Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 #define reg_to_encoding(x)                                              \
48         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
49                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2)
50
51 static bool read_from_write_only(struct kvm_vcpu *vcpu,
52                                  struct sys_reg_params *params,
53                                  const struct sys_reg_desc *r)
54 {
55         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
56         print_sys_reg_instr(params);
57         kvm_inject_undefined(vcpu);
58         return false;
59 }
60
61 static bool write_to_read_only(struct kvm_vcpu *vcpu,
62                                struct sys_reg_params *params,
63                                const struct sys_reg_desc *r)
64 {
65         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
66         print_sys_reg_instr(params);
67         kvm_inject_undefined(vcpu);
68         return false;
69 }
70
71 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
72 {
73         u64 val = 0x8badf00d8badf00d;
74
75         if (vcpu->arch.sysregs_loaded_on_cpu &&
76             __vcpu_read_sys_reg_from_cpu(reg, &val))
77                 return val;
78
79         return __vcpu_sys_reg(vcpu, reg);
80 }
81
82 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
83 {
84         if (vcpu->arch.sysregs_loaded_on_cpu &&
85             __vcpu_write_sys_reg_to_cpu(val, reg))
86                 return;
87
88          __vcpu_sys_reg(vcpu, reg) = val;
89 }
90
91 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
92 static u32 cache_levels;
93
94 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
95 #define CSSELR_MAX 14
96
97 /* Which cache CCSIDR represents depends on CSSELR value. */
98 static u32 get_ccsidr(u32 csselr)
99 {
100         u32 ccsidr;
101
102         /* Make sure noone else changes CSSELR during this! */
103         local_irq_disable();
104         write_sysreg(csselr, csselr_el1);
105         isb();
106         ccsidr = read_sysreg(ccsidr_el1);
107         local_irq_enable();
108
109         return ccsidr;
110 }
111
112 /*
113  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
114  */
115 static bool access_dcsw(struct kvm_vcpu *vcpu,
116                         struct sys_reg_params *p,
117                         const struct sys_reg_desc *r)
118 {
119         if (!p->is_write)
120                 return read_from_write_only(vcpu, p, r);
121
122         /*
123          * Only track S/W ops if we don't have FWB. It still indicates
124          * that the guest is a bit broken (S/W operations should only
125          * be done by firmware, knowing that there is only a single
126          * CPU left in the system, and certainly not from non-secure
127          * software).
128          */
129         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
130                 kvm_set_way_flush(vcpu);
131
132         return true;
133 }
134
135 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
136 {
137         switch (r->aarch32_map) {
138         case AA32_LO:
139                 *mask = GENMASK_ULL(31, 0);
140                 *shift = 0;
141                 break;
142         case AA32_HI:
143                 *mask = GENMASK_ULL(63, 32);
144                 *shift = 32;
145                 break;
146         default:
147                 *mask = GENMASK_ULL(63, 0);
148                 *shift = 0;
149                 break;
150         }
151 }
152
153 /*
154  * Generic accessor for VM registers. Only called as long as HCR_TVM
155  * is set. If the guest enables the MMU, we stop trapping the VM
156  * sys_regs and leave it in complete control of the caches.
157  */
158 static bool access_vm_reg(struct kvm_vcpu *vcpu,
159                           struct sys_reg_params *p,
160                           const struct sys_reg_desc *r)
161 {
162         bool was_enabled = vcpu_has_cache_enabled(vcpu);
163         u64 val, mask, shift;
164
165         BUG_ON(!p->is_write);
166
167         get_access_mask(r, &mask, &shift);
168
169         if (~mask) {
170                 val = vcpu_read_sys_reg(vcpu, r->reg);
171                 val &= ~mask;
172         } else {
173                 val = 0;
174         }
175
176         val |= (p->regval & (mask >> shift)) << shift;
177         vcpu_write_sys_reg(vcpu, val, r->reg);
178
179         kvm_toggle_cache(vcpu, was_enabled);
180         return true;
181 }
182
183 static bool access_actlr(struct kvm_vcpu *vcpu,
184                          struct sys_reg_params *p,
185                          const struct sys_reg_desc *r)
186 {
187         u64 mask, shift;
188
189         if (p->is_write)
190                 return ignore_write(vcpu, p);
191
192         get_access_mask(r, &mask, &shift);
193         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
194
195         return true;
196 }
197
198 /*
199  * Trap handler for the GICv3 SGI generation system register.
200  * Forward the request to the VGIC emulation.
201  * The cp15_64 code makes sure this automatically works
202  * for both AArch64 and AArch32 accesses.
203  */
204 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
205                            struct sys_reg_params *p,
206                            const struct sys_reg_desc *r)
207 {
208         bool g1;
209
210         if (!p->is_write)
211                 return read_from_write_only(vcpu, p, r);
212
213         /*
214          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
215          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
216          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
217          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
218          * group.
219          */
220         if (p->Op0 == 0) {              /* AArch32 */
221                 switch (p->Op1) {
222                 default:                /* Keep GCC quiet */
223                 case 0:                 /* ICC_SGI1R */
224                         g1 = true;
225                         break;
226                 case 1:                 /* ICC_ASGI1R */
227                 case 2:                 /* ICC_SGI0R */
228                         g1 = false;
229                         break;
230                 }
231         } else {                        /* AArch64 */
232                 switch (p->Op2) {
233                 default:                /* Keep GCC quiet */
234                 case 5:                 /* ICC_SGI1R_EL1 */
235                         g1 = true;
236                         break;
237                 case 6:                 /* ICC_ASGI1R_EL1 */
238                 case 7:                 /* ICC_SGI0R_EL1 */
239                         g1 = false;
240                         break;
241                 }
242         }
243
244         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
245
246         return true;
247 }
248
249 static bool access_gic_sre(struct kvm_vcpu *vcpu,
250                            struct sys_reg_params *p,
251                            const struct sys_reg_desc *r)
252 {
253         if (p->is_write)
254                 return ignore_write(vcpu, p);
255
256         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
257         return true;
258 }
259
260 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
261                         struct sys_reg_params *p,
262                         const struct sys_reg_desc *r)
263 {
264         if (p->is_write)
265                 return ignore_write(vcpu, p);
266         else
267                 return read_zero(vcpu, p);
268 }
269
270 /*
271  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
272  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
273  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
274  * treat it separately.
275  */
276 static bool trap_loregion(struct kvm_vcpu *vcpu,
277                           struct sys_reg_params *p,
278                           const struct sys_reg_desc *r)
279 {
280         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
281         u32 sr = reg_to_encoding(r);
282
283         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
284                 kvm_inject_undefined(vcpu);
285                 return false;
286         }
287
288         if (p->is_write && sr == SYS_LORID_EL1)
289                 return write_to_read_only(vcpu, p, r);
290
291         return trap_raz_wi(vcpu, p, r);
292 }
293
294 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
295                            struct sys_reg_params *p,
296                            const struct sys_reg_desc *r)
297 {
298         if (p->is_write) {
299                 return ignore_write(vcpu, p);
300         } else {
301                 p->regval = (1 << 3);
302                 return true;
303         }
304 }
305
306 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
307                                    struct sys_reg_params *p,
308                                    const struct sys_reg_desc *r)
309 {
310         if (p->is_write) {
311                 return ignore_write(vcpu, p);
312         } else {
313                 p->regval = read_sysreg(dbgauthstatus_el1);
314                 return true;
315         }
316 }
317
318 /*
319  * We want to avoid world-switching all the DBG registers all the
320  * time:
321  * 
322  * - If we've touched any debug register, it is likely that we're
323  *   going to touch more of them. It then makes sense to disable the
324  *   traps and start doing the save/restore dance
325  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
326  *   then mandatory to save/restore the registers, as the guest
327  *   depends on them.
328  * 
329  * For this, we use a DIRTY bit, indicating the guest has modified the
330  * debug registers, used as follow:
331  *
332  * On guest entry:
333  * - If the dirty bit is set (because we're coming back from trapping),
334  *   disable the traps, save host registers, restore guest registers.
335  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
336  *   set the dirty bit, disable the traps, save host registers,
337  *   restore guest registers.
338  * - Otherwise, enable the traps
339  *
340  * On guest exit:
341  * - If the dirty bit is set, save guest registers, restore host
342  *   registers and clear the dirty bit. This ensure that the host can
343  *   now use the debug registers.
344  */
345 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
346                             struct sys_reg_params *p,
347                             const struct sys_reg_desc *r)
348 {
349         if (p->is_write) {
350                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
351                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
352         } else {
353                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
354         }
355
356         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
357
358         return true;
359 }
360
361 /*
362  * reg_to_dbg/dbg_to_reg
363  *
364  * A 32 bit write to a debug register leave top bits alone
365  * A 32 bit read from a debug register only returns the bottom bits
366  *
367  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
368  * hyp.S code switches between host and guest values in future.
369  */
370 static void reg_to_dbg(struct kvm_vcpu *vcpu,
371                        struct sys_reg_params *p,
372                        const struct sys_reg_desc *rd,
373                        u64 *dbg_reg)
374 {
375         u64 mask, shift, val;
376
377         get_access_mask(rd, &mask, &shift);
378
379         val = *dbg_reg;
380         val &= ~mask;
381         val |= (p->regval & (mask >> shift)) << shift;
382         *dbg_reg = val;
383
384         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
385 }
386
387 static void dbg_to_reg(struct kvm_vcpu *vcpu,
388                        struct sys_reg_params *p,
389                        const struct sys_reg_desc *rd,
390                        u64 *dbg_reg)
391 {
392         u64 mask, shift;
393
394         get_access_mask(rd, &mask, &shift);
395         p->regval = (*dbg_reg & mask) >> shift;
396 }
397
398 static bool trap_bvr(struct kvm_vcpu *vcpu,
399                      struct sys_reg_params *p,
400                      const struct sys_reg_desc *rd)
401 {
402         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
403
404         if (p->is_write)
405                 reg_to_dbg(vcpu, p, rd, dbg_reg);
406         else
407                 dbg_to_reg(vcpu, p, rd, dbg_reg);
408
409         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
410
411         return true;
412 }
413
414 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
415                 const struct kvm_one_reg *reg, void __user *uaddr)
416 {
417         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
418
419         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
420                 return -EFAULT;
421         return 0;
422 }
423
424 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
425         const struct kvm_one_reg *reg, void __user *uaddr)
426 {
427         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
428
429         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
430                 return -EFAULT;
431         return 0;
432 }
433
434 static void reset_bvr(struct kvm_vcpu *vcpu,
435                       const struct sys_reg_desc *rd)
436 {
437         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
438 }
439
440 static bool trap_bcr(struct kvm_vcpu *vcpu,
441                      struct sys_reg_params *p,
442                      const struct sys_reg_desc *rd)
443 {
444         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
445
446         if (p->is_write)
447                 reg_to_dbg(vcpu, p, rd, dbg_reg);
448         else
449                 dbg_to_reg(vcpu, p, rd, dbg_reg);
450
451         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
452
453         return true;
454 }
455
456 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
457                 const struct kvm_one_reg *reg, void __user *uaddr)
458 {
459         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
460
461         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
462                 return -EFAULT;
463
464         return 0;
465 }
466
467 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
468         const struct kvm_one_reg *reg, void __user *uaddr)
469 {
470         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
471
472         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
473                 return -EFAULT;
474         return 0;
475 }
476
477 static void reset_bcr(struct kvm_vcpu *vcpu,
478                       const struct sys_reg_desc *rd)
479 {
480         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
481 }
482
483 static bool trap_wvr(struct kvm_vcpu *vcpu,
484                      struct sys_reg_params *p,
485                      const struct sys_reg_desc *rd)
486 {
487         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
488
489         if (p->is_write)
490                 reg_to_dbg(vcpu, p, rd, dbg_reg);
491         else
492                 dbg_to_reg(vcpu, p, rd, dbg_reg);
493
494         trace_trap_reg(__func__, rd->reg, p->is_write,
495                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
496
497         return true;
498 }
499
500 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501                 const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
504
505         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
506                 return -EFAULT;
507         return 0;
508 }
509
510 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
511         const struct kvm_one_reg *reg, void __user *uaddr)
512 {
513         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
514
515         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
516                 return -EFAULT;
517         return 0;
518 }
519
520 static void reset_wvr(struct kvm_vcpu *vcpu,
521                       const struct sys_reg_desc *rd)
522 {
523         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
524 }
525
526 static bool trap_wcr(struct kvm_vcpu *vcpu,
527                      struct sys_reg_params *p,
528                      const struct sys_reg_desc *rd)
529 {
530         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
531
532         if (p->is_write)
533                 reg_to_dbg(vcpu, p, rd, dbg_reg);
534         else
535                 dbg_to_reg(vcpu, p, rd, dbg_reg);
536
537         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
538
539         return true;
540 }
541
542 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
543                 const struct kvm_one_reg *reg, void __user *uaddr)
544 {
545         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
546
547         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
548                 return -EFAULT;
549         return 0;
550 }
551
552 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
553         const struct kvm_one_reg *reg, void __user *uaddr)
554 {
555         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
556
557         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
558                 return -EFAULT;
559         return 0;
560 }
561
562 static void reset_wcr(struct kvm_vcpu *vcpu,
563                       const struct sys_reg_desc *rd)
564 {
565         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
566 }
567
568 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
569 {
570         u64 amair = read_sysreg(amair_el1);
571         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
572 }
573
574 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
575 {
576         u64 actlr = read_sysreg(actlr_el1);
577         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
578 }
579
580 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
581 {
582         u64 mpidr;
583
584         /*
585          * Map the vcpu_id into the first three affinity level fields of
586          * the MPIDR. We limit the number of VCPUs in level 0 due to a
587          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
588          * of the GICv3 to be able to address each CPU directly when
589          * sending IPIs.
590          */
591         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
592         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
593         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
594         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
595 }
596
597 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
598                                    const struct sys_reg_desc *r)
599 {
600         if (kvm_vcpu_has_pmu(vcpu))
601                 return 0;
602
603         return REG_HIDDEN;
604 }
605
606 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
607 {
608         u64 pmcr, val;
609
610         /* No PMU available, PMCR_EL0 may UNDEF... */
611         if (!kvm_arm_support_pmu_v3())
612                 return;
613
614         pmcr = read_sysreg(pmcr_el0);
615         /*
616          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
617          * except PMCR.E resetting to zero.
618          */
619         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
620                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
621         if (!system_supports_32bit_el0())
622                 val |= ARMV8_PMU_PMCR_LC;
623         __vcpu_sys_reg(vcpu, r->reg) = val;
624 }
625
626 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
627 {
628         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
629         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
630
631         if (!enabled)
632                 kvm_inject_undefined(vcpu);
633
634         return !enabled;
635 }
636
637 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
638 {
639         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
640 }
641
642 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
643 {
644         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
645 }
646
647 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
648 {
649         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
650 }
651
652 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
653 {
654         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
655 }
656
657 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
658                         const struct sys_reg_desc *r)
659 {
660         u64 val;
661
662         if (pmu_access_el0_disabled(vcpu))
663                 return false;
664
665         if (p->is_write) {
666                 /* Only update writeable bits of PMCR */
667                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
668                 val &= ~ARMV8_PMU_PMCR_MASK;
669                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
670                 if (!system_supports_32bit_el0())
671                         val |= ARMV8_PMU_PMCR_LC;
672                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
673                 kvm_pmu_handle_pmcr(vcpu, val);
674                 kvm_vcpu_pmu_restore_guest(vcpu);
675         } else {
676                 /* PMCR.P & PMCR.C are RAZ */
677                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
678                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
679                 p->regval = val;
680         }
681
682         return true;
683 }
684
685 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
686                           const struct sys_reg_desc *r)
687 {
688         if (pmu_access_event_counter_el0_disabled(vcpu))
689                 return false;
690
691         if (p->is_write)
692                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
693         else
694                 /* return PMSELR.SEL field */
695                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
696                             & ARMV8_PMU_COUNTER_MASK;
697
698         return true;
699 }
700
701 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
702                           const struct sys_reg_desc *r)
703 {
704         u64 pmceid, mask, shift;
705
706         BUG_ON(p->is_write);
707
708         if (pmu_access_el0_disabled(vcpu))
709                 return false;
710
711         get_access_mask(r, &mask, &shift);
712
713         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
714         pmceid &= mask;
715         pmceid >>= shift;
716
717         p->regval = pmceid;
718
719         return true;
720 }
721
722 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
723 {
724         u64 pmcr, val;
725
726         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
727         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
728         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
729                 kvm_inject_undefined(vcpu);
730                 return false;
731         }
732
733         return true;
734 }
735
736 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
737                               struct sys_reg_params *p,
738                               const struct sys_reg_desc *r)
739 {
740         u64 idx = ~0UL;
741
742         if (r->CRn == 9 && r->CRm == 13) {
743                 if (r->Op2 == 2) {
744                         /* PMXEVCNTR_EL0 */
745                         if (pmu_access_event_counter_el0_disabled(vcpu))
746                                 return false;
747
748                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
749                               & ARMV8_PMU_COUNTER_MASK;
750                 } else if (r->Op2 == 0) {
751                         /* PMCCNTR_EL0 */
752                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
753                                 return false;
754
755                         idx = ARMV8_PMU_CYCLE_IDX;
756                 }
757         } else if (r->CRn == 0 && r->CRm == 9) {
758                 /* PMCCNTR */
759                 if (pmu_access_event_counter_el0_disabled(vcpu))
760                         return false;
761
762                 idx = ARMV8_PMU_CYCLE_IDX;
763         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
764                 /* PMEVCNTRn_EL0 */
765                 if (pmu_access_event_counter_el0_disabled(vcpu))
766                         return false;
767
768                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
769         }
770
771         /* Catch any decoding mistake */
772         WARN_ON(idx == ~0UL);
773
774         if (!pmu_counter_idx_valid(vcpu, idx))
775                 return false;
776
777         if (p->is_write) {
778                 if (pmu_access_el0_disabled(vcpu))
779                         return false;
780
781                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
782         } else {
783                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
784         }
785
786         return true;
787 }
788
789 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
790                                const struct sys_reg_desc *r)
791 {
792         u64 idx, reg;
793
794         if (pmu_access_el0_disabled(vcpu))
795                 return false;
796
797         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
798                 /* PMXEVTYPER_EL0 */
799                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
800                 reg = PMEVTYPER0_EL0 + idx;
801         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
802                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
803                 if (idx == ARMV8_PMU_CYCLE_IDX)
804                         reg = PMCCFILTR_EL0;
805                 else
806                         /* PMEVTYPERn_EL0 */
807                         reg = PMEVTYPER0_EL0 + idx;
808         } else {
809                 BUG();
810         }
811
812         if (!pmu_counter_idx_valid(vcpu, idx))
813                 return false;
814
815         if (p->is_write) {
816                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
817                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
818                 kvm_vcpu_pmu_restore_guest(vcpu);
819         } else {
820                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
821         }
822
823         return true;
824 }
825
826 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
827                            const struct sys_reg_desc *r)
828 {
829         u64 val, mask;
830
831         if (pmu_access_el0_disabled(vcpu))
832                 return false;
833
834         mask = kvm_pmu_valid_counter_mask(vcpu);
835         if (p->is_write) {
836                 val = p->regval & mask;
837                 if (r->Op2 & 0x1) {
838                         /* accessing PMCNTENSET_EL0 */
839                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
840                         kvm_pmu_enable_counter_mask(vcpu, val);
841                         kvm_vcpu_pmu_restore_guest(vcpu);
842                 } else {
843                         /* accessing PMCNTENCLR_EL0 */
844                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
845                         kvm_pmu_disable_counter_mask(vcpu, val);
846                 }
847         } else {
848                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
849         }
850
851         return true;
852 }
853
854 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
855                            const struct sys_reg_desc *r)
856 {
857         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
858
859         if (check_pmu_access_disabled(vcpu, 0))
860                 return false;
861
862         if (p->is_write) {
863                 u64 val = p->regval & mask;
864
865                 if (r->Op2 & 0x1)
866                         /* accessing PMINTENSET_EL1 */
867                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
868                 else
869                         /* accessing PMINTENCLR_EL1 */
870                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
871         } else {
872                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
873         }
874
875         return true;
876 }
877
878 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
879                          const struct sys_reg_desc *r)
880 {
881         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
882
883         if (pmu_access_el0_disabled(vcpu))
884                 return false;
885
886         if (p->is_write) {
887                 if (r->CRm & 0x2)
888                         /* accessing PMOVSSET_EL0 */
889                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
890                 else
891                         /* accessing PMOVSCLR_EL0 */
892                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
893         } else {
894                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
895         }
896
897         return true;
898 }
899
900 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
901                            const struct sys_reg_desc *r)
902 {
903         u64 mask;
904
905         if (!p->is_write)
906                 return read_from_write_only(vcpu, p, r);
907
908         if (pmu_write_swinc_el0_disabled(vcpu))
909                 return false;
910
911         mask = kvm_pmu_valid_counter_mask(vcpu);
912         kvm_pmu_software_increment(vcpu, p->regval & mask);
913         return true;
914 }
915
916 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
917                              const struct sys_reg_desc *r)
918 {
919         if (p->is_write) {
920                 if (!vcpu_mode_priv(vcpu)) {
921                         kvm_inject_undefined(vcpu);
922                         return false;
923                 }
924
925                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
926                                p->regval & ARMV8_PMU_USERENR_MASK;
927         } else {
928                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
929                             & ARMV8_PMU_USERENR_MASK;
930         }
931
932         return true;
933 }
934
935 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
936 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
937         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
938           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
939         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
940           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
941         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
942           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
943         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
944           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
945
946 #define PMU_SYS_REG(r)                                          \
947         SYS_DESC(r), .reset = reset_unknown, .visibility = pmu_visibility
948
949 /* Macro to expand the PMEVCNTRn_EL0 register */
950 #define PMU_PMEVCNTR_EL0(n)                                             \
951         { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
952           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
953
954 /* Macro to expand the PMEVTYPERn_EL0 register */
955 #define PMU_PMEVTYPER_EL0(n)                                            \
956         { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
957           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
958
959 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
960                          const struct sys_reg_desc *r)
961 {
962         kvm_inject_undefined(vcpu);
963
964         return false;
965 }
966
967 /* Macro to expand the AMU counter and type registers*/
968 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
969 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
970 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
971 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
972
973 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
974                         const struct sys_reg_desc *rd)
975 {
976         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
977 }
978
979 /*
980  * If we land here on a PtrAuth access, that is because we didn't
981  * fixup the access on exit by allowing the PtrAuth sysregs. The only
982  * way this happens is when the guest does not have PtrAuth support
983  * enabled.
984  */
985 #define __PTRAUTH_KEY(k)                                                \
986         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
987         .visibility = ptrauth_visibility}
988
989 #define PTRAUTH_KEY(k)                                                  \
990         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
991         __PTRAUTH_KEY(k ## KEYHI_EL1)
992
993 static bool access_arch_timer(struct kvm_vcpu *vcpu,
994                               struct sys_reg_params *p,
995                               const struct sys_reg_desc *r)
996 {
997         enum kvm_arch_timers tmr;
998         enum kvm_arch_timer_regs treg;
999         u64 reg = reg_to_encoding(r);
1000
1001         switch (reg) {
1002         case SYS_CNTP_TVAL_EL0:
1003         case SYS_AARCH32_CNTP_TVAL:
1004                 tmr = TIMER_PTIMER;
1005                 treg = TIMER_REG_TVAL;
1006                 break;
1007         case SYS_CNTP_CTL_EL0:
1008         case SYS_AARCH32_CNTP_CTL:
1009                 tmr = TIMER_PTIMER;
1010                 treg = TIMER_REG_CTL;
1011                 break;
1012         case SYS_CNTP_CVAL_EL0:
1013         case SYS_AARCH32_CNTP_CVAL:
1014                 tmr = TIMER_PTIMER;
1015                 treg = TIMER_REG_CVAL;
1016                 break;
1017         default:
1018                 BUG();
1019         }
1020
1021         if (p->is_write)
1022                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1023         else
1024                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1025
1026         return true;
1027 }
1028
1029 #define FEATURE(x)      (GENMASK_ULL(x##_SHIFT + 3, x##_SHIFT))
1030
1031 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1032 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1033                 struct sys_reg_desc const *r, bool raz)
1034 {
1035         u32 id = reg_to_encoding(r);
1036         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1037
1038         switch (id) {
1039         case SYS_ID_AA64PFR0_EL1:
1040                 if (!vcpu_has_sve(vcpu))
1041                         val &= ~FEATURE(ID_AA64PFR0_SVE);
1042                 val &= ~FEATURE(ID_AA64PFR0_AMU);
1043                 val &= ~FEATURE(ID_AA64PFR0_CSV2);
1044                 val |= FIELD_PREP(FEATURE(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1045                 val &= ~FEATURE(ID_AA64PFR0_CSV3);
1046                 val |= FIELD_PREP(FEATURE(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1047                 break;
1048         case SYS_ID_AA64PFR1_EL1:
1049                 val &= ~FEATURE(ID_AA64PFR1_MTE);
1050                 break;
1051         case SYS_ID_AA64ISAR1_EL1:
1052                 if (!vcpu_has_ptrauth(vcpu))
1053                         val &= ~(FEATURE(ID_AA64ISAR1_APA) |
1054                                  FEATURE(ID_AA64ISAR1_API) |
1055                                  FEATURE(ID_AA64ISAR1_GPA) |
1056                                  FEATURE(ID_AA64ISAR1_GPI));
1057                 break;
1058         case SYS_ID_AA64DFR0_EL1:
1059                 /* Limit debug to ARMv8.0 */
1060                 val &= ~FEATURE(ID_AA64DFR0_DEBUGVER);
1061                 val |= FIELD_PREP(FEATURE(ID_AA64DFR0_DEBUGVER), 6);
1062                 /* Limit guests to PMUv3 for ARMv8.4 */
1063                 val = cpuid_feature_cap_perfmon_field(val,
1064                                                       ID_AA64DFR0_PMUVER_SHIFT,
1065                                                       kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1066                 break;
1067         case SYS_ID_DFR0_EL1:
1068                 /* Limit guests to PMUv3 for ARMv8.4 */
1069                 val = cpuid_feature_cap_perfmon_field(val,
1070                                                       ID_DFR0_PERFMON_SHIFT,
1071                                                       kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1072                 break;
1073         }
1074
1075         return val;
1076 }
1077
1078 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1079                                   const struct sys_reg_desc *r)
1080 {
1081         u32 id = reg_to_encoding(r);
1082
1083         switch (id) {
1084         case SYS_ID_AA64ZFR0_EL1:
1085                 if (!vcpu_has_sve(vcpu))
1086                         return REG_RAZ;
1087                 break;
1088         }
1089
1090         return 0;
1091 }
1092
1093 /* cpufeature ID register access trap handlers */
1094
1095 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1096                             struct sys_reg_params *p,
1097                             const struct sys_reg_desc *r,
1098                             bool raz)
1099 {
1100         if (p->is_write)
1101                 return write_to_read_only(vcpu, p, r);
1102
1103         p->regval = read_id_reg(vcpu, r, raz);
1104         return true;
1105 }
1106
1107 static bool access_id_reg(struct kvm_vcpu *vcpu,
1108                           struct sys_reg_params *p,
1109                           const struct sys_reg_desc *r)
1110 {
1111         bool raz = sysreg_visible_as_raz(vcpu, r);
1112
1113         return __access_id_reg(vcpu, p, r, raz);
1114 }
1115
1116 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1117                               struct sys_reg_params *p,
1118                               const struct sys_reg_desc *r)
1119 {
1120         return __access_id_reg(vcpu, p, r, true);
1121 }
1122
1123 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1124 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1125 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1126
1127 /* Visibility overrides for SVE-specific control registers */
1128 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1129                                    const struct sys_reg_desc *rd)
1130 {
1131         if (vcpu_has_sve(vcpu))
1132                 return 0;
1133
1134         return REG_HIDDEN;
1135 }
1136
1137 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1138                                const struct sys_reg_desc *rd,
1139                                const struct kvm_one_reg *reg, void __user *uaddr)
1140 {
1141         const u64 id = sys_reg_to_index(rd);
1142         u8 csv2, csv3;
1143         int err;
1144         u64 val;
1145
1146         err = reg_from_user(&val, uaddr, id);
1147         if (err)
1148                 return err;
1149
1150         /*
1151          * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1152          * it doesn't promise more than what is actually provided (the
1153          * guest could otherwise be covered in ectoplasmic residue).
1154          */
1155         csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1156         if (csv2 > 1 ||
1157             (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1158                 return -EINVAL;
1159
1160         /* Same thing for CSV3 */
1161         csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1162         if (csv3 > 1 ||
1163             (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1164                 return -EINVAL;
1165
1166         /* We can only differ with CSV[23], and anything else is an error */
1167         val ^= read_id_reg(vcpu, rd, false);
1168         val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1169                  (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1170         if (val)
1171                 return -EINVAL;
1172
1173         vcpu->kvm->arch.pfr0_csv2 = csv2;
1174         vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1175
1176         return 0;
1177 }
1178
1179 /*
1180  * cpufeature ID register user accessors
1181  *
1182  * For now, these registers are immutable for userspace, so no values
1183  * are stored, and for set_id_reg() we don't allow the effective value
1184  * to be changed.
1185  */
1186 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1187                         const struct sys_reg_desc *rd, void __user *uaddr,
1188                         bool raz)
1189 {
1190         const u64 id = sys_reg_to_index(rd);
1191         const u64 val = read_id_reg(vcpu, rd, raz);
1192
1193         return reg_to_user(uaddr, &val, id);
1194 }
1195
1196 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1197                         const struct sys_reg_desc *rd, void __user *uaddr,
1198                         bool raz)
1199 {
1200         const u64 id = sys_reg_to_index(rd);
1201         int err;
1202         u64 val;
1203
1204         err = reg_from_user(&val, uaddr, id);
1205         if (err)
1206                 return err;
1207
1208         /* This is what we mean by invariant: you can't change it. */
1209         if (val != read_id_reg(vcpu, rd, raz))
1210                 return -EINVAL;
1211
1212         return 0;
1213 }
1214
1215 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1216                       const struct kvm_one_reg *reg, void __user *uaddr)
1217 {
1218         bool raz = sysreg_visible_as_raz(vcpu, rd);
1219
1220         return __get_id_reg(vcpu, rd, uaddr, raz);
1221 }
1222
1223 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1224                       const struct kvm_one_reg *reg, void __user *uaddr)
1225 {
1226         bool raz = sysreg_visible_as_raz(vcpu, rd);
1227
1228         return __set_id_reg(vcpu, rd, uaddr, raz);
1229 }
1230
1231 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1232                           const struct kvm_one_reg *reg, void __user *uaddr)
1233 {
1234         return __get_id_reg(vcpu, rd, uaddr, true);
1235 }
1236
1237 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1238                           const struct kvm_one_reg *reg, void __user *uaddr)
1239 {
1240         return __set_id_reg(vcpu, rd, uaddr, true);
1241 }
1242
1243 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1244                        const struct sys_reg_desc *r)
1245 {
1246         if (p->is_write)
1247                 return write_to_read_only(vcpu, p, r);
1248
1249         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1250         return true;
1251 }
1252
1253 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1254                          const struct sys_reg_desc *r)
1255 {
1256         if (p->is_write)
1257                 return write_to_read_only(vcpu, p, r);
1258
1259         p->regval = read_sysreg(clidr_el1);
1260         return true;
1261 }
1262
1263 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1264                           const struct sys_reg_desc *r)
1265 {
1266         int reg = r->reg;
1267
1268         if (p->is_write)
1269                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1270         else
1271                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1272         return true;
1273 }
1274
1275 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1276                           const struct sys_reg_desc *r)
1277 {
1278         u32 csselr;
1279
1280         if (p->is_write)
1281                 return write_to_read_only(vcpu, p, r);
1282
1283         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1284         p->regval = get_ccsidr(csselr);
1285
1286         /*
1287          * Guests should not be doing cache operations by set/way at all, and
1288          * for this reason, we trap them and attempt to infer the intent, so
1289          * that we can flush the entire guest's address space at the appropriate
1290          * time.
1291          * To prevent this trapping from causing performance problems, let's
1292          * expose the geometry of all data and unified caches (which are
1293          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1294          * [If guests should attempt to infer aliasing properties from the
1295          * geometry (which is not permitted by the architecture), they would
1296          * only do so for virtually indexed caches.]
1297          */
1298         if (!(csselr & 1)) // data or unified cache
1299                 p->regval &= ~GENMASK(27, 3);
1300         return true;
1301 }
1302
1303 /* sys_reg_desc initialiser for known cpufeature ID registers */
1304 #define ID_SANITISED(name) {                    \
1305         SYS_DESC(SYS_##name),                   \
1306         .access = access_id_reg,                \
1307         .get_user = get_id_reg,                 \
1308         .set_user = set_id_reg,                 \
1309         .visibility = id_visibility,            \
1310 }
1311
1312 /*
1313  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1314  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1315  * (1 <= crm < 8, 0 <= Op2 < 8).
1316  */
1317 #define ID_UNALLOCATED(crm, op2) {                      \
1318         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1319         .access = access_raz_id_reg,                    \
1320         .get_user = get_raz_id_reg,                     \
1321         .set_user = set_raz_id_reg,                     \
1322 }
1323
1324 /*
1325  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1326  * For now, these are exposed just like unallocated ID regs: they appear
1327  * RAZ for the guest.
1328  */
1329 #define ID_HIDDEN(name) {                       \
1330         SYS_DESC(SYS_##name),                   \
1331         .access = access_raz_id_reg,            \
1332         .get_user = get_raz_id_reg,             \
1333         .set_user = set_raz_id_reg,             \
1334 }
1335
1336 /*
1337  * Architected system registers.
1338  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1339  *
1340  * Debug handling: We do trap most, if not all debug related system
1341  * registers. The implementation is good enough to ensure that a guest
1342  * can use these with minimal performance degradation. The drawback is
1343  * that we don't implement any of the external debug, none of the
1344  * OSlock protocol. This should be revisited if we ever encounter a
1345  * more demanding guest...
1346  */
1347 static const struct sys_reg_desc sys_reg_descs[] = {
1348         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1349         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1350         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1351
1352         DBG_BCR_BVR_WCR_WVR_EL1(0),
1353         DBG_BCR_BVR_WCR_WVR_EL1(1),
1354         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1355         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1356         DBG_BCR_BVR_WCR_WVR_EL1(2),
1357         DBG_BCR_BVR_WCR_WVR_EL1(3),
1358         DBG_BCR_BVR_WCR_WVR_EL1(4),
1359         DBG_BCR_BVR_WCR_WVR_EL1(5),
1360         DBG_BCR_BVR_WCR_WVR_EL1(6),
1361         DBG_BCR_BVR_WCR_WVR_EL1(7),
1362         DBG_BCR_BVR_WCR_WVR_EL1(8),
1363         DBG_BCR_BVR_WCR_WVR_EL1(9),
1364         DBG_BCR_BVR_WCR_WVR_EL1(10),
1365         DBG_BCR_BVR_WCR_WVR_EL1(11),
1366         DBG_BCR_BVR_WCR_WVR_EL1(12),
1367         DBG_BCR_BVR_WCR_WVR_EL1(13),
1368         DBG_BCR_BVR_WCR_WVR_EL1(14),
1369         DBG_BCR_BVR_WCR_WVR_EL1(15),
1370
1371         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1372         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1373         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1374         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1375         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1376         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1377         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1378         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1379
1380         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1381         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1382         // DBGDTR[TR]X_EL0 share the same encoding
1383         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1384
1385         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1386
1387         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1388
1389         /*
1390          * ID regs: all ID_SANITISED() entries here must have corresponding
1391          * entries in arm64_ftr_regs[].
1392          */
1393
1394         /* AArch64 mappings of the AArch32 ID registers */
1395         /* CRm=1 */
1396         ID_SANITISED(ID_PFR0_EL1),
1397         ID_SANITISED(ID_PFR1_EL1),
1398         ID_SANITISED(ID_DFR0_EL1),
1399         ID_HIDDEN(ID_AFR0_EL1),
1400         ID_SANITISED(ID_MMFR0_EL1),
1401         ID_SANITISED(ID_MMFR1_EL1),
1402         ID_SANITISED(ID_MMFR2_EL1),
1403         ID_SANITISED(ID_MMFR3_EL1),
1404
1405         /* CRm=2 */
1406         ID_SANITISED(ID_ISAR0_EL1),
1407         ID_SANITISED(ID_ISAR1_EL1),
1408         ID_SANITISED(ID_ISAR2_EL1),
1409         ID_SANITISED(ID_ISAR3_EL1),
1410         ID_SANITISED(ID_ISAR4_EL1),
1411         ID_SANITISED(ID_ISAR5_EL1),
1412         ID_SANITISED(ID_MMFR4_EL1),
1413         ID_SANITISED(ID_ISAR6_EL1),
1414
1415         /* CRm=3 */
1416         ID_SANITISED(MVFR0_EL1),
1417         ID_SANITISED(MVFR1_EL1),
1418         ID_SANITISED(MVFR2_EL1),
1419         ID_UNALLOCATED(3,3),
1420         ID_SANITISED(ID_PFR2_EL1),
1421         ID_HIDDEN(ID_DFR1_EL1),
1422         ID_SANITISED(ID_MMFR5_EL1),
1423         ID_UNALLOCATED(3,7),
1424
1425         /* AArch64 ID registers */
1426         /* CRm=4 */
1427         { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1428           .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1429         ID_SANITISED(ID_AA64PFR1_EL1),
1430         ID_UNALLOCATED(4,2),
1431         ID_UNALLOCATED(4,3),
1432         ID_SANITISED(ID_AA64ZFR0_EL1),
1433         ID_UNALLOCATED(4,5),
1434         ID_UNALLOCATED(4,6),
1435         ID_UNALLOCATED(4,7),
1436
1437         /* CRm=5 */
1438         ID_SANITISED(ID_AA64DFR0_EL1),
1439         ID_SANITISED(ID_AA64DFR1_EL1),
1440         ID_UNALLOCATED(5,2),
1441         ID_UNALLOCATED(5,3),
1442         ID_HIDDEN(ID_AA64AFR0_EL1),
1443         ID_HIDDEN(ID_AA64AFR1_EL1),
1444         ID_UNALLOCATED(5,6),
1445         ID_UNALLOCATED(5,7),
1446
1447         /* CRm=6 */
1448         ID_SANITISED(ID_AA64ISAR0_EL1),
1449         ID_SANITISED(ID_AA64ISAR1_EL1),
1450         ID_UNALLOCATED(6,2),
1451         ID_UNALLOCATED(6,3),
1452         ID_UNALLOCATED(6,4),
1453         ID_UNALLOCATED(6,5),
1454         ID_UNALLOCATED(6,6),
1455         ID_UNALLOCATED(6,7),
1456
1457         /* CRm=7 */
1458         ID_SANITISED(ID_AA64MMFR0_EL1),
1459         ID_SANITISED(ID_AA64MMFR1_EL1),
1460         ID_SANITISED(ID_AA64MMFR2_EL1),
1461         ID_UNALLOCATED(7,3),
1462         ID_UNALLOCATED(7,4),
1463         ID_UNALLOCATED(7,5),
1464         ID_UNALLOCATED(7,6),
1465         ID_UNALLOCATED(7,7),
1466
1467         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1468         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1469         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1470
1471         { SYS_DESC(SYS_RGSR_EL1), undef_access },
1472         { SYS_DESC(SYS_GCR_EL1), undef_access },
1473
1474         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1475         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1476         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1477         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1478
1479         PTRAUTH_KEY(APIA),
1480         PTRAUTH_KEY(APIB),
1481         PTRAUTH_KEY(APDA),
1482         PTRAUTH_KEY(APDB),
1483         PTRAUTH_KEY(APGA),
1484
1485         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1486         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1487         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1488
1489         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1490         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1491         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1492         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1493         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1494         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1495         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1496         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1497
1498         { SYS_DESC(SYS_TFSR_EL1), undef_access },
1499         { SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1500
1501         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1502         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1503
1504         { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1505           .access = access_pminten, .reg = PMINTENSET_EL1 },
1506         { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1507           .access = access_pminten, .reg = PMINTENSET_EL1 },
1508         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1509
1510         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1511         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1512
1513         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1514         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1515         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1516         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1517         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1518
1519         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1520         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1521
1522         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1523         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1524         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1525         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1526         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1527         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1528         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1529         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1530         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1531         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1532         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1533         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1534
1535         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1536         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1537
1538         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1539
1540         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1541
1542         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1543         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1544         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1545         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1546
1547         { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1548           .reset = reset_pmcr, .reg = PMCR_EL0 },
1549         { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1550           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1551         { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1552           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1553         { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1554           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1555         { PMU_SYS_REG(SYS_PMSWINC_EL0),
1556           .access = access_pmswinc, .reg = PMSWINC_EL0 },
1557         { PMU_SYS_REG(SYS_PMSELR_EL0),
1558           .access = access_pmselr, .reg = PMSELR_EL0 },
1559         { PMU_SYS_REG(SYS_PMCEID0_EL0),
1560           .access = access_pmceid, .reset = NULL },
1561         { PMU_SYS_REG(SYS_PMCEID1_EL0),
1562           .access = access_pmceid, .reset = NULL },
1563         { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1564           .access = access_pmu_evcntr, .reg = PMCCNTR_EL0 },
1565         { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1566           .access = access_pmu_evtyper, .reset = NULL },
1567         { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1568           .access = access_pmu_evcntr, .reset = NULL },
1569         /*
1570          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1571          * in 32bit mode. Here we choose to reset it as zero for consistency.
1572          */
1573         { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1574           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1575         { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1576           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1577
1578         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1579         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1580
1581         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1582
1583         { SYS_DESC(SYS_AMCR_EL0), undef_access },
1584         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1585         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1586         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1587         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1588         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1589         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1590         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1591         AMU_AMEVCNTR0_EL0(0),
1592         AMU_AMEVCNTR0_EL0(1),
1593         AMU_AMEVCNTR0_EL0(2),
1594         AMU_AMEVCNTR0_EL0(3),
1595         AMU_AMEVCNTR0_EL0(4),
1596         AMU_AMEVCNTR0_EL0(5),
1597         AMU_AMEVCNTR0_EL0(6),
1598         AMU_AMEVCNTR0_EL0(7),
1599         AMU_AMEVCNTR0_EL0(8),
1600         AMU_AMEVCNTR0_EL0(9),
1601         AMU_AMEVCNTR0_EL0(10),
1602         AMU_AMEVCNTR0_EL0(11),
1603         AMU_AMEVCNTR0_EL0(12),
1604         AMU_AMEVCNTR0_EL0(13),
1605         AMU_AMEVCNTR0_EL0(14),
1606         AMU_AMEVCNTR0_EL0(15),
1607         AMU_AMEVTYPER0_EL0(0),
1608         AMU_AMEVTYPER0_EL0(1),
1609         AMU_AMEVTYPER0_EL0(2),
1610         AMU_AMEVTYPER0_EL0(3),
1611         AMU_AMEVTYPER0_EL0(4),
1612         AMU_AMEVTYPER0_EL0(5),
1613         AMU_AMEVTYPER0_EL0(6),
1614         AMU_AMEVTYPER0_EL0(7),
1615         AMU_AMEVTYPER0_EL0(8),
1616         AMU_AMEVTYPER0_EL0(9),
1617         AMU_AMEVTYPER0_EL0(10),
1618         AMU_AMEVTYPER0_EL0(11),
1619         AMU_AMEVTYPER0_EL0(12),
1620         AMU_AMEVTYPER0_EL0(13),
1621         AMU_AMEVTYPER0_EL0(14),
1622         AMU_AMEVTYPER0_EL0(15),
1623         AMU_AMEVCNTR1_EL0(0),
1624         AMU_AMEVCNTR1_EL0(1),
1625         AMU_AMEVCNTR1_EL0(2),
1626         AMU_AMEVCNTR1_EL0(3),
1627         AMU_AMEVCNTR1_EL0(4),
1628         AMU_AMEVCNTR1_EL0(5),
1629         AMU_AMEVCNTR1_EL0(6),
1630         AMU_AMEVCNTR1_EL0(7),
1631         AMU_AMEVCNTR1_EL0(8),
1632         AMU_AMEVCNTR1_EL0(9),
1633         AMU_AMEVCNTR1_EL0(10),
1634         AMU_AMEVCNTR1_EL0(11),
1635         AMU_AMEVCNTR1_EL0(12),
1636         AMU_AMEVCNTR1_EL0(13),
1637         AMU_AMEVCNTR1_EL0(14),
1638         AMU_AMEVCNTR1_EL0(15),
1639         AMU_AMEVTYPER1_EL0(0),
1640         AMU_AMEVTYPER1_EL0(1),
1641         AMU_AMEVTYPER1_EL0(2),
1642         AMU_AMEVTYPER1_EL0(3),
1643         AMU_AMEVTYPER1_EL0(4),
1644         AMU_AMEVTYPER1_EL0(5),
1645         AMU_AMEVTYPER1_EL0(6),
1646         AMU_AMEVTYPER1_EL0(7),
1647         AMU_AMEVTYPER1_EL0(8),
1648         AMU_AMEVTYPER1_EL0(9),
1649         AMU_AMEVTYPER1_EL0(10),
1650         AMU_AMEVTYPER1_EL0(11),
1651         AMU_AMEVTYPER1_EL0(12),
1652         AMU_AMEVTYPER1_EL0(13),
1653         AMU_AMEVTYPER1_EL0(14),
1654         AMU_AMEVTYPER1_EL0(15),
1655
1656         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1657         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1658         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1659
1660         /* PMEVCNTRn_EL0 */
1661         PMU_PMEVCNTR_EL0(0),
1662         PMU_PMEVCNTR_EL0(1),
1663         PMU_PMEVCNTR_EL0(2),
1664         PMU_PMEVCNTR_EL0(3),
1665         PMU_PMEVCNTR_EL0(4),
1666         PMU_PMEVCNTR_EL0(5),
1667         PMU_PMEVCNTR_EL0(6),
1668         PMU_PMEVCNTR_EL0(7),
1669         PMU_PMEVCNTR_EL0(8),
1670         PMU_PMEVCNTR_EL0(9),
1671         PMU_PMEVCNTR_EL0(10),
1672         PMU_PMEVCNTR_EL0(11),
1673         PMU_PMEVCNTR_EL0(12),
1674         PMU_PMEVCNTR_EL0(13),
1675         PMU_PMEVCNTR_EL0(14),
1676         PMU_PMEVCNTR_EL0(15),
1677         PMU_PMEVCNTR_EL0(16),
1678         PMU_PMEVCNTR_EL0(17),
1679         PMU_PMEVCNTR_EL0(18),
1680         PMU_PMEVCNTR_EL0(19),
1681         PMU_PMEVCNTR_EL0(20),
1682         PMU_PMEVCNTR_EL0(21),
1683         PMU_PMEVCNTR_EL0(22),
1684         PMU_PMEVCNTR_EL0(23),
1685         PMU_PMEVCNTR_EL0(24),
1686         PMU_PMEVCNTR_EL0(25),
1687         PMU_PMEVCNTR_EL0(26),
1688         PMU_PMEVCNTR_EL0(27),
1689         PMU_PMEVCNTR_EL0(28),
1690         PMU_PMEVCNTR_EL0(29),
1691         PMU_PMEVCNTR_EL0(30),
1692         /* PMEVTYPERn_EL0 */
1693         PMU_PMEVTYPER_EL0(0),
1694         PMU_PMEVTYPER_EL0(1),
1695         PMU_PMEVTYPER_EL0(2),
1696         PMU_PMEVTYPER_EL0(3),
1697         PMU_PMEVTYPER_EL0(4),
1698         PMU_PMEVTYPER_EL0(5),
1699         PMU_PMEVTYPER_EL0(6),
1700         PMU_PMEVTYPER_EL0(7),
1701         PMU_PMEVTYPER_EL0(8),
1702         PMU_PMEVTYPER_EL0(9),
1703         PMU_PMEVTYPER_EL0(10),
1704         PMU_PMEVTYPER_EL0(11),
1705         PMU_PMEVTYPER_EL0(12),
1706         PMU_PMEVTYPER_EL0(13),
1707         PMU_PMEVTYPER_EL0(14),
1708         PMU_PMEVTYPER_EL0(15),
1709         PMU_PMEVTYPER_EL0(16),
1710         PMU_PMEVTYPER_EL0(17),
1711         PMU_PMEVTYPER_EL0(18),
1712         PMU_PMEVTYPER_EL0(19),
1713         PMU_PMEVTYPER_EL0(20),
1714         PMU_PMEVTYPER_EL0(21),
1715         PMU_PMEVTYPER_EL0(22),
1716         PMU_PMEVTYPER_EL0(23),
1717         PMU_PMEVTYPER_EL0(24),
1718         PMU_PMEVTYPER_EL0(25),
1719         PMU_PMEVTYPER_EL0(26),
1720         PMU_PMEVTYPER_EL0(27),
1721         PMU_PMEVTYPER_EL0(28),
1722         PMU_PMEVTYPER_EL0(29),
1723         PMU_PMEVTYPER_EL0(30),
1724         /*
1725          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1726          * in 32bit mode. Here we choose to reset it as zero for consistency.
1727          */
1728         { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1729           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1730
1731         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1732         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1733         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1734 };
1735
1736 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1737                         struct sys_reg_params *p,
1738                         const struct sys_reg_desc *r)
1739 {
1740         if (p->is_write) {
1741                 return ignore_write(vcpu, p);
1742         } else {
1743                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1744                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1745                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1746
1747                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1748                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1749                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1750                              | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1751                 return true;
1752         }
1753 }
1754
1755 /*
1756  * AArch32 debug register mappings
1757  *
1758  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1759  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1760  *
1761  * None of the other registers share their location, so treat them as
1762  * if they were 64bit.
1763  */
1764 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
1765         /* DBGBVRn */                                                         \
1766         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1767         /* DBGBCRn */                                                         \
1768         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
1769         /* DBGWVRn */                                                         \
1770         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
1771         /* DBGWCRn */                                                         \
1772         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1773
1774 #define DBGBXVR(n)                                                            \
1775         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1776
1777 /*
1778  * Trapped cp14 registers. We generally ignore most of the external
1779  * debug, on the principle that they don't really make sense to a
1780  * guest. Revisit this one day, would this principle change.
1781  */
1782 static const struct sys_reg_desc cp14_regs[] = {
1783         /* DBGDIDR */
1784         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1785         /* DBGDTRRXext */
1786         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1787
1788         DBG_BCR_BVR_WCR_WVR(0),
1789         /* DBGDSCRint */
1790         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1791         DBG_BCR_BVR_WCR_WVR(1),
1792         /* DBGDCCINT */
1793         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1794         /* DBGDSCRext */
1795         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1796         DBG_BCR_BVR_WCR_WVR(2),
1797         /* DBGDTR[RT]Xint */
1798         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1799         /* DBGDTR[RT]Xext */
1800         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1801         DBG_BCR_BVR_WCR_WVR(3),
1802         DBG_BCR_BVR_WCR_WVR(4),
1803         DBG_BCR_BVR_WCR_WVR(5),
1804         /* DBGWFAR */
1805         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1806         /* DBGOSECCR */
1807         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1808         DBG_BCR_BVR_WCR_WVR(6),
1809         /* DBGVCR */
1810         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1811         DBG_BCR_BVR_WCR_WVR(7),
1812         DBG_BCR_BVR_WCR_WVR(8),
1813         DBG_BCR_BVR_WCR_WVR(9),
1814         DBG_BCR_BVR_WCR_WVR(10),
1815         DBG_BCR_BVR_WCR_WVR(11),
1816         DBG_BCR_BVR_WCR_WVR(12),
1817         DBG_BCR_BVR_WCR_WVR(13),
1818         DBG_BCR_BVR_WCR_WVR(14),
1819         DBG_BCR_BVR_WCR_WVR(15),
1820
1821         /* DBGDRAR (32bit) */
1822         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1823
1824         DBGBXVR(0),
1825         /* DBGOSLAR */
1826         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1827         DBGBXVR(1),
1828         /* DBGOSLSR */
1829         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1830         DBGBXVR(2),
1831         DBGBXVR(3),
1832         /* DBGOSDLR */
1833         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1834         DBGBXVR(4),
1835         /* DBGPRCR */
1836         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1837         DBGBXVR(5),
1838         DBGBXVR(6),
1839         DBGBXVR(7),
1840         DBGBXVR(8),
1841         DBGBXVR(9),
1842         DBGBXVR(10),
1843         DBGBXVR(11),
1844         DBGBXVR(12),
1845         DBGBXVR(13),
1846         DBGBXVR(14),
1847         DBGBXVR(15),
1848
1849         /* DBGDSAR (32bit) */
1850         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1851
1852         /* DBGDEVID2 */
1853         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1854         /* DBGDEVID1 */
1855         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1856         /* DBGDEVID */
1857         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1858         /* DBGCLAIMSET */
1859         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1860         /* DBGCLAIMCLR */
1861         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1862         /* DBGAUTHSTATUS */
1863         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1864 };
1865
1866 /* Trapped cp14 64bit registers */
1867 static const struct sys_reg_desc cp14_64_regs[] = {
1868         /* DBGDRAR (64bit) */
1869         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1870
1871         /* DBGDSAR (64bit) */
1872         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1873 };
1874
1875 /* Macro to expand the PMEVCNTRn register */
1876 #define PMU_PMEVCNTR(n)                                                 \
1877         /* PMEVCNTRn */                                                 \
1878         { Op1(0), CRn(0b1110),                                          \
1879           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1880           access_pmu_evcntr }
1881
1882 /* Macro to expand the PMEVTYPERn register */
1883 #define PMU_PMEVTYPER(n)                                                \
1884         /* PMEVTYPERn */                                                \
1885         { Op1(0), CRn(0b1110),                                          \
1886           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1887           access_pmu_evtyper }
1888
1889 /*
1890  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1891  * depending on the way they are accessed (as a 32bit or a 64bit
1892  * register).
1893  */
1894 static const struct sys_reg_desc cp15_regs[] = {
1895         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1896         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1897         /* ACTLR */
1898         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1899         /* ACTLR2 */
1900         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1901         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1902         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1903         /* TTBCR */
1904         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1905         /* TTBCR2 */
1906         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1907         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1908         /* DFSR */
1909         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1910         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1911         /* ADFSR */
1912         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1913         /* AIFSR */
1914         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
1915         /* DFAR */
1916         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
1917         /* IFAR */
1918         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
1919
1920         /*
1921          * DC{C,I,CI}SW operations:
1922          */
1923         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1924         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1925         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1926
1927         /* PMU */
1928         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1929         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1930         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1931         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1932         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1933         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1934         { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1935         { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1936         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1937         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1938         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1939         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1940         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1941         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1942         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1943         { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
1944         { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
1945         /* PMMIR */
1946         { Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
1947
1948         /* PRRR/MAIR0 */
1949         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
1950         /* NMRR/MAIR1 */
1951         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
1952         /* AMAIR0 */
1953         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
1954         /* AMAIR1 */
1955         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
1956
1957         /* ICC_SRE */
1958         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1959
1960         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
1961
1962         /* Arch Tmers */
1963         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1964         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1965
1966         /* PMEVCNTRn */
1967         PMU_PMEVCNTR(0),
1968         PMU_PMEVCNTR(1),
1969         PMU_PMEVCNTR(2),
1970         PMU_PMEVCNTR(3),
1971         PMU_PMEVCNTR(4),
1972         PMU_PMEVCNTR(5),
1973         PMU_PMEVCNTR(6),
1974         PMU_PMEVCNTR(7),
1975         PMU_PMEVCNTR(8),
1976         PMU_PMEVCNTR(9),
1977         PMU_PMEVCNTR(10),
1978         PMU_PMEVCNTR(11),
1979         PMU_PMEVCNTR(12),
1980         PMU_PMEVCNTR(13),
1981         PMU_PMEVCNTR(14),
1982         PMU_PMEVCNTR(15),
1983         PMU_PMEVCNTR(16),
1984         PMU_PMEVCNTR(17),
1985         PMU_PMEVCNTR(18),
1986         PMU_PMEVCNTR(19),
1987         PMU_PMEVCNTR(20),
1988         PMU_PMEVCNTR(21),
1989         PMU_PMEVCNTR(22),
1990         PMU_PMEVCNTR(23),
1991         PMU_PMEVCNTR(24),
1992         PMU_PMEVCNTR(25),
1993         PMU_PMEVCNTR(26),
1994         PMU_PMEVCNTR(27),
1995         PMU_PMEVCNTR(28),
1996         PMU_PMEVCNTR(29),
1997         PMU_PMEVCNTR(30),
1998         /* PMEVTYPERn */
1999         PMU_PMEVTYPER(0),
2000         PMU_PMEVTYPER(1),
2001         PMU_PMEVTYPER(2),
2002         PMU_PMEVTYPER(3),
2003         PMU_PMEVTYPER(4),
2004         PMU_PMEVTYPER(5),
2005         PMU_PMEVTYPER(6),
2006         PMU_PMEVTYPER(7),
2007         PMU_PMEVTYPER(8),
2008         PMU_PMEVTYPER(9),
2009         PMU_PMEVTYPER(10),
2010         PMU_PMEVTYPER(11),
2011         PMU_PMEVTYPER(12),
2012         PMU_PMEVTYPER(13),
2013         PMU_PMEVTYPER(14),
2014         PMU_PMEVTYPER(15),
2015         PMU_PMEVTYPER(16),
2016         PMU_PMEVTYPER(17),
2017         PMU_PMEVTYPER(18),
2018         PMU_PMEVTYPER(19),
2019         PMU_PMEVTYPER(20),
2020         PMU_PMEVTYPER(21),
2021         PMU_PMEVTYPER(22),
2022         PMU_PMEVTYPER(23),
2023         PMU_PMEVTYPER(24),
2024         PMU_PMEVTYPER(25),
2025         PMU_PMEVTYPER(26),
2026         PMU_PMEVTYPER(27),
2027         PMU_PMEVTYPER(28),
2028         PMU_PMEVTYPER(29),
2029         PMU_PMEVTYPER(30),
2030         /* PMCCFILTR */
2031         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2032
2033         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2034         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2035         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2036 };
2037
2038 static const struct sys_reg_desc cp15_64_regs[] = {
2039         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2040         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2041         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2042         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2043         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2044         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2045         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2046 };
2047
2048 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2049                               bool is_32)
2050 {
2051         unsigned int i;
2052
2053         for (i = 0; i < n; i++) {
2054                 if (!is_32 && table[i].reg && !table[i].reset) {
2055                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2056                                 table, i);
2057                         return 1;
2058                 }
2059
2060                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2061                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2062                         return 1;
2063                 }
2064         }
2065
2066         return 0;
2067 }
2068
2069 static int match_sys_reg(const void *key, const void *elt)
2070 {
2071         const unsigned long pval = (unsigned long)key;
2072         const struct sys_reg_desc *r = elt;
2073
2074         return pval - reg_to_encoding(r);
2075 }
2076
2077 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2078                                          const struct sys_reg_desc table[],
2079                                          unsigned int num)
2080 {
2081         unsigned long pval = reg_to_encoding(params);
2082
2083         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2084 }
2085
2086 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2087 {
2088         kvm_inject_undefined(vcpu);
2089         return 1;
2090 }
2091
2092 static void perform_access(struct kvm_vcpu *vcpu,
2093                            struct sys_reg_params *params,
2094                            const struct sys_reg_desc *r)
2095 {
2096         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2097
2098         /* Check for regs disabled by runtime config */
2099         if (sysreg_hidden(vcpu, r)) {
2100                 kvm_inject_undefined(vcpu);
2101                 return;
2102         }
2103
2104         /*
2105          * Not having an accessor means that we have configured a trap
2106          * that we don't know how to handle. This certainly qualifies
2107          * as a gross bug that should be fixed right away.
2108          */
2109         BUG_ON(!r->access);
2110
2111         /* Skip instruction if instructed so */
2112         if (likely(r->access(vcpu, params, r)))
2113                 kvm_incr_pc(vcpu);
2114 }
2115
2116 /*
2117  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2118  *                call the corresponding trap handler.
2119  *
2120  * @params: pointer to the descriptor of the access
2121  * @table: array of trap descriptors
2122  * @num: size of the trap descriptor array
2123  *
2124  * Return 0 if the access has been handled, and -1 if not.
2125  */
2126 static int emulate_cp(struct kvm_vcpu *vcpu,
2127                       struct sys_reg_params *params,
2128                       const struct sys_reg_desc *table,
2129                       size_t num)
2130 {
2131         const struct sys_reg_desc *r;
2132
2133         if (!table)
2134                 return -1;      /* Not handled */
2135
2136         r = find_reg(params, table, num);
2137
2138         if (r) {
2139                 perform_access(vcpu, params, r);
2140                 return 0;
2141         }
2142
2143         /* Not handled */
2144         return -1;
2145 }
2146
2147 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2148                                 struct sys_reg_params *params)
2149 {
2150         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2151         int cp = -1;
2152
2153         switch (esr_ec) {
2154         case ESR_ELx_EC_CP15_32:
2155         case ESR_ELx_EC_CP15_64:
2156                 cp = 15;
2157                 break;
2158         case ESR_ELx_EC_CP14_MR:
2159         case ESR_ELx_EC_CP14_64:
2160                 cp = 14;
2161                 break;
2162         default:
2163                 WARN_ON(1);
2164         }
2165
2166         print_sys_reg_msg(params,
2167                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2168                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2169         kvm_inject_undefined(vcpu);
2170 }
2171
2172 /**
2173  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2174  * @vcpu: The VCPU pointer
2175  * @run:  The kvm_run struct
2176  */
2177 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2178                             const struct sys_reg_desc *global,
2179                             size_t nr_global)
2180 {
2181         struct sys_reg_params params;
2182         u32 esr = kvm_vcpu_get_esr(vcpu);
2183         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2184         int Rt2 = (esr >> 10) & 0x1f;
2185
2186         params.CRm = (esr >> 1) & 0xf;
2187         params.is_write = ((esr & 1) == 0);
2188
2189         params.Op0 = 0;
2190         params.Op1 = (esr >> 16) & 0xf;
2191         params.Op2 = 0;
2192         params.CRn = 0;
2193
2194         /*
2195          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2196          * backends between AArch32 and AArch64, we get away with it.
2197          */
2198         if (params.is_write) {
2199                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2200                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2201         }
2202
2203         /*
2204          * If the table contains a handler, handle the
2205          * potential register operation in the case of a read and return
2206          * with success.
2207          */
2208         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2209                 /* Split up the value between registers for the read side */
2210                 if (!params.is_write) {
2211                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2212                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2213                 }
2214
2215                 return 1;
2216         }
2217
2218         unhandled_cp_access(vcpu, &params);
2219         return 1;
2220 }
2221
2222 /**
2223  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2224  * @vcpu: The VCPU pointer
2225  * @run:  The kvm_run struct
2226  */
2227 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2228                             const struct sys_reg_desc *global,
2229                             size_t nr_global)
2230 {
2231         struct sys_reg_params params;
2232         u32 esr = kvm_vcpu_get_esr(vcpu);
2233         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2234
2235         params.CRm = (esr >> 1) & 0xf;
2236         params.regval = vcpu_get_reg(vcpu, Rt);
2237         params.is_write = ((esr & 1) == 0);
2238         params.CRn = (esr >> 10) & 0xf;
2239         params.Op0 = 0;
2240         params.Op1 = (esr >> 14) & 0x7;
2241         params.Op2 = (esr >> 17) & 0x7;
2242
2243         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2244                 if (!params.is_write)
2245                         vcpu_set_reg(vcpu, Rt, params.regval);
2246                 return 1;
2247         }
2248
2249         unhandled_cp_access(vcpu, &params);
2250         return 1;
2251 }
2252
2253 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2254 {
2255         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2256 }
2257
2258 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2259 {
2260         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2261 }
2262
2263 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2264 {
2265         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2266 }
2267
2268 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2269 {
2270         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2271 }
2272
2273 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2274 {
2275         // See ARM DDI 0487E.a, section D12.3.2
2276         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2277 }
2278
2279 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2280                            struct sys_reg_params *params)
2281 {
2282         const struct sys_reg_desc *r;
2283
2284         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2285
2286         if (likely(r)) {
2287                 perform_access(vcpu, params, r);
2288         } else if (is_imp_def_sys_reg(params)) {
2289                 kvm_inject_undefined(vcpu);
2290         } else {
2291                 print_sys_reg_msg(params,
2292                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2293                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2294                 kvm_inject_undefined(vcpu);
2295         }
2296         return 1;
2297 }
2298
2299 /**
2300  * kvm_reset_sys_regs - sets system registers to reset value
2301  * @vcpu: The VCPU pointer
2302  *
2303  * This function finds the right table above and sets the registers on the
2304  * virtual CPU struct to their architecturally defined reset values.
2305  */
2306 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2307 {
2308         unsigned long i;
2309
2310         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2311                 if (sys_reg_descs[i].reset)
2312                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2313 }
2314
2315 /**
2316  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2317  * @vcpu: The VCPU pointer
2318  */
2319 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2320 {
2321         struct sys_reg_params params;
2322         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2323         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2324         int ret;
2325
2326         trace_kvm_handle_sys_reg(esr);
2327
2328         params.Op0 = (esr >> 20) & 3;
2329         params.Op1 = (esr >> 14) & 0x7;
2330         params.CRn = (esr >> 10) & 0xf;
2331         params.CRm = (esr >> 1) & 0xf;
2332         params.Op2 = (esr >> 17) & 0x7;
2333         params.regval = vcpu_get_reg(vcpu, Rt);
2334         params.is_write = !(esr & 1);
2335
2336         ret = emulate_sys_reg(vcpu, &params);
2337
2338         if (!params.is_write)
2339                 vcpu_set_reg(vcpu, Rt, params.regval);
2340         return ret;
2341 }
2342
2343 /******************************************************************************
2344  * Userspace API
2345  *****************************************************************************/
2346
2347 static bool index_to_params(u64 id, struct sys_reg_params *params)
2348 {
2349         switch (id & KVM_REG_SIZE_MASK) {
2350         case KVM_REG_SIZE_U64:
2351                 /* Any unused index bits means it's not valid. */
2352                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2353                               | KVM_REG_ARM_COPROC_MASK
2354                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2355                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2356                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2357                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2358                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2359                         return false;
2360                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2361                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2362                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2363                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2364                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2365                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2366                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2367                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2368                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2369                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2370                 return true;
2371         default:
2372                 return false;
2373         }
2374 }
2375
2376 const struct sys_reg_desc *find_reg_by_id(u64 id,
2377                                           struct sys_reg_params *params,
2378                                           const struct sys_reg_desc table[],
2379                                           unsigned int num)
2380 {
2381         if (!index_to_params(id, params))
2382                 return NULL;
2383
2384         return find_reg(params, table, num);
2385 }
2386
2387 /* Decode an index value, and find the sys_reg_desc entry. */
2388 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2389                                                     u64 id)
2390 {
2391         const struct sys_reg_desc *r;
2392         struct sys_reg_params params;
2393
2394         /* We only do sys_reg for now. */
2395         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2396                 return NULL;
2397
2398         if (!index_to_params(id, &params))
2399                 return NULL;
2400
2401         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2402
2403         /* Not saved in the sys_reg array and not otherwise accessible? */
2404         if (r && !(r->reg || r->get_user))
2405                 r = NULL;
2406
2407         return r;
2408 }
2409
2410 /*
2411  * These are the invariant sys_reg registers: we let the guest see the
2412  * host versions of these, so they're part of the guest state.
2413  *
2414  * A future CPU may provide a mechanism to present different values to
2415  * the guest, or a future kvm may trap them.
2416  */
2417
2418 #define FUNCTION_INVARIANT(reg)                                         \
2419         static void get_##reg(struct kvm_vcpu *v,                       \
2420                               const struct sys_reg_desc *r)             \
2421         {                                                               \
2422                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2423         }
2424
2425 FUNCTION_INVARIANT(midr_el1)
2426 FUNCTION_INVARIANT(revidr_el1)
2427 FUNCTION_INVARIANT(clidr_el1)
2428 FUNCTION_INVARIANT(aidr_el1)
2429
2430 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2431 {
2432         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2433 }
2434
2435 /* ->val is filled in by kvm_sys_reg_table_init() */
2436 static struct sys_reg_desc invariant_sys_regs[] = {
2437         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2438         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2439         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2440         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2441         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2442 };
2443
2444 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2445 {
2446         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2447                 return -EFAULT;
2448         return 0;
2449 }
2450
2451 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2452 {
2453         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2454                 return -EFAULT;
2455         return 0;
2456 }
2457
2458 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2459 {
2460         struct sys_reg_params params;
2461         const struct sys_reg_desc *r;
2462
2463         r = find_reg_by_id(id, &params, invariant_sys_regs,
2464                            ARRAY_SIZE(invariant_sys_regs));
2465         if (!r)
2466                 return -ENOENT;
2467
2468         return reg_to_user(uaddr, &r->val, id);
2469 }
2470
2471 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2472 {
2473         struct sys_reg_params params;
2474         const struct sys_reg_desc *r;
2475         int err;
2476         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2477
2478         r = find_reg_by_id(id, &params, invariant_sys_regs,
2479                            ARRAY_SIZE(invariant_sys_regs));
2480         if (!r)
2481                 return -ENOENT;
2482
2483         err = reg_from_user(&val, uaddr, id);
2484         if (err)
2485                 return err;
2486
2487         /* This is what we mean by invariant: you can't change it. */
2488         if (r->val != val)
2489                 return -EINVAL;
2490
2491         return 0;
2492 }
2493
2494 static bool is_valid_cache(u32 val)
2495 {
2496         u32 level, ctype;
2497
2498         if (val >= CSSELR_MAX)
2499                 return false;
2500
2501         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2502         level = (val >> 1);
2503         ctype = (cache_levels >> (level * 3)) & 7;
2504
2505         switch (ctype) {
2506         case 0: /* No cache */
2507                 return false;
2508         case 1: /* Instruction cache only */
2509                 return (val & 1);
2510         case 2: /* Data cache only */
2511         case 4: /* Unified cache */
2512                 return !(val & 1);
2513         case 3: /* Separate instruction and data caches */
2514                 return true;
2515         default: /* Reserved: we can't know instruction or data. */
2516                 return false;
2517         }
2518 }
2519
2520 static int demux_c15_get(u64 id, void __user *uaddr)
2521 {
2522         u32 val;
2523         u32 __user *uval = uaddr;
2524
2525         /* Fail if we have unknown bits set. */
2526         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2527                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2528                 return -ENOENT;
2529
2530         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2531         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2532                 if (KVM_REG_SIZE(id) != 4)
2533                         return -ENOENT;
2534                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2535                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2536                 if (!is_valid_cache(val))
2537                         return -ENOENT;
2538
2539                 return put_user(get_ccsidr(val), uval);
2540         default:
2541                 return -ENOENT;
2542         }
2543 }
2544
2545 static int demux_c15_set(u64 id, void __user *uaddr)
2546 {
2547         u32 val, newval;
2548         u32 __user *uval = uaddr;
2549
2550         /* Fail if we have unknown bits set. */
2551         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2552                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2553                 return -ENOENT;
2554
2555         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2556         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2557                 if (KVM_REG_SIZE(id) != 4)
2558                         return -ENOENT;
2559                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2560                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2561                 if (!is_valid_cache(val))
2562                         return -ENOENT;
2563
2564                 if (get_user(newval, uval))
2565                         return -EFAULT;
2566
2567                 /* This is also invariant: you can't change it. */
2568                 if (newval != get_ccsidr(val))
2569                         return -EINVAL;
2570                 return 0;
2571         default:
2572                 return -ENOENT;
2573         }
2574 }
2575
2576 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2577 {
2578         const struct sys_reg_desc *r;
2579         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2580
2581         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2582                 return demux_c15_get(reg->id, uaddr);
2583
2584         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2585                 return -ENOENT;
2586
2587         r = index_to_sys_reg_desc(vcpu, reg->id);
2588         if (!r)
2589                 return get_invariant_sys_reg(reg->id, uaddr);
2590
2591         /* Check for regs disabled by runtime config */
2592         if (sysreg_hidden(vcpu, r))
2593                 return -ENOENT;
2594
2595         if (r->get_user)
2596                 return (r->get_user)(vcpu, r, reg, uaddr);
2597
2598         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2599 }
2600
2601 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2602 {
2603         const struct sys_reg_desc *r;
2604         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2605
2606         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2607                 return demux_c15_set(reg->id, uaddr);
2608
2609         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2610                 return -ENOENT;
2611
2612         r = index_to_sys_reg_desc(vcpu, reg->id);
2613         if (!r)
2614                 return set_invariant_sys_reg(reg->id, uaddr);
2615
2616         /* Check for regs disabled by runtime config */
2617         if (sysreg_hidden(vcpu, r))
2618                 return -ENOENT;
2619
2620         if (r->set_user)
2621                 return (r->set_user)(vcpu, r, reg, uaddr);
2622
2623         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2624 }
2625
2626 static unsigned int num_demux_regs(void)
2627 {
2628         unsigned int i, count = 0;
2629
2630         for (i = 0; i < CSSELR_MAX; i++)
2631                 if (is_valid_cache(i))
2632                         count++;
2633
2634         return count;
2635 }
2636
2637 static int write_demux_regids(u64 __user *uindices)
2638 {
2639         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2640         unsigned int i;
2641
2642         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2643         for (i = 0; i < CSSELR_MAX; i++) {
2644                 if (!is_valid_cache(i))
2645                         continue;
2646                 if (put_user(val | i, uindices))
2647                         return -EFAULT;
2648                 uindices++;
2649         }
2650         return 0;
2651 }
2652
2653 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2654 {
2655         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2656                 KVM_REG_ARM64_SYSREG |
2657                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2658                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2659                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2660                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2661                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2662 }
2663
2664 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2665 {
2666         if (!*uind)
2667                 return true;
2668
2669         if (put_user(sys_reg_to_index(reg), *uind))
2670                 return false;
2671
2672         (*uind)++;
2673         return true;
2674 }
2675
2676 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2677                             const struct sys_reg_desc *rd,
2678                             u64 __user **uind,
2679                             unsigned int *total)
2680 {
2681         /*
2682          * Ignore registers we trap but don't save,
2683          * and for which no custom user accessor is provided.
2684          */
2685         if (!(rd->reg || rd->get_user))
2686                 return 0;
2687
2688         if (sysreg_hidden(vcpu, rd))
2689                 return 0;
2690
2691         if (!copy_reg_to_user(rd, uind))
2692                 return -EFAULT;
2693
2694         (*total)++;
2695         return 0;
2696 }
2697
2698 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2699 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2700 {
2701         const struct sys_reg_desc *i2, *end2;
2702         unsigned int total = 0;
2703         int err;
2704
2705         i2 = sys_reg_descs;
2706         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2707
2708         while (i2 != end2) {
2709                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2710                 if (err)
2711                         return err;
2712         }
2713         return total;
2714 }
2715
2716 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2717 {
2718         return ARRAY_SIZE(invariant_sys_regs)
2719                 + num_demux_regs()
2720                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2721 }
2722
2723 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2724 {
2725         unsigned int i;
2726         int err;
2727
2728         /* Then give them all the invariant registers' indices. */
2729         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2730                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2731                         return -EFAULT;
2732                 uindices++;
2733         }
2734
2735         err = walk_sys_regs(vcpu, uindices);
2736         if (err < 0)
2737                 return err;
2738         uindices += err;
2739
2740         return write_demux_regids(uindices);
2741 }
2742
2743 void kvm_sys_reg_table_init(void)
2744 {
2745         unsigned int i;
2746         struct sys_reg_desc clidr;
2747
2748         /* Make sure tables are unique and in order. */
2749         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2750         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2751         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2752         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2753         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2754         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2755
2756         /* We abuse the reset function to overwrite the table itself. */
2757         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2758                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2759
2760         /*
2761          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2762          *
2763          *   If software reads the Cache Type fields from Ctype1
2764          *   upwards, once it has seen a value of 0b000, no caches
2765          *   exist at further-out levels of the hierarchy. So, for
2766          *   example, if Ctype3 is the first Cache Type field with a
2767          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2768          *   ignored.
2769          */
2770         get_clidr_el1(NULL, &clidr); /* Ugly... */
2771         cache_levels = clidr.val;
2772         for (i = 0; i < 7; i++)
2773                 if (((cache_levels >> (i*3)) & 7) == 0)
2774                         break;
2775         /* Clear all higher bits. */
2776         cache_levels &= (1 << (i*3))-1;
2777 }