read_sysreg(actlr_el1);
577         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
578 }
579
580 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
581 {
582         u64 mpidr;
583
584         /*
585          * Map the vcpu_id into the first three affinity level fields of
586          * the MPIDR. We limit the number of VCPUs in level 0 due to a
587          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
588          * of the GICv3 to be able to address each CPU directly when
589          * sending IPIs.
590          */
591         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
592         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
593         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
594         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
595 }
596
597 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
598                                    const struct sys_reg_desc *r)
599 {
600         if (kvm_vcpu_has_pmu(vcpu))
601                 return 0;
602
603         return REG_HIDDEN;
604 }
605
606 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
607 {
608         u64 pmcr, val;
609
610         /* No PMU available, PMCR_EL0 may UNDEF... */
611         if (!kvm_arm_support_pmu_v3())
612                 return;
613
614         pmcr = read_sysreg(pmcr_el0);
615         /*
616          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
617          * except PMCR.E resetting to zero.
618          */
619         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
620                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
621         if (!system_supports_32bit_el0())
622                 val |= ARMV8_PMU_PMCR_LC;
623         __vcpu_sys_reg(vcpu, r->reg) = val;
624 }
625
626 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
627 {
628         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
629         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
630
631         if (!enabled)
632                 kvm_inject_undefined(vcpu);
633
634         return !enabled;
635 }
636
637 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
638 {
639         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
640 }
641
642 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
643 {
644         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
645 }
646
647 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
648 {
649         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
650 }
651
652 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
653 {
654         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
655 }
656
657 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
658                         const struct sys_reg_desc *r)
659 {
660         u64 val;
661
662         if (pmu_access_el0_disabled(vcpu))
663                 return false;
664
665         if (p->is_write) {
666                 /* Only update writeable bits of PMCR */
667                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
668                 val &= ~ARMV8_PMU_PMCR_MASK;
669                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
670                 if (!system_supports_32bit_el0())
671                         val |= ARMV8_PMU_PMCR_LC;
672                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
673                 kvm_pmu_handle_pmcr(vcpu, val);
674                 kvm_vcpu_pmu_restore_guest(vcpu);
675         } else {
676                 /* PMCR.P & PMCR.C are RAZ */
677                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
678                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
679                 p->regval = val;
680         }
681
682         return true;
683 }
684
685 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
686                           const struct sys_reg_desc *r)
687 {
688         if (pmu_access_event_counter_el0_disabled(vcpu))
689                 return false;
690
691         if (p->is_write)
692                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
693         else
694                 /* return PMSELR.SEL field */
695                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
696                             & ARMV8_PMU_COUNTER_MASK;
697
698         return true;
699 }
700
701 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
702                           const struct sys_reg_desc *r)
703 {
704         u64 pmceid, mask, shift;
705
706         BUG_ON(p->is_write);
707
708         if (pmu_access_el0_disabled(vcpu))
709                 return false;
710
711         get_access_mask(r, &mask, &shift);
712
713         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
714         pmceid &= mask;
715         pmceid >>= shift;
716
717         p->regval = pmceid;
718
719         return true;
720 }
721
722 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
723 {
724         u64 pmcr, val;
725
726         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
727         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
728         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
729                 kvm_inject_undefined(vcpu);
730                 return false;
731         }
732
733         return true;
734 }
735
736 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
737                               struct sys_reg_params *p,
738                               const struct sys_reg_desc *r)
739 {
740         u64 idx = ~0UL;
741
742         if (r->CRn == 9 && r->CRm == 13) {
743                 if (r->Op2 == 2) {
744                         /* PMXEVCNTR_EL0 */
745                         if (pmu_access_event_counter_el0_disabled(vcpu))
746                                 return false;
747
748                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
749                               & ARMV8_PMU_COUNTER_MASK;
750                 } else if (r->Op2 == 0) {
751                         /* PMCCNTR_EL0 */
752                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
753                                 return false;
754
755                         idx = ARMV8_PMU_CYCLE_IDX;
756                 }
757         } else if (r->CRn == 0 && r->CRm == 9) {
758                 /* PMCCNTR */
759                 if (pmu_access_event_counter_el0_disabled(vcpu))
760                         return false;
761
762                 idx = ARMV8_PMU_CYCLE_IDX;
763         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
764                 /* PMEVCNTRn_EL0 */
765                 if (pmu_access_event_counter_el0_disabled(vcpu))
766                         return false;
767
768                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
769         }
770
771         /* Catch any decoding mistake */
772         WARN_ON(idx == ~0UL);
773
774         if (!pmu_counter_idx_valid(vcpu, idx))
775                 return false;
776
777         if (p->is_write) {
778                 if (pmu_access_el0_disabled(vcpu))
779                         return false;
780
781                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
782         } else {
783                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
784         }
785
786         return true;
787 }
788
789 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
790                                const struct sys_reg_desc *r)
791 {
792         u64 idx, reg;
793
794         if (pmu_access_el0_disabled(vcpu))
795                 return false;
796
797         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
798                 /* PMXEVTYPER_EL0 */
799                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
800                 reg = PMEVTYPER0_EL0 + idx;
801         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
802                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
803                 if (idx == ARMV8_PMU_CYCLE_IDX)
804                         reg = PMCCFILTR_EL0;
805                 else
806                         /* PMEVTYPERn_EL0 */
807                         reg = PMEVTYPER0_EL0 + idx;
808         } else {
809                 BUG();
810         }
811
812         if (!pmu_counter_idx_valid(vcpu, idx))
813                 return false;
814
815         if (p->is_write) {
816                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
817                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
818                 kvm_vcpu_pmu_restore_guest(vcpu);
819         } else {
820                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
821         }
822
823         return true;
824 }
825
826 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
827                            const struct sys_reg_desc *r)
828 {
829         u64 val, mask;
830
831         if (pmu_access_el0_disabled(vcpu))
832                 return false;
833
834         mask = kvm_pmu_valid_counter_mask(vcpu);
835         if (p->is_write) {
836                 val = p->regval & mask;
837                 if (r->Op2 & 0x1) {
838                         /* accessing PMCNTENSET_EL0 */
839                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
840                         kvm_pmu_enable_counter_mask(vcpu, val);
841                         kvm_vcpu_pmu_restore_guest(vcpu);
842                 } else {
843                         /* accessing PMCNTENCLR_EL0 */
844                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
845                         kvm_pmu_disable_counter_mask(vcpu, val);
846                 }
847         } else {
848                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
849         }
850
851         return true;
852 }
853
854 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
855                            const struct sys_reg_desc *r)
856 {
857         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
858
859         if (check_pmu_access_disabled(vcpu, 0))
860                 return false;
861
862         if (p->is_write) {
863                 u64 val = p->regval & mask;
864
865                 if (r->Op2 & 0x1)
866                         /* accessing PMINTENSET_EL1 */
867                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
868                 else
869                         /* accessing PMINTENCLR_EL1 */
870                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
871         } else {
872                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
873         }
874
875         return true;
876 }
877
878 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
879                          const struct sys_reg_desc *r)
880 {
881         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
882
883         if (pmu_access_el0_disabled(vcpu))
884                 return false;
885
886         if (p->is_write) {
887                 if (r->CRm & 0x2)
888                         /* accessing PMOVSSET_EL0 */
889                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
890                 else
891                         /* accessing PMOVSCLR_EL0 */
892                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
893         } else {
894                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
895         }
896
897         return true;
898 }
899
900 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
901                            const struct sys_reg_desc *r)
902 {
903         u64 mask;
904
905         if (!p->is_write)
906                 return read_from_write_only(vcpu, p, r);
907
908         if (pmu_write_swinc_el0_disabled(vcpu))
909                 return false;
910
911         mask = kvm_pmu_valid_counter_mask(vcpu);
912         kvm_pmu_software_increment(vcpu, p->regval & mask);
913         return true;
914 }
915
916 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
917                              const struct sys_reg_desc *r)
918 {
919         if (p->is_write) {
920                 if (!vcpu_mode_priv(vcpu)) {
921                         kvm_inject_undefined(vcpu);
922                         return false;
923                 }
924
925                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
926                                p->regval & ARMV8_PMU_USERENR_MASK;
927         } else {
928                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
929                             & ARMV8_PMU_USERENR_MASK;
930         }
931
932         return true;
933 }
934
935 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
936 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
937         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
938           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
939         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
940           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
941         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
942           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
943         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
944           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
945
946 #define PMU_SYS_REG(r)                                          \
947         SYS_DESC(r), .reset = reset_unknown, .visibility = pmu_visibility
948
949 /* Macro to expand the PMEVCNTRn_EL0 register */
950 #define PMU_PMEVCNTR_EL0(n)                                             \
951         { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
952           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
953
954 /* Macro to expand the PMEVTYPERn_EL0 register */
955 #define PMU_PMEVTYPER_EL0(n)                                            \
956         { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
957           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
958
959 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
960                          const struct sys_reg_desc *r)
961 {
962         kvm_inject_undefined(vcpu);
963
964         return false;
965 }
966
967 /* Macro to expand the AMU counter and type registers*/
968 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
969 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
970 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
971 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
972
973 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
974                         const struct sys_reg_desc *rd)
975 {
976         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
977 }
978
979 /*
980  * If we land here on a PtrAuth access, that is because we didn't
981  * fixup the access on exit by allowing the PtrAuth sysregs. The only
982  * way this happens is when the guest does not have PtrAuth support
983  * enabled.
984  */
985 #define __PTRAUTH_KEY(k)                                                \
986         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
987         .visibility = ptrauth_visibility}
988
989 #define PTRAUTH_KEY(k)                                                  \
990         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
991         __PTRAUTH_KEY(k ## KEYHI_EL1)
992
993 static bool access_arch_timer(struct kvm_vcpu *vcpu,
994                               struct sys_reg_params *p,
995                               const struct sys_reg_desc *r)
996 {
997         enum kvm_arch_timers tmr;
998         enum kvm_arch_timer_regs treg;
999         u64 reg = reg_to_encoding(r);
1000
1001         switch (reg) {
1002         case SYS_CNTP_TVAL_EL0:
1003         case SYS_AARCH32_CNTP_TVAL:
1004                 tmr = TIMER_PTIMER;
1005                 treg = TIMER_REG_TVAL;
1006                 break;
1007         case SYS_CNTP_CTL_EL0:
1008         case SYS_AARCH32_CNTP_CTL:
1009                 tmr = TIMER_PTIMER;
1010                 treg = TIMER_REG_CTL;
1011                 break;
1012         case SYS_CNTP_CVAL_EL0:
1013         case SYS_AARCH32_CNTP_CVAL:
1014                 tmr = TIMER_PTIMER;
1015                 treg = TIMER_REG_CVAL;
1016                 break;
1017         default:
1018                 BUG();
1019         }
1020
1021         if (p->is_write)
1022                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1023         else
1024                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1025
1026         return true;
1027 }
1028
1029 #define FEATURE(x)      (GENMASK_ULL(x##_SHIFT + 3, x##_SHIFT))
1030
1031 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1032 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1033                 struct sys_reg_desc const *r, bool raz)
1034 {
1035         u32 id = reg_to_encoding(r);
1036         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1037
1038         switch (id) {
1039         case SYS_ID_AA64PFR0_EL1:
1040                 if (!vcpu_has_sve(vcpu))
1041                         val &= ~FEATURE(ID_AA64PFR0_SVE);
1042                 val &= ~FEATURE(ID_AA64PFR0_AMU);
1043                 val &= ~FEATURE(ID_AA64PFR0_CSV2);
1044                 val |= FIELD_PREP(FEATURE(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1045                 val &= ~FEATURE(ID_AA64PFR0_CSV3);
1046                 val |= FIELD_PREP(FEATURE(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1047                 break;
1048         case SYS_ID_AA64PFR1_EL1:
1049                 val &= ~FEATURE(ID_AA64PFR1_MTE);
1050                 break;
1051         case SYS_ID_AA64ISAR1_EL1:
1052                 if (!vcpu_has_ptrauth(vcpu))
1053                         val &= ~(FEATURE(ID_AA64ISAR1_APA) |
1054                                  FEATURE(ID_AA64ISAR1_API) |
1055                                  FEATURE(ID_AA64ISAR1_GPA) |
1056                                  FEATURE(ID_AA64ISAR1_GPI));
1057                 break;
1058         case SYS_ID_AA64DFR0_EL1:
1059                 /* Limit debug to ARMv8.0 */
1060                 val &= ~FEATURE(ID_AA64DFR0_DEBUGVER);
1061                 val |= FIELD_PREP(FEATURE(ID_AA64DFR0_DEBUGVER), 6);
1062                 /* Limit guests to PMUv3 for ARMv8.4 */
1063                 val = cpuid_feature_cap_perfmon_field(val,
1064                                                       ID_AA64DFR0_PMUVER_SHIFT,
1065                                                       kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1066                 /* Hide SPE from guests */
1067                 val &= ~FEATURE(ID_AA64DFR0_PMSVER);
1068                 break;
1069         case SYS_ID_DFR0_EL1:
1070                 /* Limit guests to PMUv3 for ARMv8.4 */
1071                 val = cpuid_feature_cap_perfmon_field(val,
1072                                                       ID_DFR0_PERFMON_SHIFT,
1073                                                       kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1074                 break;
1075         }
1076
1077         return val;
1078 }
1079
1080 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1081                                   const struct sys_reg_desc *r)
1082 {
1083         u32 id = reg_to_encoding(r);
1084
1085         switch (id) {
1086         case SYS_ID_AA64ZFR0_EL1:
1087                 if (!vcpu_has_sve(vcpu))
1088                         return REG_RAZ;
1089                 break;
1090         }
1091
1092         return 0;
1093 }
1094
1095 /* cpufeature ID register access trap handlers */
1096
1097 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1098                             struct sys_reg_params *p,
1099                             const struct sys_reg_desc *r,
1100                             bool raz)
1101 {
1102         if (p->is_write)
1103                 return write_to_read_only(vcpu, p, r);
1104
1105         p->regval = read_id_reg(vcpu, r, raz);
1106         return true;
1107 }
1108
1109 static bool access_id_reg(struct kvm_vcpu *vcpu,
1110                           struct sys_reg_params *p,
1111                           const struct sys_reg_desc *r)
1112 {
1113         bool raz = sysreg_visible_as_raz(vcpu, r);
1114
1115         return __access_id_reg(vcpu, p, r, raz);
1116 }
1117
1118 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1119                               struct sys_reg_params *p,
1120                               const struct sys_reg_desc *r)
1121 {
1122         return __access_id_reg(vcpu, p, r, true);
1123 }
1124
1125 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1126 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1127 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1128
1129 /* Visibility overrides for SVE-specific control registers */
1130 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1131                                    const struct sys_reg_desc *rd)
1132 {
1133         if (vcpu_has_sve(vcpu))
1134                 return 0;
1135
1136         return REG_HIDDEN;
1137 }
1138
1139 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1140                                const struct sys_reg_desc *rd,
1141                                const struct kvm_one_reg *reg, void __user *uaddr)
1142 {
1143         const u64 id = sys_reg_to_index(rd);
1144         u8 csv2, csv3;
1145         int err;
1146         u64 val;
1147
1148         err = reg_from_user(&val, uaddr, id);
1149         if (err)
1150                 return err;
1151
1152         /*
1153          * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1154          * it doesn't promise more than what is actually provided (the
1155          * guest could otherwise be covered in ectoplasmic residue).
1156          */
1157         csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1158         if (csv2 > 1 ||
1159             (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1160                 return -EINVAL;
1161
1162         /* Same thing for CSV3 */
1163         csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1164         if (csv3 > 1 ||
1165             (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1166                 return -EINVAL;
1167
1168         /* We can only differ with CSV[23], and anything else is an error */
1169         val ^= read_id_reg(vcpu, rd, false);
1170         val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1171                  (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1172         if (val)
1173                 return -EINVAL;
1174
1175         vcpu->kvm->arch.pfr0_csv2 = csv2;
1176         vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1177
1178         return 0;
1179 }
1180
1181 /*
1182  * cpufeature ID register user accessors
1183  *
1184  * For now, these registers are immutable for userspace, so no values
1185  * are stored, and for set_id_reg() we don't allow the effective value
1186  * to be changed.
1187  */
1188 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1189                         const struct sys_reg_desc *rd, void __user *uaddr,
1190                         bool raz)
1191 {
1192         const u64 id = sys_reg_to_index(rd);
1193         const u64 val = read_id_reg(vcpu, rd, raz);
1194
1195         return reg_to_user(uaddr, &val, id);
1196 }
1197
1198 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1199                         const struct sys_reg_desc *rd, void __user *uaddr,
1200                         bool raz)
1201 {
1202         const u64 id = sys_reg_to_index(rd);
1203         int err;
1204         u64 val;
1205
1206         err = reg_from_user(&val, uaddr, id);
1207         if (err)
1208                 return err;
1209
1210         /* This is what we mean by invariant: you can't change it. */
1211         if (val != read_id_reg(vcpu, rd, raz))
1212                 return -EINVAL;
1213
1214         return 0;
1215 }
1216
1217 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1218                       const struct kvm_one_reg *reg, void __user *uaddr)
1219 {
1220         bool raz = sysreg_visible_as_raz(vcpu, rd);
1221
1222         return __get_id_reg(vcpu, rd, uaddr, raz);
1223 }
1224
1225 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1226                       const struct kvm_one_reg *reg, void __user *uaddr)
1227 {
1228         bool raz = sysreg_visible_as_raz(vcpu, rd);
1229
1230         return __set_id_reg(vcpu, rd, uaddr, raz);
1231 }
1232
1233 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1234                           const struct kvm_one_reg *reg, void __user *uaddr)
1235 {
1236         return __get_id_reg(vcpu, rd, uaddr, true);
1237 }
1238
1239 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1240                           const struct kvm_one_reg *reg, void __user *uaddr)
1241 {
1242         return __set_id_reg(vcpu, rd, uaddr, true);
1243 }
1244
1245 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1246                        const struct sys_reg_desc *r)
1247 {
1248         if (p->is_write)
1249                 return write_to_read_only(vcpu, p, r);
1250
1251         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1252         return true;
1253 }
1254
1255 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1256                          const struct sys_reg_desc *r)
1257 {
1258         if (p->is_write)
1259                 return write_to_read_only(vcpu, p, r);
1260
1261         p->regval = read_sysreg(clidr_el1);
1262         return true;
1263 }
1264
1265 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1266                           const struct sys_reg_desc *r)
1267 {
1268         int reg = r->reg;
1269
1270         if (p->is_write)
1271                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1272         else
1273                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1274         return true;
1275 }
1276
1277 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1278                           const struct sys_reg_desc *r)
1279 {
1280         u32 csselr;
1281
1282         if (p->is_write)
1283                 return write_to_read_only(vcpu, p, r);
1284
1285         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1286         p->regval = get_ccsidr(csselr);
1287
1288         /*
1289          * Guests should not be doing cache operations by set/way at all, and
1290          * for this reason, we trap them and attempt to infer the intent, so
1291          * that we can flush the entire guest's address space at the appropriate
1292          * time.
1293          * To prevent this trapping from causing performance problems, let's
1294          * expose the geometry of all data and unified caches (which are
1295          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1296          * [If guests should attempt to infer aliasing properties from the
1297          * geometry (which is not permitted by the architecture), they would
1298          * only do so for virtually indexed caches.]
1299          */
1300         if (!(csselr & 1)) // data or unified cache
1301                 p->regval &= ~GENMASK(27, 3);
1302         return true;
1303 }
1304
1305 /* sys_reg_desc initialiser for known cpufeature ID registers */
1306 #define ID_SANITISED(name) {                    \
1307         SYS_DESC(SYS_##name),                   \
1308         .access = access_id_reg,                \
1309         .get_user = get_id_reg,                 \
1310         .set_user = set_id_reg,                 \
1311         .visibility = id_visibility,            \
1312 }
1313
1314 /*
1315  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1316  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1317  * (1 <= crm < 8, 0 <= Op2 < 8).
1318  */
1319 #define ID_UNALLOCATED(crm, op2) {                      \
1320         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1321         .access = access_raz_id_reg,                    \
1322         .get_user = get_raz_id_reg,                     \
1323         .set_user = set_raz_id_reg,                     \
1324 }
1325
1326 /*
1327  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1328  * For now, these are exposed just like unallocated ID regs: they appear
1329  * RAZ for the guest.
1330  */
1331 #define ID_HIDDEN(name) {                       \
1332         SYS_DESC(SYS_##name),                   \
1333         .access = access_raz_id_reg,            \
1334         .get_user = get_raz_id_reg,             \
1335         .set_user = set_raz_id_reg,             \
1336 }
1337
1338 /*
1339  * Architected system registers.
1340  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1341  *
1342  * Debug handling: We do trap most, if not all debug related system
1343  * registers. The implementation is good enough to ensure that a guest
1344  * can use these with minimal performance degradation. The drawback is
1345  * that we don't implement any of the external debug, none of the
1346  * OSlock protocol. This should be revisited if we ever encounter a
1347  * more demanding guest...
1348  */
1349 static const struct sys_reg_desc sys_reg_descs[] = {
1350         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1351         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1352         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1353
1354         DBG_BCR_BVR_WCR_WVR_EL1(0),
1355         DBG_BCR_BVR_WCR_WVR_EL1(1),
1356         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1357         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1358         DBG_BCR_BVR_WCR_WVR_EL1(2),
1359         DBG_BCR_BVR_WCR_WVR_EL1(3),
1360         DBG_BCR_BVR_WCR_WVR_EL1(4),
1361         DBG_BCR_BVR_WCR_WVR_EL1(5),
1362         DBG_BCR_BVR_WCR_WVR_EL1(6),
1363         DBG_BCR_BVR_WCR_WVR_EL1(7),
1364         DBG_BCR_BVR_WCR_WVR_EL1(8),
1365         DBG_BCR_BVR_WCR_WVR_EL1(9),
1366         DBG_BCR_BVR_WCR_WVR_EL1(10),
1367         DBG_BCR_BVR_WCR_WVR_EL1(11),
1368         DBG_BCR_BVR_WCR_WVR_EL1(12),
1369         DBG_BCR_BVR_WCR_WVR_EL1(13),
1370         DBG_BCR_BVR_WCR_WVR_EL1(14),
1371         DBG_BCR_BVR_WCR_WVR_EL1(15),
1372
1373         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1374         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1375         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1376         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1377         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1378         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1379         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1380         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1381
1382         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1383         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1384         // DBGDTR[TR]X_EL0 share the same encoding
1385         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1386
1387         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1388
1389         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1390
1391         /*
1392          * ID regs: all ID_SANITISED() entries here must have corresponding
1393          * entries in arm64_ftr_regs[].
1394          */
1395
1396         /* AArch64 mappings of the AArch32 ID registers */
1397         /* CRm=1 */
1398         ID_SANITISED(ID_PFR0_EL1),
1399         ID_SANITISED(ID_PFR1_EL1),
1400         ID_SANITISED(ID_DFR0_EL1),
1401         ID_HIDDEN(ID_AFR0_EL1),
1402         ID_SANITISED(ID_MMFR0_EL1),
1403         ID_SANITISED(ID_MMFR1_EL1),
1404         ID_SANITISED(ID_MMFR2_EL1),
1405         ID_SANITISED(ID_MMFR3_EL1),
1406
1407         /* CRm=2 */
1408         ID_SANITISED(ID_ISAR0_EL1),
1409         ID_SANITISED(ID_ISAR1_EL1),
1410         ID_SANITISED(ID_ISAR2_EL1),
1411         ID_SANITISED(ID_ISAR3_EL1),
1412         ID_SANITISED(ID_ISAR4_EL1),
1413         ID_SANITISED(ID_ISAR5_EL1),
1414         ID_SANITISED(ID_MMFR4_EL1),
1415         ID_SANITISED(ID_ISAR6_EL1),
1416
1417         /* CRm=3 */
1418         ID_SANITISED(MVFR0_EL1),
1419         ID_SANITISED(MVFR1_EL1),
1420         ID_SANITISED(MVFR2_EL1),
1421         ID_UNALLOCATED(3,3),
1422         ID_SANITISED(ID_PFR2_EL1),
1423         ID_HIDDEN(ID_DFR1_EL1),
1424         ID_SANITISED(ID_MMFR5_EL1),
1425         ID_UNALLOCATED(3,7),
1426
1427         /* AArch64 ID registers */
1428         /* CRm=4 */
1429         { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1430           .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1431         ID_SANITISED(ID_AA64PFR1_EL1),
1432         ID_UNALLOCATED(4,2),
1433         ID_UNALLOCATED(4,3),
1434         ID_SANITISED(ID_AA64ZFR0_EL1),
1435         ID_UNALLOCATED(4,5),
1436         ID_UNALLOCATED(4,6),
1437         ID_UNALLOCATED(4,7),
1438
1439         /* CRm=5 */
1440         ID_SANITISED(ID_AA64DFR0_EL1),
1441         ID_SANITISED(ID_AA64DFR1_EL1),
1442         ID_UNALLOCATED(5,2),
1443         ID_UNALLOCATED(5,3),
1444         ID_HIDDEN(ID_AA64AFR0_EL1),
1445         ID_HIDDEN(ID_AA64AFR1_EL1),
1446         ID_UNALLOCATED(5,6),
1447         ID_UNALLOCATED(5,7),
1448
1449         /* CRm=6 */
1450         ID_SANITISED(ID_AA64ISAR0_EL1),
1451         ID_SANITISED(ID_AA64ISAR1_EL1),
1452         ID_UNALLOCATED(6,2),
1453         ID_UNALLOCATED(6,3),
1454         ID_UNALLOCATED(6,4),
1455         ID_UNALLOCATED(6,5),
1456         ID_UNALLOCATED(6,6),
1457         ID_UNALLOCATED(6,7),
1458
1459         /* CRm=7 */
1460         ID_SANITISED(ID_AA64MMFR0_EL1),
1461         ID_SANITISED(ID_AA64MMFR1_EL1),
1462         ID_SANITISED(ID_AA64MMFR2_EL1),
1463         ID_UNALLOCATED(7,3),
1464         ID_UNALLOCATED(7,4),
1465         ID_UNALLOCATED(7,5),
1466         ID_UNALLOCATED(7,6),
1467         ID_UNALLOCATED(7,7),
1468
1469         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1470         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1471         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1472
1473         { SYS_DESC(SYS_RGSR_EL1), undef_access },
1474         { SYS_DESC(SYS_GCR_EL1), undef_access },
1475
1476         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1477         { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1478         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1479         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1480         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1481
1482         PTRAUTH_KEY(APIA),
1483         PTRAUTH_KEY(APIB),
1484         PTRAUTH_KEY(APDA),
1485         PTRAUTH_KEY(APDB),
1486         PTRAUTH_KEY(APGA),
1487
1488         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1489         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1490         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1491
1492         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1493         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1494         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1495         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1496         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1497         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1498         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1499         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1500
1501         { SYS_DESC(SYS_TFSR_EL1), undef_access },
1502         { SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1503
1504         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1505         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1506
1507         { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1508         { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1509         { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1510         { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1511         { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1512         { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1513         { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1514         { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1515         { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1516         { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1517         { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1518         /* PMBIDR_EL1 is not trapped */
1519
1520         { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1521           .access = access_pminten, .reg = PMINTENSET_EL1 },
1522         { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1523           .access = access_pminten, .reg = PMINTENSET_EL1 },
1524         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1525
1526         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1527         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1528
1529         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1530         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1531         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1532         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1533         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1534
1535         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1536         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1537
1538         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1539         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1540         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1541         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1542         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1543         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1544         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1545         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1546         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1547         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1548         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1549         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1550
1551         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1552         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1553
1554         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1555
1556         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1557
1558         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1559         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1560         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1561         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1562
1563         { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1564           .reset = reset_pmcr, .reg = PMCR_EL0 },
1565         { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1566           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1567         { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1568           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1569         { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1570           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1571         { PMU_SYS_REG(SYS_PMSWINC_EL0),
1572           .access = access_pmswinc, .reg = PMSWINC_EL0 },
1573         { PMU_SYS_REG(SYS_PMSELR_EL0),
1574           .access = access_pmselr, .reg = PMSELR_EL0 },
1575         { PMU_SYS_REG(SYS_PMCEID0_EL0),
1576           .access = access_pmceid, .reset = NULL },
1577         { PMU_SYS_REG(SYS_PMCEID1_EL0),
1578           .access = access_pmceid, .reset = NULL },
1579         { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1580           .access = access_pmu_evcntr, .reg = PMCCNTR_EL0 },
1581         { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1582           .access = access_pmu_evtyper, .reset = NULL },
1583         { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1584           .access = access_pmu_evcntr, .reset = NULL },
1585         /*
1586          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1587          * in 32bit mode. Here we choose to reset it as zero for consistency.
1588          */
1589         { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1590           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1591         { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1592           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1593
1594         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1595         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1596
1597         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1598
1599         { SYS_DESC(SYS_AMCR_EL0), undef_access },
1600         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1601         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1602         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1603         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1604         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1605         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1606         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1607         AMU_AMEVCNTR0_EL0(0),
1608         AMU_AMEVCNTR0_EL0(1),
1609         AMU_AMEVCNTR0_EL0(2),
1610         AMU_AMEVCNTR0_EL0(3),
1611         AMU_AMEVCNTR0_EL0(4),
1612         AMU_AMEVCNTR0_EL0(5),
1613         AMU_AMEVCNTR0_EL0(6),
1614         AMU_AMEVCNTR0_EL0(7),
1615         AMU_AMEVCNTR0_EL0(8),
1616         AMU_AMEVCNTR0_EL0(9),
1617         AMU_AMEVCNTR0_EL0(10),
1618         AMU_AMEVCNTR0_EL0(11),
1619         AMU_AMEVCNTR0_EL0(12),
1620         AMU_AMEVCNTR0_EL0(13),
1621         AMU_AMEVCNTR0_EL0(14),
1622         AMU_AMEVCNTR0_EL0(15),
1623         AMU_AMEVTYPER0_EL0(0),
1624         AMU_AMEVTYPER0_EL0(1),
1625         AMU_AMEVTYPER0_EL0(2),
1626         AMU_AMEVTYPER0_EL0(3),
1627         AMU_AMEVTYPER0_EL0(4),
1628         AMU_AMEVTYPER0_EL0(5),
1629         AMU_AMEVTYPER0_EL0(6),
1630         AMU_AMEVTYPER0_EL0(7),
1631         AMU_AMEVTYPER0_EL0(8),
1632         AMU_AMEVTYPER0_EL0(9),
1633         AMU_AMEVTYPER0_EL0(10),
1634         AMU_AMEVTYPER0_EL0(11),
1635         AMU_AMEVTYPER0_EL0(12),
1636         AMU_AMEVTYPER0_EL0(13),
1637         AMU_AMEVTYPER0_EL0(14),
1638         AMU_AMEVTYPER0_EL0(15),
1639         AMU_AMEVCNTR1_EL0(0),
1640         AMU_AMEVCNTR1_EL0(1),
1641         AMU_AMEVCNTR1_EL0(2),
1642         AMU_AMEVCNTR1_EL0(3),
1643         AMU_AMEVCNTR1_EL0(4),
1644         AMU_AMEVCNTR1_EL0(5),
1645         AMU_AMEVCNTR1_EL0(6),
1646         AMU_AMEVCNTR1_EL0(7),
1647         AMU_AMEVCNTR1_EL0(8),
1648         AMU_AMEVCNTR1_EL0(9),
1649         AMU_AMEVCNTR1_EL0(10),
1650         AMU_AMEVCNTR1_EL0(11),
1651         AMU_AMEVCNTR1_EL0(12),
1652         AMU_AMEVCNTR1_EL0(13),
1653         AMU_AMEVCNTR1_EL0(14),
1654         AMU_AMEVCNTR1_EL0(15),
1655         AMU_AMEVTYPER1_EL0(0),
1656         AMU_AMEVTYPER1_EL0(1),
1657         AMU_AMEVTYPER1_EL0(2),
1658         AMU_AMEVTYPER1_EL0(3),
1659         AMU_AMEVTYPER1_EL0(4),
1660         AMU_AMEVTYPER1_EL0(5),
1661         AMU_AMEVTYPER1_EL0(6),
1662         AMU_AMEVTYPER1_EL0(7),
1663         AMU_AMEVTYPER1_EL0(8),
1664         AMU_AMEVTYPER1_EL0(9),
1665         AMU_AMEVTYPER1_EL0(10),
1666         AMU_AMEVTYPER1_EL0(11),
1667         AMU_AMEVTYPER1_EL0(12),
1668         AMU_AMEVTYPER1_EL0(13),
1669         AMU_AMEVTYPER1_EL0(14),
1670         AMU_AMEVTYPER1_EL0(15),
1671
1672         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1673         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1674         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1675
1676         /* PMEVCNTRn_EL0 */
1677         PMU_PMEVCNTR_EL0(0),
1678         PMU_PMEVCNTR_EL0(1),
1679         PMU_PMEVCNTR_EL0(2),
1680         PMU_PMEVCNTR_EL0(3),
1681         PMU_PMEVCNTR_EL0(4),
1682         PMU_PMEVCNTR_EL0(5),
1683         PMU_PMEVCNTR_EL0(6),
1684         PMU_PMEVCNTR_EL0(7),
1685         PMU_PMEVCNTR_EL0(8),
1686         PMU_PMEVCNTR_EL0(9),
1687         PMU_PMEVCNTR_EL0(10),
1688         PMU_PMEVCNTR_EL0(11),
1689         PMU_PMEVCNTR_EL0(12),
1690         PMU_PMEVCNTR_EL0(13),
1691         PMU_PMEVCNTR_EL0(14),
1692         PMU_PMEVCNTR_EL0(15),
1693         PMU_PMEVCNTR_EL0(16),
1694         PMU_PMEVCNTR_EL0(17),
1695         PMU_PMEVCNTR_EL0(18),
1696         PMU_PMEVCNTR_EL0(19),
1697         PMU_PMEVCNTR_EL0(20),
1698         PMU_PMEVCNTR_EL0(21),
1699         PMU_PMEVCNTR_EL0(22),
1700         PMU_PMEVCNTR_EL0(23),
1701         PMU_PMEVCNTR_EL0(24),
1702         PMU_PMEVCNTR_EL0(25),
1703         PMU_PMEVCNTR_EL0(26),
1704         PMU_PMEVCNTR_EL0(27),
1705         PMU_PMEVCNTR_EL0(28),
1706         PMU_PMEVCNTR_EL0(29),
1707         PMU_PMEVCNTR_EL0(30),
1708         /* PMEVTYPERn_EL0 */
1709         PMU_PMEVTYPER_EL0(0),
1710         PMU_PMEVTYPER_EL0(1),
1711         PMU_PMEVTYPER_EL0(2),
1712         PMU_PMEVTYPER_EL0(3),
1713         PMU_PMEVTYPER_EL0(4),
1714         PMU_PMEVTYPER_EL0(5),
1715         PMU_PMEVTYPER_EL0(6),
1716         PMU_PMEVTYPER_EL0(7),
1717         PMU_PMEVTYPER_EL0(8),
1718         PMU_PMEVTYPER_EL0(9),
1719         PMU_PMEVTYPER_EL0(10),
1720         PMU_PMEVTYPER_EL0(11),
1721         PMU_PMEVTYPER_EL0(12),
1722         PMU_PMEVTYPER_EL0(13),
1723         PMU_PMEVTYPER_EL0(14),
1724         PMU_PMEVTYPER_EL0(15),
1725         PMU_PMEVTYPER_EL0(16),
1726         PMU_PMEVTYPER_EL0(17),
1727         PMU_PMEVTYPER_EL0(18),
1728         PMU_PMEVTYPER_EL0(19),
1729         PMU_PMEVTYPER_EL0(20),
1730         PMU_PMEVTYPER_EL0(21),
1731         PMU_PMEVTYPER_EL0(22),
1732         PMU_PMEVTYPER_EL0(23),
1733         PMU_PMEVTYPER_EL0(24),
1734         PMU_PMEVTYPER_EL0(25),
1735         PMU_PMEVTYPER_EL0(26),
1736         PMU_PMEVTYPER_EL0(27),
1737         PMU_PMEVTYPER_EL0(28),
1738         PMU_PMEVTYPER_EL0(29),
1739         PMU_PMEVTYPER_EL0(30),
1740         /*
1741          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1742          * in 32bit mode. Here we choose to reset it as zero for consistency.
1743          */
1744         { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1745           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1746
1747         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1748         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1749         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1750 };
1751
1752 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1753                         struct sys_reg_params *p,
1754                         const struct sys_reg_desc *r)
1755 {
1756         if (p->is_write) {
1757                 return ignore_write(vcpu, p);
1758         } else {
1759                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1760                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1761                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1762
1763                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1764                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1765                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1766                              | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1767                 return true;
1768         }
1769 }
1770
1771 /*
1772  * AArch32 debug register mappings
1773  *
1774  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1775  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1776  *
1777  * None of the other registers share their location, so treat them as
1778  * if they were 64bit.
1779  */
1780 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
1781         /* DBGBVRn */                                                         \
1782         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1783         /* DBGBCRn */                                                         \
1784         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
1785         /* DBGWVRn */                                                         \
1786         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
1787         /* DBGWCRn */                                                         \
1788         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1789
1790 #define DBGBXVR(n)                                                            \
1791         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1792
1793 /*
1794  * Trapped cp14 registers. We generally ignore most of the external
1795  * debug, on the principle that they don't really make sense to a
1796  * guest. Revisit this one day, would this principle change.
1797  */
1798 static const struct sys_reg_desc cp14_regs[] = {
1799         /* DBGDIDR */
1800         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1801         /* DBGDTRRXext */
1802         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1803
1804         DBG_BCR_BVR_WCR_WVR(0),
1805         /* DBGDSCRint */
1806         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1807         DBG_BCR_BVR_WCR_WVR(1),
1808         /* DBGDCCINT */
1809         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1810         /* DBGDSCRext */
1811         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1812         DBG_BCR_BVR_WCR_WVR(2),
1813         /* DBGDTR[RT]Xint */
1814         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1815         /* DBGDTR[RT]Xext */
1816         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1817         DBG_BCR_BVR_WCR_WVR(3),
1818         DBG_BCR_BVR_WCR_WVR(4),
1819         DBG_BCR_BVR_WCR_WVR(5),
1820         /* DBGWFAR */
1821         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1822         /* DBGOSECCR */
1823         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1824         DBG_BCR_BVR_WCR_WVR(6),
1825         /* DBGVCR */
1826         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1827         DBG_BCR_BVR_WCR_WVR(7),
1828         DBG_BCR_BVR_WCR_WVR(8),
1829         DBG_BCR_BVR_WCR_WVR(9),
1830         DBG_BCR_BVR_WCR_WVR(10),
1831         DBG_BCR_BVR_WCR_WVR(11),
1832         DBG_BCR_BVR_WCR_WVR(12),
1833         DBG_BCR_BVR_WCR_WVR(13),
1834         DBG_BCR_BVR_WCR_WVR(14),
1835         DBG_BCR_BVR_WCR_WVR(15),
1836
1837         /* DBGDRAR (32bit) */
1838         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1839
1840         DBGBXVR(0),
1841         /* DBGOSLAR */
1842         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1843         DBGBXVR(1),
1844         /* DBGOSLSR */
1845         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1846         DBGBXVR(2),
1847         DBGBXVR(3),
1848         /* DBGOSDLR */
1849         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1850         DBGBXVR(4),
1851         /* DBGPRCR */
1852         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1853         DBGBXVR(5),
1854         DBGBXVR(6),
1855         DBGBXVR(7),
1856         DBGBXVR(8),
1857         DBGBXVR(9),
1858         DBGBXVR(10),
1859         DBGBXVR(11),
1860         DBGBXVR(12),
1861         DBGBXVR(13),
1862         DBGBXVR(14),
1863         DBGBXVR(15),
1864
1865         /* DBGDSAR (32bit) */
1866         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1867
1868         /* DBGDEVID2 */
1869         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1870         /* DBGDEVID1 */
1871         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1872         /* DBGDEVID */
1873         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1874         /* DBGCLAIMSET */
1875         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1876         /* DBGCLAIMCLR */
1877         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1878         /* DBGAUTHSTATUS */
1879         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1880 };
1881
1882 /* Trapped cp14 64bit registers */
1883 static const struct sys_reg_desc cp14_64_regs[] = {
1884         /* DBGDRAR (64bit) */
1885         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1886
1887         /* DBGDSAR (64bit) */
1888         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1889 };
1890
1891 /* Macro to expand the PMEVCNTRn register */
1892 #define PMU_PMEVCNTR(n)                                                 \
1893         /* PMEVCNTRn */                                                 \
1894         { Op1(0), CRn(0b1110),                                          \
1895           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1896           access_pmu_evcntr }
1897
1898 /* Macro to expand the PMEVTYPERn register */
1899 #define PMU_PMEVTYPER(n)                                                \
1900         /* PMEVTYPERn */                                                \
1901         { Op1(0), CRn(0b1110),                                          \
1902           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1903           access_pmu_evtyper }
1904
1905 /*
1906  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1907  * depending on the way they are accessed (as a 32bit or a 64bit
1908  * register).
1909  */
1910 static const struct sys_reg_desc cp15_regs[] = {
1911         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1912         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1913         /* ACTLR */
1914         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1915         /* ACTLR2 */
1916         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1917         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1918         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1919         /* TTBCR */
1920         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1921         /* TTBCR2 */
1922         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1923         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1924         /* DFSR */
1925         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1926         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1927         /* ADFSR */
1928         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1929         /* AIFSR */
1930         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
1931         /* DFAR */
1932         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
1933         /* IFAR */
1934         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
1935
1936         /*
1937          * DC{C,I,CI}SW operations:
1938          */
1939         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1940         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1941         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1942
1943         /* PMU */
1944         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1945         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1946         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1947         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1948         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1949         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1950         { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1951         { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1952         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1953         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1954         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1955         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1956         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1957         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1958         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1959         { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
1960         { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
1961         /* PMMIR */
1962         { Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
1963
1964         /* PRRR/MAIR0 */
1965         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
1966         /* NMRR/MAIR1 */
1967         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
1968         /* AMAIR0 */
1969         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
1970         /* AMAIR1 */
1971         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
1972
1973         /* ICC_SRE */
1974         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1975
1976         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
1977
1978         /* Arch Tmers */
1979         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1980         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1981
1982         /* PMEVCNTRn */
1983         PMU_PMEVCNTR(0),
1984         PMU_PMEVCNTR(1),
1985         PMU_PMEVCNTR(2),
1986         PMU_PMEVCNTR(3),
1987         PMU_PMEVCNTR(4),
1988         PMU_PMEVCNTR(5),
1989         PMU_PMEVCNTR(6),
1990         PMU_PMEVCNTR(7),
1991         PMU_PMEVCNTR(8),
1992         PMU_PMEVCNTR(9),
1993         PMU_PMEVCNTR(10),
1994         PMU_PMEVCNTR(11),
1995         PMU_PMEVCNTR(12),
1996         PMU_PMEVCNTR(13),
1997         PMU_PMEVCNTR(14),
1998         PMU_PMEVCNTR(15),
1999         PMU_PMEVCNTR(16),
2000         PMU_PMEVCNTR(17),
2001         PMU_PMEVCNTR(18),
2002         PMU_PMEVCNTR(19),
2003         PMU_PMEVCNTR(20),
2004         PMU_PMEVCNTR(21),
2005         PMU_PMEVCNTR(22),
2006         PMU_PMEVCNTR(23),
2007         PMU_PMEVCNTR(24),
2008         PMU_PMEVCNTR(25),
2009         PMU_PMEVCNTR(26),
2010         PMU_PMEVCNTR(27),
2011         PMU_PMEVCNTR(28),
2012         PMU_PMEVCNTR(29),
2013         PMU_PMEVCNTR(30),
2014         /* PMEVTYPERn */
2015         PMU_PMEVTYPER(0),
2016         PMU_PMEVTYPER(1),
2017         PMU_PMEVTYPER(2),
2018         PMU_PMEVTYPER(3),
2019         PMU_PMEVTYPER(4),
2020         PMU_PMEVTYPER(5),
2021         PMU_PMEVTYPER(6),
2022         PMU_PMEVTYPER(7),
2023         PMU_PMEVTYPER(8),
2024         PMU_PMEVTYPER(9),
2025         PMU_PMEVTYPER(10),
2026         PMU_PMEVTYPER(11),
2027         PMU_PMEVTYPER(12),
2028         PMU_PMEVTYPER(13),
2029         PMU_PMEVTYPER(14),
2030         PMU_PMEVTYPER(15),
2031         PMU_PMEVTYPER(16),
2032         PMU_PMEVTYPER(17),
2033         PMU_PMEVTYPER(18),
2034         PMU_PMEVTYPER(19),
2035         PMU_PMEVTYPER(20),
2036         PMU_PMEVTYPER(21),
2037         PMU_PMEVTYPER(22),
2038         PMU_PMEVTYPER(23),
2039         PMU_PMEVTYPER(24),
2040         PMU_PMEVTYPER(25),
2041         PMU_PMEVTYPER(26),
2042         PMU_PMEVTYPER(27),
2043         PMU_PMEVTYPER(28),
2044         PMU_PMEVTYPER(29),
2045         PMU_PMEVTYPER(30),
2046         /* PMCCFILTR */
2047         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2048
2049         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2050         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2051         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2052 };
2053
2054 static const struct sys_reg_desc cp15_64_regs[] = {
2055         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2056         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2057         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2058         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2059         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2060         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2061         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2062 };
2063
2064 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2065                               bool is_32)
2066 {
2067         unsigned int i;
2068
2069         for (i = 0; i < n; i++) {
2070                 if (!is_32 && table[i].reg && !table[i].reset) {
2071                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2072                                 table, i);
2073                         return 1;
2074                 }
2075
2076                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2077                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2078                         return 1;
2079                 }
2080         }
2081
2082         return 0;
2083 }
2084
2085 static int match_sys_reg(const void *key, const void *elt)
2086 {
2087         const unsigned long pval = (unsigned long)key;
2088         const struct sys_reg_desc *r = elt;
2089
2090         return pval - reg_to_encoding(r);
2091 }
2092
2093 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2094                                          const struct sys_reg_desc table[],
2095                                          unsigned int num)
2096 {
2097         unsigned long pval = reg_to_encoding(params);
2098
2099         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2100 }
2101
2102 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2103 {
2104         kvm_inject_undefined(vcpu);
2105         return 1;
2106 }
2107
2108 static void perform_access(struct kvm_vcpu *vcpu,
2109                            struct sys_reg_params *params,
2110                            const struct sys_reg_desc *r)
2111 {
2112         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2113
2114         /* Check for regs disabled by runtime config */
2115         if (sysreg_hidden(vcpu, r)) {
2116                 kvm_inject_undefined(vcpu);
2117                 return;
2118         }
2119
2120         /*
2121          * Not having an accessor means that we have configured a trap
2122          * that we don't know how to handle. This certainly qualifies
2123          * as a gross bug that should be fixed right away.
2124          */
2125         BUG_ON(!r->access);
2126
2127         /* Skip instruction if instructed so */
2128         if (likely(r->access(vcpu, params, r)))
2129                 kvm_incr_pc(vcpu);
2130 }
2131
2132 /*
2133  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2134  *                call the corresponding trap handler.
2135  *
2136  * @params: pointer to the descriptor of the access
2137  * @table: array of trap descriptors
2138  * @num: size of the trap descriptor array
2139  *
2140  * Return 0 if the access has been handled, and -1 if not.
2141  */
2142 static int emulate_cp(struct kvm_vcpu *vcpu,
2143                       struct sys_reg_params *params,
2144                       const struct sys_reg_desc *table,
2145                       size_t num)
2146 {
2147         const struct sys_reg_desc *r;
2148
2149         if (!table)
2150                 return -1;      /* Not handled */
2151
2152         r = find_reg(params, table, num);
2153
2154         if (r) {
2155                 perform_access(vcpu, params, r);
2156                 return 0;
2157         }
2158
2159         /* Not handled */
2160         return -1;
2161 }
2162
2163 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2164                                 struct sys_reg_params *params)
2165 {
2166         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2167         int cp = -1;
2168
2169         switch (esr_ec) {
2170         case ESR_ELx_EC_CP15_32:
2171         case ESR_ELx_EC_CP15_64:
2172                 cp = 15;
2173                 break;
2174         case ESR_ELx_EC_CP14_MR:
2175         case ESR_ELx_EC_CP14_64:
2176                 cp = 14;
2177                 break;
2178         default:
2179                 WARN_ON(1);
2180         }
2181
2182         print_sys_reg_msg(params,
2183                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2184                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2185         kvm_inject_undefined(vcpu);
2186 }
2187
2188 /**
2189  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2190  * @vcpu: The VCPU pointer
2191  * @run:  The kvm_run struct
2192  */
2193 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2194                             const struct sys_reg_desc *global,
2195                             size_t nr_global)
2196 {
2197         struct sys_reg_params params;
2198         u32 esr = kvm_vcpu_get_esr(vcpu);
2199         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2200         int Rt2 = (esr >> 10) & 0x1f;
2201
2202         params.CRm = (esr >> 1) & 0xf;
2203         params.is_write = ((esr & 1) == 0);
2204
2205         params.Op0 = 0;
2206         params.Op1 = (esr >> 16) & 0xf;
2207         params.Op2 = 0;
2208         params.CRn = 0;
2209
2210         /*
2211          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2212          * backends between AArch32 and AArch64, we get away with it.
2213          */
2214         if (params.is_write) {
2215                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2216                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2217         }
2218
2219         /*
2220          * If the table contains a handler, handle the
2221          * potential register operation in the case of a read and return
2222          * with success.
2223          */
2224         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2225                 /* Split up the value between registers for the read side */
2226                 if (!params.is_write) {
2227                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2228                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2229                 }
2230
2231                 return 1;
2232         }
2233
2234         unhandled_cp_access(vcpu, &params);
2235         return 1;
2236 }
2237
2238 /**
2239  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2240  * @vcpu: The VCPU pointer
2241  * @run:  The kvm_run struct
2242  */
2243 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2244                             const struct sys_reg_desc *global,
2245                             size_t nr_global)
2246 {
2247         struct sys_reg_params params;
2248         u32 esr = kvm_vcpu_get_esr(vcpu);
2249         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2250
2251         params.CRm = (esr >> 1) & 0xf;
2252         params.regval = vcpu_get_reg(vcpu, Rt);
2253         params.is_write = ((esr & 1) == 0);
2254         params.CRn = (esr >> 10) & 0xf;
2255         params.Op0 = 0;
2256         params.Op1 = (esr >> 14) & 0x7;
2257         params.Op2 = (esr >> 17) & 0x7;
2258
2259         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2260                 if (!params.is_write)
2261                         vcpu_set_reg(vcpu, Rt, params.regval);
2262                 return 1;
2263         }
2264
2265         unhandled_cp_access(vcpu, &params);
2266         return 1;
2267 }
2268
2269 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2270 {
2271         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2272 }
2273
2274 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2275 {
2276         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2277 }
2278
2279 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2280 {
2281         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2282 }
2283
2284 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2285 {
2286         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2287 }
2288
2289 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2290 {
2291         // See ARM DDI 0487E.a, section D12.3.2
2292         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2293 }
2294
2295 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2296                            struct sys_reg_params *params)
2297 {
2298         const struct sys_reg_desc *r;
2299
2300         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2301
2302         if (likely(r)) {
2303                 perform_access(vcpu, params, r);
2304         } else if (is_imp_def_sys_reg(params)) {
2305                 kvm_inject_undefined(vcpu);
2306         } else {
2307                 print_sys_reg_msg(params,
2308                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2309                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2310                 kvm_inject_undefined(vcpu);
2311         }
2312         return 1;
2313 }
2314
2315 /**
2316  * kvm_reset_sys_regs - sets system registers to reset value
2317  * @vcpu: The VCPU pointer
2318  *
2319  * This function finds the right table above and sets the registers on the
2320  * virtual CPU struct to their architecturally defined reset values.
2321  */
2322 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2323 {
2324         unsigned long i;
2325
2326         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2327                 if (sys_reg_descs[i].reset)
2328                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2329 }
2330
2331 /**
2332  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2333  * @vcpu: The VCPU pointer
2334  */
2335 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2336 {
2337         struct sys_reg_params params;
2338         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2339         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2340         int ret;
2341
2342         trace_kvm_handle_sys_reg(esr);
2343
2344         params.Op0 = (esr >> 20) & 3;
2345         params.Op1 = (esr >> 14) & 0x7;
2346         params.CRn = (esr >> 10) & 0xf;
2347         params.CRm = (esr >> 1) & 0xf;
2348         params.Op2 = (esr >> 17) & 0x7;
2349         params.regval = vcpu_get_reg(vcpu, Rt);
2350         params.is_write = !(esr & 1);
2351
2352         ret = emulate_sys_reg(vcpu, &params);
2353
2354         if (!params.is_write)
2355                 vcpu_set_reg(vcpu, Rt, params.regval);
2356         return ret;
2357 }
2358
2359 /******************************************************************************
2360  * Userspace API
2361  *****************************************************************************/
2362
2363 static bool index_to_params(u64 id, struct sys_reg_params *params)
2364 {
2365         switch (id & KVM_REG_SIZE_MASK) {
2366         case KVM_REG_SIZE_U64:
2367                 /* Any unused index bits means it's not valid. */
2368                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2369                               | KVM_REG_ARM_COPROC_MASK
2370                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2371                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2372                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2373                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2374                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2375                         return false;
2376                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2377                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2378                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2379                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2380                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2381                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2382                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2383                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2384                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2385                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2386                 return true;
2387         default:
2388                 return false;
2389         }
2390 }
2391
2392 const struct sys_reg_desc *find_reg_by_id(u64 id,
2393                                           struct sys_reg_params *params,
2394                                           const struct sys_reg_desc table[],
2395                                           unsigned int num)
2396 {
2397         if (!index_to_params(id, params))
2398                 return NULL;
2399
2400         return find_reg(params, table, num);
2401 }
2402
2403 /* Decode an index value, and find the sys_reg_desc entry. */
2404 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2405                                                     u64 id)
2406 {
2407         const struct sys_reg_desc *r;
2408         struct sys_reg_params params;
2409
2410         /* We only do sys_reg for now. */
2411         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2412                 return NULL;
2413
2414         if (!index_to_params(id, &params))
2415                 return NULL;
2416
2417         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2418
2419         /* Not saved in the sys_reg array and not otherwise accessible? */
2420         if (r && !(r->reg || r->get_user))
2421                 r = NULL;
2422
2423         return r;
2424 }
2425
2426 /*
2427  * These are the invariant sys_reg registers: we let the guest see the
2428  * host versions of these, so they're part of the guest state.
2429  *
2430  * A future CPU may provide a mechanism to present different values to
2431  * the guest, or a future kvm may trap them.
2432  */
2433
2434 #define FUNCTION_INVARIANT(reg)                                         \
2435         static void get_##reg(struct kvm_vcpu *v,                       \
2436                               const struct sys_reg_desc *r)             \
2437         {                                                               \
2438                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2439         }
2440
2441 FUNCTION_INVARIANT(midr_el1)
2442 FUNCTION_INVARIANT(revidr_el1)
2443 FUNCTION_INVARIANT(clidr_el1)
2444 FUNCTION_INVARIANT(aidr_el1)
2445
2446 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2447 {
2448         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2449 }
2450
2451 /* ->val is filled in by kvm_sys_reg_table_init() */
2452 static struct sys_reg_desc invariant_sys_regs[] = {
2453         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2454         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2455         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2456         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2457         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2458 };
2459
2460 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2461 {
2462         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2463                 return -EFAULT;
2464         return 0;
2465 }
2466
2467 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2468 {
2469         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2470                 return -EFAULT;
2471         return 0;
2472 }
2473
2474 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2475 {
2476         struct sys_reg_params params;
2477         const struct sys_reg_desc *r;
2478
2479         r = find_reg_by_id(id, &params, invariant_sys_regs,
2480                            ARRAY_SIZE(invariant_sys_regs));
2481         if (!r)
2482                 return -ENOENT;
2483
2484         return reg_to_user(uaddr, &r->val, id);
2485 }
2486
2487 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2488 {
2489         struct sys_reg_params params;
2490         const struct sys_reg_desc *r;
2491         int err;
2492         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2493
2494         r = find_reg_by_id(id, &params, invariant_sys_regs,
2495                            ARRAY_SIZE(invariant_sys_regs));
2496         if (!r)
2497                 return -ENOENT;
2498
2499         err = reg_from_user(&val, uaddr, id);
2500         if (err)
2501                 return err;
2502
2503         /* This is what we mean by invariant: you can't change it. */
2504         if (r->val != val)
2505                 return -EINVAL;
2506
2507         return 0;
2508 }
2509
2510 static bool is_valid_cache(u32 val)
2511 {
2512         u32 level, ctype;
2513
2514         if (val >= CSSELR_MAX)
2515                 return false;
2516
2517         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2518         level = (val >> 1);
2519         ctype = (cache_levels >> (level * 3)) & 7;
2520
2521         switch (ctype) {
2522         case 0: /* No cache */
2523                 return false;
2524         case 1: /* Instruction cache only */
2525                 return (val & 1);
2526         case 2: /* Data cache only */
2527         case 4: /* Unified cache */
2528                 return !(val & 1);
2529         case 3: /* Separate instruction and data caches */
2530                 return true;
2531         default: /* Reserved: we can't know instruction or data. */
2532                 return false;
2533         }
2534 }
2535
2536 static int demux_c15_get(u64 id, void __user *uaddr)
2537 {
2538         u32 val;
2539         u32 __user *uval = uaddr;
2540
2541         /* Fail if we have unknown bits set. */
2542         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2543                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2544                 return -ENOENT;
2545
2546         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2547         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2548                 if (KVM_REG_SIZE(id) != 4)
2549                         return -ENOENT;
2550                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2551                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2552                 if (!is_valid_cache(val))
2553                         return -ENOENT;
2554
2555                 return put_user(get_ccsidr(val), uval);
2556         default:
2557                 return -ENOENT;
2558         }
2559 }
2560
2561 static int demux_c15_set(u64 id, void __user *uaddr)
2562 {
2563         u32 val, newval;
2564         u32 __user *uval = uaddr;
2565
2566         /* Fail if we have unknown bits set. */
2567         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2568                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2569                 return -ENOENT;
2570
2571         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2572         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2573                 if (KVM_REG_SIZE(id) != 4)
2574                         return -ENOENT;
2575                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2576                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2577                 if (!is_valid_cache(val))
2578                         return -ENOENT;
2579
2580                 if (get_user(newval, uval))
2581                         return -EFAULT;
2582
2583                 /* This is also invariant: you can't change it. */
2584                 if (newval != get_ccsidr(val))
2585                         return -EINVAL;
2586                 return 0;
2587         default:
2588                 return -ENOENT;
2589         }
2590 }
2591
2592 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2593 {
2594         const struct sys_reg_desc *r;
2595         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2596
2597         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2598                 return demux_c15_get(reg->id, uaddr);
2599
2600         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2601                 return -ENOENT;
2602
2603         r = index_to_sys_reg_desc(vcpu, reg->id);
2604         if (!r)
2605                 return get_invariant_sys_reg(reg->id, uaddr);
2606
2607         /* Check for regs disabled by runtime config */
2608         if (sysreg_hidden(vcpu, r))
2609                 return -ENOENT;
2610
2611         if (r->get_user)
2612                 return (r->get_user)(vcpu, r, reg, uaddr);
2613
2614         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2615 }
2616
2617 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2618 {
2619         const struct sys_reg_desc *r;
2620         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2621
2622         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2623                 return demux_c15_set(reg->id, uaddr);
2624
2625         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2626                 return -ENOENT;
2627
2628         r = index_to_sys_reg_desc(vcpu, reg->id);
2629         if (!r)
2630                 return set_invariant_sys_reg(reg->id, uaddr);
2631
2632         /* Check for regs disabled by runtime config */
2633         if (sysreg_hidden(vcpu, r))
2634                 return -ENOENT;
2635
2636         if (r->set_user)
2637                 return (r->set_user)(vcpu, r, reg, uaddr);
2638
2639         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2640 }
2641
2642 static unsigned int num_demux_regs(void)
2643 {
2644         unsigned int i, count = 0;
2645
2646         for (i = 0; i < CSSELR_MAX; i++)
2647                 if (is_valid_cache(i))
2648                         count++;
2649
2650         return count;
2651 }
2652
2653 static int write_demux_regids(u64 __user *uindices)
2654 {
2655         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2656         unsigned int i;
2657
2658         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2659         for (i = 0; i < CSSELR_MAX; i++) {
2660                 if (!is_valid_cache(i))
2661                         continue;
2662                 if (put_user(val | i, uindices))
2663                         return -EFAULT;
2664                 uindices++;
2665         }
2666         return 0;
2667 }
2668
2669 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2670 {
2671         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2672                 KVM_REG_ARM64_SYSREG |
2673                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2674                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2675                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2676                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2677                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2678 }
2679
2680 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2681 {
2682         if (!*uind)
2683                 return true;
2684
2685         if (put_user(sys_reg_to_index(reg), *uind))
2686                 return false;
2687
2688         (*uind)++;
2689         return true;
2690 }
2691
2692 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2693                             const struct sys_reg_desc *rd,
2694                             u64 __user **uind,
2695                             unsigned int *total)
2696 {
2697         /*
2698          * Ignore registers we trap but don't save,
2699          * and for which no custom user accessor is provided.
2700          */
2701         if (!(rd->reg || rd->get_user))
2702                 return 0;
2703
2704         if (sysreg_hidden(vcpu, rd))
2705                 return 0;
2706
2707         if (!copy_reg_to_user(rd, uind))
2708                 return -EFAULT;
2709
2710         (*total)++;
2711         return 0;
2712 }
2713
2714 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2715 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2716 {
2717         const struct sys_reg_desc *i2, *end2;
2718         unsigned int total = 0;
2719         int err;
2720
2721         i2 = sys_reg_descs;
2722         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2723
2724         while (i2 != end2) {
2725                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2726                 if (err)
2727                         return err;
2728         }
2729         return total;
2730 }
2731
2732 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2733 {
2734         return ARRAY_SIZE(invariant_sys_regs)
2735                 + num_demux_regs()
2736                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2737 }
2738
2739 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2740 {
2741         unsigned int i;
2742         int err;
2743
2744         /* Then give them all the invariant registers' indices. */
2745         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2746                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2747                         return -EFAULT;
2748                 uindices++;
2749         }
2750
2751         err = walk_sys_regs(vcpu, uindices);
2752         if (err < 0)
2753                 return err;
2754         uindices += err;
2755
2756         return write_demux_regids(uindices);
2757 }
2758
2759 void kvm_sys_reg_table_init(void)
2760 {
2761         unsigned int i;
2762         struct sys_reg_desc clidr;
2763
2764         /* Make sure tables are unique and in order. */
2765         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2766         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2767         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2768         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2769         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2770         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2771
2772         /* We abuse the reset function to overwrite the table itself. */
2773         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2774                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2775
2776         /*
2777          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2778          *
2779          *   If software reads the Cache Type fields from Ctype1
2780          *   upwards, once it has seen a value of 0b000, no caches
2781          *   exist at further-out levels of the hierarchy. So, for
2782          *   example, if Ctype3 is the first Cache Type field with a
2783          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2784          *   ignored.
2785          */
2786         get_clidr_el1(NULL, &clidr); /* Ugly... */
2787         cache_levels = clidr.val;
2788         for (i = 0; i < 7; i++)
2789                 if (((cache_levels >> (i*3)) & 7) == 0)
2790                         break;
2791         /* Clear all higher bits. */
2792         cache_levels &= (1 << (i*3))-1;
2793 }