Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/perf_event.h>
29 #include <asm/sysreg.h>
30
31 #include <trace/events/kvm.h>
32
33 #include "sys_regs.h"
34
35 #include "trace.h"
36
37 /*
38  * All of this file is extremly similar to the ARM coproc.c, but the
39  * types are different. My gut feeling is that it should be pretty
40  * easy to merge, but that would be an ABI breakage -- again. VFP
41  * would also need to be abstracted.
42  *
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47
48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
49                                  struct sys_reg_params *params,
50                                  const struct sys_reg_desc *r)
51 {
52         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53         print_sys_reg_instr(params);
54         kvm_inject_undefined(vcpu);
55         return false;
56 }
57
58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
59                                struct sys_reg_params *params,
60                                const struct sys_reg_desc *r)
61 {
62         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63         print_sys_reg_instr(params);
64         kvm_inject_undefined(vcpu);
65         return false;
66 }
67
68 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
69 {
70         if (!vcpu->arch.sysregs_loaded_on_cpu)
71                 goto immediate_read;
72
73         /*
74          * System registers listed in the switch are not saved on every
75          * exit from the guest but are only saved on vcpu_put.
76          *
77          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
78          * should never be listed below, because the guest cannot modify its
79          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
80          * thread when emulating cross-VCPU communication.
81          */
82         switch (reg) {
83         case CSSELR_EL1:        return read_sysreg_s(SYS_CSSELR_EL1);
84         case SCTLR_EL1:         return read_sysreg_s(SYS_SCTLR_EL12);
85         case ACTLR_EL1:         return read_sysreg_s(SYS_ACTLR_EL1);
86         case CPACR_EL1:         return read_sysreg_s(SYS_CPACR_EL12);
87         case TTBR0_EL1:         return read_sysreg_s(SYS_TTBR0_EL12);
88         case TTBR1_EL1:         return read_sysreg_s(SYS_TTBR1_EL12);
89         case TCR_EL1:           return read_sysreg_s(SYS_TCR_EL12);
90         case ESR_EL1:           return read_sysreg_s(SYS_ESR_EL12);
91         case AFSR0_EL1:         return read_sysreg_s(SYS_AFSR0_EL12);
92         case AFSR1_EL1:         return read_sysreg_s(SYS_AFSR1_EL12);
93         case FAR_EL1:           return read_sysreg_s(SYS_FAR_EL12);
94         case MAIR_EL1:          return read_sysreg_s(SYS_MAIR_EL12);
95         case VBAR_EL1:          return read_sysreg_s(SYS_VBAR_EL12);
96         case CONTEXTIDR_EL1:    return read_sysreg_s(SYS_CONTEXTIDR_EL12);
97         case TPIDR_EL0:         return read_sysreg_s(SYS_TPIDR_EL0);
98         case TPIDRRO_EL0:       return read_sysreg_s(SYS_TPIDRRO_EL0);
99         case TPIDR_EL1:         return read_sysreg_s(SYS_TPIDR_EL1);
100         case AMAIR_EL1:         return read_sysreg_s(SYS_AMAIR_EL12);
101         case CNTKCTL_EL1:       return read_sysreg_s(SYS_CNTKCTL_EL12);
102         case PAR_EL1:           return read_sysreg_s(SYS_PAR_EL1);
103         case DACR32_EL2:        return read_sysreg_s(SYS_DACR32_EL2);
104         case IFSR32_EL2:        return read_sysreg_s(SYS_IFSR32_EL2);
105         case DBGVCR32_EL2:      return read_sysreg_s(SYS_DBGVCR32_EL2);
106         }
107
108 immediate_read:
109         return __vcpu_sys_reg(vcpu, reg);
110 }
111
112 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
113 {
114         if (!vcpu->arch.sysregs_loaded_on_cpu)
115                 goto immediate_write;
116
117         /*
118          * System registers listed in the switch are not restored on every
119          * entry to the guest but are only restored on vcpu_load.
120          *
121          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
122          * should never be listed below, because the the MPIDR should only be
123          * set once, before running the VCPU, and never changed later.
124          */
125         switch (reg) {
126         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    return;
127         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    return;
128         case ACTLR_EL1:         write_sysreg_s(val, SYS_ACTLR_EL1);     return;
129         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    return;
130         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    return;
131         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    return;
132         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      return;
133         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      return;
134         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    return;
135         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    return;
136         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      return;
137         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     return;
138         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     return;
139         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12); return;
140         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     return;
141         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   return;
142         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     return;
143         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    return;
144         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  return;
145         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       return;
146         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    return;
147         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    return;
148         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  return;
149         }
150
151 immediate_write:
152          __vcpu_sys_reg(vcpu, reg) = val;
153 }
154
155 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
156 static u32 cache_levels;
157
158 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
159 #define CSSELR_MAX 12
160
161 /* Which cache CCSIDR represents depends on CSSELR value. */
162 static u32 get_ccsidr(u32 csselr)
163 {
164         u32 ccsidr;
165
166         /* Make sure noone else changes CSSELR during this! */
167         local_irq_disable();
168         write_sysreg(csselr, csselr_el1);
169         isb();
170         ccsidr = read_sysreg(ccsidr_el1);
171         local_irq_enable();
172
173         return ccsidr;
174 }
175
176 /*
177  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
178  */
179 static bool access_dcsw(struct kvm_vcpu *vcpu,
180                         struct sys_reg_params *p,
181                         const struct sys_reg_desc *r)
182 {
183         if (!p->is_write)
184                 return read_from_write_only(vcpu, p, r);
185
186         /*
187          * Only track S/W ops if we don't have FWB. It still indicates
188          * that the guest is a bit broken (S/W operations should only
189          * be done by firmware, knowing that there is only a single
190          * CPU left in the system, and certainly not from non-secure
191          * software).
192          */
193         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
194                 kvm_set_way_flush(vcpu);
195
196         return true;
197 }
198
199 /*
200  * Generic accessor for VM registers. Only called as long as HCR_TVM
201  * is set. If the guest enables the MMU, we stop trapping the VM
202  * sys_regs and leave it in complete control of the caches.
203  */
204 static bool access_vm_reg(struct kvm_vcpu *vcpu,
205                           struct sys_reg_params *p,
206                           const struct sys_reg_desc *r)
207 {
208         bool was_enabled = vcpu_has_cache_enabled(vcpu);
209         u64 val;
210         int reg = r->reg;
211
212         BUG_ON(!p->is_write);
213
214         /* See the 32bit mapping in kvm_host.h */
215         if (p->is_aarch32)
216                 reg = r->reg / 2;
217
218         if (!p->is_aarch32 || !p->is_32bit) {
219                 val = p->regval;
220         } else {
221                 val = vcpu_read_sys_reg(vcpu, reg);
222                 if (r->reg % 2)
223                         val = (p->regval << 32) | (u64)lower_32_bits(val);
224                 else
225                         val = ((u64)upper_32_bits(val) << 32) |
226                                 lower_32_bits(p->regval);
227         }
228         vcpu_write_sys_reg(vcpu, val, reg);
229
230         kvm_toggle_cache(vcpu, was_enabled);
231         return true;
232 }
233
234 /*
235  * Trap handler for the GICv3 SGI generation system register.
236  * Forward the request to the VGIC emulation.
237  * The cp15_64 code makes sure this automatically works
238  * for both AArch64 and AArch32 accesses.
239  */
240 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
241                            struct sys_reg_params *p,
242                            const struct sys_reg_desc *r)
243 {
244         bool g1;
245
246         if (!p->is_write)
247                 return read_from_write_only(vcpu, p, r);
248
249         /*
250          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
251          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
252          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
253          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
254          * group.
255          */
256         if (p->is_aarch32) {
257                 switch (p->Op1) {
258                 default:                /* Keep GCC quiet */
259                 case 0:                 /* ICC_SGI1R */
260                         g1 = true;
261                         break;
262                 case 1:                 /* ICC_ASGI1R */
263                 case 2:                 /* ICC_SGI0R */
264                         g1 = false;
265                         break;
266                 }
267         } else {
268                 switch (p->Op2) {
269                 default:                /* Keep GCC quiet */
270                 case 5:                 /* ICC_SGI1R_EL1 */
271                         g1 = true;
272                         break;
273                 case 6:                 /* ICC_ASGI1R_EL1 */
274                 case 7:                 /* ICC_SGI0R_EL1 */
275                         g1 = false;
276                         break;
277                 }
278         }
279
280         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
281
282         return true;
283 }
284
285 static bool access_gic_sre(struct kvm_vcpu *vcpu,
286                            struct sys_reg_params *p,
287                            const struct sys_reg_desc *r)
288 {
289         if (p->is_write)
290                 return ignore_write(vcpu, p);
291
292         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
293         return true;
294 }
295
296 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
297                         struct sys_reg_params *p,
298                         const struct sys_reg_desc *r)
299 {
300         if (p->is_write)
301                 return ignore_write(vcpu, p);
302         else
303                 return read_zero(vcpu, p);
304 }
305
306 /*
307  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
308  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
309  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
310  * treat it separately.
311  */
312 static bool trap_loregion(struct kvm_vcpu *vcpu,
313                           struct sys_reg_params *p,
314                           const struct sys_reg_desc *r)
315 {
316         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
317         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
318                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
319
320         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
321                 kvm_inject_undefined(vcpu);
322                 return false;
323         }
324
325         if (p->is_write && sr == SYS_LORID_EL1)
326                 return write_to_read_only(vcpu, p, r);
327
328         return trap_raz_wi(vcpu, p, r);
329 }
330
331 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
332                            struct sys_reg_params *p,
333                            const struct sys_reg_desc *r)
334 {
335         if (p->is_write) {
336                 return ignore_write(vcpu, p);
337         } else {
338                 p->regval = (1 << 3);
339                 return true;
340         }
341 }
342
343 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
344                                    struct sys_reg_params *p,
345                                    const struct sys_reg_desc *r)
346 {
347         if (p->is_write) {
348                 return ignore_write(vcpu, p);
349         } else {
350                 p->regval = read_sysreg(dbgauthstatus_el1);
351                 return true;
352         }
353 }
354
355 /*
356  * We want to avoid world-switching all the DBG registers all the
357  * time:
358  * 
359  * - If we've touched any debug register, it is likely that we're
360  *   going to touch more of them. It then makes sense to disable the
361  *   traps and start doing the save/restore dance
362  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
363  *   then mandatory to save/restore the registers, as the guest
364  *   depends on them.
365  * 
366  * For this, we use a DIRTY bit, indicating the guest has modified the
367  * debug registers, used as follow:
368  *
369  * On guest entry:
370  * - If the dirty bit is set (because we're coming back from trapping),
371  *   disable the traps, save host registers, restore guest registers.
372  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
373  *   set the dirty bit, disable the traps, save host registers,
374  *   restore guest registers.
375  * - Otherwise, enable the traps
376  *
377  * On guest exit:
378  * - If the dirty bit is set, save guest registers, restore host
379  *   registers and clear the dirty bit. This ensure that the host can
380  *   now use the debug registers.
381  */
382 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
383                             struct sys_reg_params *p,
384                             const struct sys_reg_desc *r)
385 {
386         if (p->is_write) {
387                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
388                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
389         } else {
390                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
391         }
392
393         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
394
395         return true;
396 }
397
398 /*
399  * reg_to_dbg/dbg_to_reg
400  *
401  * A 32 bit write to a debug register leave top bits alone
402  * A 32 bit read from a debug register only returns the bottom bits
403  *
404  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
405  * hyp.S code switches between host and guest values in future.
406  */
407 static void reg_to_dbg(struct kvm_vcpu *vcpu,
408                        struct sys_reg_params *p,
409                        u64 *dbg_reg)
410 {
411         u64 val = p->regval;
412
413         if (p->is_32bit) {
414                 val &= 0xffffffffUL;
415                 val |= ((*dbg_reg >> 32) << 32);
416         }
417
418         *dbg_reg = val;
419         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
420 }
421
422 static void dbg_to_reg(struct kvm_vcpu *vcpu,
423                        struct sys_reg_params *p,
424                        u64 *dbg_reg)
425 {
426         p->regval = *dbg_reg;
427         if (p->is_32bit)
428                 p->regval &= 0xffffffffUL;
429 }
430
431 static bool trap_bvr(struct kvm_vcpu *vcpu,
432                      struct sys_reg_params *p,
433                      const struct sys_reg_desc *rd)
434 {
435         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
436
437         if (p->is_write)
438                 reg_to_dbg(vcpu, p, dbg_reg);
439         else
440                 dbg_to_reg(vcpu, p, dbg_reg);
441
442         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
443
444         return true;
445 }
446
447 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
448                 const struct kvm_one_reg *reg, void __user *uaddr)
449 {
450         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
451
452         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
453                 return -EFAULT;
454         return 0;
455 }
456
457 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
458         const struct kvm_one_reg *reg, void __user *uaddr)
459 {
460         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
461
462         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
463                 return -EFAULT;
464         return 0;
465 }
466
467 static void reset_bvr(struct kvm_vcpu *vcpu,
468                       const struct sys_reg_desc *rd)
469 {
470         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
471 }
472
473 static bool trap_bcr(struct kvm_vcpu *vcpu,
474                      struct sys_reg_params *p,
475                      const struct sys_reg_desc *rd)
476 {
477         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
478
479         if (p->is_write)
480                 reg_to_dbg(vcpu, p, dbg_reg);
481         else
482                 dbg_to_reg(vcpu, p, dbg_reg);
483
484         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
485
486         return true;
487 }
488
489 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490                 const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
493
494         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
495                 return -EFAULT;
496
497         return 0;
498 }
499
500 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501         const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
504
505         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
506                 return -EFAULT;
507         return 0;
508 }
509
510 static void reset_bcr(struct kvm_vcpu *vcpu,
511                       const struct sys_reg_desc *rd)
512 {
513         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
514 }
515
516 static bool trap_wvr(struct kvm_vcpu *vcpu,
517                      struct sys_reg_params *p,
518                      const struct sys_reg_desc *rd)
519 {
520         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
521
522         if (p->is_write)
523                 reg_to_dbg(vcpu, p, dbg_reg);
524         else
525                 dbg_to_reg(vcpu, p, dbg_reg);
526
527         trace_trap_reg(__func__, rd->reg, p->is_write,
528                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
529
530         return true;
531 }
532
533 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
534                 const struct kvm_one_reg *reg, void __user *uaddr)
535 {
536         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
537
538         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
539                 return -EFAULT;
540         return 0;
541 }
542
543 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
544         const struct kvm_one_reg *reg, void __user *uaddr)
545 {
546         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
547
548         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
549                 return -EFAULT;
550         return 0;
551 }
552
553 static void reset_wvr(struct kvm_vcpu *vcpu,
554                       const struct sys_reg_desc *rd)
555 {
556         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
557 }
558
559 static bool trap_wcr(struct kvm_vcpu *vcpu,
560                      struct sys_reg_params *p,
561                      const struct sys_reg_desc *rd)
562 {
563         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
564
565         if (p->is_write)
566                 reg_to_dbg(vcpu, p, dbg_reg);
567         else
568                 dbg_to_reg(vcpu, p, dbg_reg);
569
570         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
571
572         return true;
573 }
574
575 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576                 const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
579
580         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
581                 return -EFAULT;
582         return 0;
583 }
584
585 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
586         const struct kvm_one_reg *reg, void __user *uaddr)
587 {
588         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
589
590         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
591                 return -EFAULT;
592         return 0;
593 }
594
595 static void reset_wcr(struct kvm_vcpu *vcpu,
596                       const struct sys_reg_desc *rd)
597 {
598         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
599 }
600
601 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
602 {
603         u64 amair = read_sysreg(amair_el1);
604         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
605 }
606
607 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608 {
609         u64 mpidr;
610
611         /*
612          * Map the vcpu_id into the first three affinity level fields of
613          * the MPIDR. We limit the number of VCPUs in level 0 due to a
614          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
615          * of the GICv3 to be able to address each CPU directly when
616          * sending IPIs.
617          */
618         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
619         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
620         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
621         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
622 }
623
624 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
625 {
626         u64 pmcr, val;
627
628         pmcr = read_sysreg(pmcr_el0);
629         /*
630          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
631          * except PMCR.E resetting to zero.
632          */
633         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
634                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
635         if (!system_supports_32bit_el0())
636                 val |= ARMV8_PMU_PMCR_LC;
637         __vcpu_sys_reg(vcpu, r->reg) = val;
638 }
639
640 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
641 {
642         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
643         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
644
645         if (!enabled)
646                 kvm_inject_undefined(vcpu);
647
648         return !enabled;
649 }
650
651 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
652 {
653         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
654 }
655
656 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
657 {
658         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
659 }
660
661 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
662 {
663         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
664 }
665
666 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
667 {
668         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
669 }
670
671 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
672                         const struct sys_reg_desc *r)
673 {
674         u64 val;
675
676         if (!kvm_arm_pmu_v3_ready(vcpu))
677                 return trap_raz_wi(vcpu, p, r);
678
679         if (pmu_access_el0_disabled(vcpu))
680                 return false;
681
682         if (p->is_write) {
683                 /* Only update writeable bits of PMCR */
684                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
685                 val &= ~ARMV8_PMU_PMCR_MASK;
686                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
687                 if (!system_supports_32bit_el0())
688                         val |= ARMV8_PMU_PMCR_LC;
689                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
690                 kvm_pmu_handle_pmcr(vcpu, val);
691                 kvm_vcpu_pmu_restore_guest(vcpu);
692         } else {
693                 /* PMCR.P & PMCR.C are RAZ */
694                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
695                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
696                 p->regval = val;
697         }
698
699         return true;
700 }
701
702 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
703                           const struct sys_reg_desc *r)
704 {
705         if (!kvm_arm_pmu_v3_ready(vcpu))
706                 return trap_raz_wi(vcpu, p, r);
707
708         if (pmu_access_event_counter_el0_disabled(vcpu))
709                 return false;
710
711         if (p->is_write)
712                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
713         else
714                 /* return PMSELR.SEL field */
715                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
716                             & ARMV8_PMU_COUNTER_MASK;
717
718         return true;
719 }
720
721 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
722                           const struct sys_reg_desc *r)
723 {
724         u64 pmceid;
725
726         if (!kvm_arm_pmu_v3_ready(vcpu))
727                 return trap_raz_wi(vcpu, p, r);
728
729         BUG_ON(p->is_write);
730
731         if (pmu_access_el0_disabled(vcpu))
732                 return false;
733
734         if (!(p->Op2 & 1))
735                 pmceid = read_sysreg(pmceid0_el0);
736         else
737                 pmceid = read_sysreg(pmceid1_el0);
738
739         p->regval = pmceid;
740
741         return true;
742 }
743
744 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
745 {
746         u64 pmcr, val;
747
748         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
749         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
750         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
751                 kvm_inject_undefined(vcpu);
752                 return false;
753         }
754
755         return true;
756 }
757
758 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
759                               struct sys_reg_params *p,
760                               const struct sys_reg_desc *r)
761 {
762         u64 idx;
763
764         if (!kvm_arm_pmu_v3_ready(vcpu))
765                 return trap_raz_wi(vcpu, p, r);
766
767         if (r->CRn == 9 && r->CRm == 13) {
768                 if (r->Op2 == 2) {
769                         /* PMXEVCNTR_EL0 */
770                         if (pmu_access_event_counter_el0_disabled(vcpu))
771                                 return false;
772
773                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
774                               & ARMV8_PMU_COUNTER_MASK;
775                 } else if (r->Op2 == 0) {
776                         /* PMCCNTR_EL0 */
777                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
778                                 return false;
779
780                         idx = ARMV8_PMU_CYCLE_IDX;
781                 } else {
782                         return false;
783                 }
784         } else if (r->CRn == 0 && r->CRm == 9) {
785                 /* PMCCNTR */
786                 if (pmu_access_event_counter_el0_disabled(vcpu))
787                         return false;
788
789                 idx = ARMV8_PMU_CYCLE_IDX;
790         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
791                 /* PMEVCNTRn_EL0 */
792                 if (pmu_access_event_counter_el0_disabled(vcpu))
793                         return false;
794
795                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
796         } else {
797                 return false;
798         }
799
800         if (!pmu_counter_idx_valid(vcpu, idx))
801                 return false;
802
803         if (p->is_write) {
804                 if (pmu_access_el0_disabled(vcpu))
805                         return false;
806
807                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
808         } else {
809                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
810         }
811
812         return true;
813 }
814
815 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
816                                const struct sys_reg_desc *r)
817 {
818         u64 idx, reg;
819
820         if (!kvm_arm_pmu_v3_ready(vcpu))
821                 return trap_raz_wi(vcpu, p, r);
822
823         if (pmu_access_el0_disabled(vcpu))
824                 return false;
825
826         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
827                 /* PMXEVTYPER_EL0 */
828                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
829                 reg = PMEVTYPER0_EL0 + idx;
830         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
831                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
832                 if (idx == ARMV8_PMU_CYCLE_IDX)
833                         reg = PMCCFILTR_EL0;
834                 else
835                         /* PMEVTYPERn_EL0 */
836                         reg = PMEVTYPER0_EL0 + idx;
837         } else {
838                 BUG();
839         }
840
841         if (!pmu_counter_idx_valid(vcpu, idx))
842                 return false;
843
844         if (p->is_write) {
845                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
846                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
847                 kvm_vcpu_pmu_restore_guest(vcpu);
848         } else {
849                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
850         }
851
852         return true;
853 }
854
855 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
856                            const struct sys_reg_desc *r)
857 {
858         u64 val, mask;
859
860         if (!kvm_arm_pmu_v3_ready(vcpu))
861                 return trap_raz_wi(vcpu, p, r);
862
863         if (pmu_access_el0_disabled(vcpu))
864                 return false;
865
866         mask = kvm_pmu_valid_counter_mask(vcpu);
867         if (p->is_write) {
868                 val = p->regval & mask;
869                 if (r->Op2 & 0x1) {
870                         /* accessing PMCNTENSET_EL0 */
871                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
872                         kvm_pmu_enable_counter_mask(vcpu, val);
873                         kvm_vcpu_pmu_restore_guest(vcpu);
874                 } else {
875                         /* accessing PMCNTENCLR_EL0 */
876                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
877                         kvm_pmu_disable_counter_mask(vcpu, val);
878                 }
879         } else {
880                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
881         }
882
883         return true;
884 }
885
886 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
887                            const struct sys_reg_desc *r)
888 {
889         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
890
891         if (!kvm_arm_pmu_v3_ready(vcpu))
892                 return trap_raz_wi(vcpu, p, r);
893
894         if (!vcpu_mode_priv(vcpu)) {
895                 kvm_inject_undefined(vcpu);
896                 return false;
897         }
898
899         if (p->is_write) {
900                 u64 val = p->regval & mask;
901
902                 if (r->Op2 & 0x1)
903                         /* accessing PMINTENSET_EL1 */
904                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
905                 else
906                         /* accessing PMINTENCLR_EL1 */
907                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
908         } else {
909                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
910         }
911
912         return true;
913 }
914
915 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
916                          const struct sys_reg_desc *r)
917 {
918         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
919
920         if (!kvm_arm_pmu_v3_ready(vcpu))
921                 return trap_raz_wi(vcpu, p, r);
922
923         if (pmu_access_el0_disabled(vcpu))
924                 return false;
925
926         if (p->is_write) {
927                 if (r->CRm & 0x2)
928                         /* accessing PMOVSSET_EL0 */
929                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
930                 else
931                         /* accessing PMOVSCLR_EL0 */
932                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
933         } else {
934                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
935         }
936
937         return true;
938 }
939
940 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
941                            const struct sys_reg_desc *r)
942 {
943         u64 mask;
944
945         if (!kvm_arm_pmu_v3_ready(vcpu))
946                 return trap_raz_wi(vcpu, p, r);
947
948         if (!p->is_write)
949                 return read_from_write_only(vcpu, p, r);
950
951         if (pmu_write_swinc_el0_disabled(vcpu))
952                 return false;
953
954         mask = kvm_pmu_valid_counter_mask(vcpu);
955         kvm_pmu_software_increment(vcpu, p->regval & mask);
956         return true;
957 }
958
959 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
960                              const struct sys_reg_desc *r)
961 {
962         if (!kvm_arm_pmu_v3_ready(vcpu))
963                 return trap_raz_wi(vcpu, p, r);
964
965         if (p->is_write) {
966                 if (!vcpu_mode_priv(vcpu)) {
967                         kvm_inject_undefined(vcpu);
968                         return false;
969                 }
970
971                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
972                                p->regval & ARMV8_PMU_USERENR_MASK;
973         } else {
974                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
975                             & ARMV8_PMU_USERENR_MASK;
976         }
977
978         return true;
979 }
980
981 #define reg_to_encoding(x)                                              \
982         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
983                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
984
985 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
986 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
987         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
988           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
989         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
990           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
991         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
992           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
993         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
994           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
995
996 /* Macro to expand the PMEVCNTRn_EL0 register */
997 #define PMU_PMEVCNTR_EL0(n)                                             \
998         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
999           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1000
1001 /* Macro to expand the PMEVTYPERn_EL0 register */
1002 #define PMU_PMEVTYPER_EL0(n)                                            \
1003         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1004           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1005
1006 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1007                          struct sys_reg_params *p,
1008                          const struct sys_reg_desc *rd)
1009 {
1010         kvm_arm_vcpu_ptrauth_trap(vcpu);
1011
1012         /*
1013          * Return false for both cases as we never skip the trapped
1014          * instruction:
1015          *
1016          * - Either we re-execute the same key register access instruction
1017          *   after enabling ptrauth.
1018          * - Or an UNDEF is injected as ptrauth is not supported/enabled.
1019          */
1020         return false;
1021 }
1022
1023 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1024                         const struct sys_reg_desc *rd)
1025 {
1026         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1027 }
1028
1029 #define __PTRAUTH_KEY(k)                                                \
1030         { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,           \
1031         .visibility = ptrauth_visibility}
1032
1033 #define PTRAUTH_KEY(k)                                                  \
1034         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1035         __PTRAUTH_KEY(k ## KEYHI_EL1)
1036
1037 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1038                               struct sys_reg_params *p,
1039                               const struct sys_reg_desc *r)
1040 {
1041         enum kvm_arch_timers tmr;
1042         enum kvm_arch_timer_regs treg;
1043         u64 reg = reg_to_encoding(r);
1044
1045         switch (reg) {
1046         case SYS_CNTP_TVAL_EL0:
1047         case SYS_AARCH32_CNTP_TVAL:
1048                 tmr = TIMER_PTIMER;
1049                 treg = TIMER_REG_TVAL;
1050                 break;
1051         case SYS_CNTP_CTL_EL0:
1052         case SYS_AARCH32_CNTP_CTL:
1053                 tmr = TIMER_PTIMER;
1054                 treg = TIMER_REG_CTL;
1055                 break;
1056         case SYS_CNTP_CVAL_EL0:
1057         case SYS_AARCH32_CNTP_CVAL:
1058                 tmr = TIMER_PTIMER;
1059                 treg = TIMER_REG_CVAL;
1060                 break;
1061         default:
1062                 BUG();
1063         }
1064
1065         if (p->is_write)
1066                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1067         else
1068                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1069
1070         return true;
1071 }
1072
1073 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1074 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1075                 struct sys_reg_desc const *r, bool raz)
1076 {
1077         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1078                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1079         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1080
1081         if (id == SYS_ID_AA64PFR0_EL1 && !vcpu_has_sve(vcpu)) {
1082                 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1083         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1084                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1085                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1086                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1087                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1088         }
1089
1090         return val;
1091 }
1092
1093 /* cpufeature ID register access trap handlers */
1094
1095 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1096                             struct sys_reg_params *p,
1097                             const struct sys_reg_desc *r,
1098                             bool raz)
1099 {
1100         if (p->is_write)
1101                 return write_to_read_only(vcpu, p, r);
1102
1103         p->regval = read_id_reg(vcpu, r, raz);
1104         return true;
1105 }
1106
1107 static bool access_id_reg(struct kvm_vcpu *vcpu,
1108                           struct sys_reg_params *p,
1109                           const struct sys_reg_desc *r)
1110 {
1111         return __access_id_reg(vcpu, p, r, false);
1112 }
1113
1114 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1115                               struct sys_reg_params *p,
1116                               const struct sys_reg_desc *r)
1117 {
1118         return __access_id_reg(vcpu, p, r, true);
1119 }
1120
1121 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1122 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1123 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1124
1125 /* Visibility overrides for SVE-specific control registers */
1126 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1127                                    const struct sys_reg_desc *rd)
1128 {
1129         if (vcpu_has_sve(vcpu))
1130                 return 0;
1131
1132         return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1133 }
1134
1135 /* Visibility overrides for SVE-specific ID registers */
1136 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1137                                       const struct sys_reg_desc *rd)
1138 {
1139         if (vcpu_has_sve(vcpu))
1140                 return 0;
1141
1142         return REG_HIDDEN_USER;
1143 }
1144
1145 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1146 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1147 {
1148         if (!vcpu_has_sve(vcpu))
1149                 return 0;
1150
1151         return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1152 }
1153
1154 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1155                                    struct sys_reg_params *p,
1156                                    const struct sys_reg_desc *rd)
1157 {
1158         if (p->is_write)
1159                 return write_to_read_only(vcpu, p, rd);
1160
1161         p->regval = guest_id_aa64zfr0_el1(vcpu);
1162         return true;
1163 }
1164
1165 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1166                 const struct sys_reg_desc *rd,
1167                 const struct kvm_one_reg *reg, void __user *uaddr)
1168 {
1169         u64 val;
1170
1171         if (WARN_ON(!vcpu_has_sve(vcpu)))
1172                 return -ENOENT;
1173
1174         val = guest_id_aa64zfr0_el1(vcpu);
1175         return reg_to_user(uaddr, &val, reg->id);
1176 }
1177
1178 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1179                 const struct sys_reg_desc *rd,
1180                 const struct kvm_one_reg *reg, void __user *uaddr)
1181 {
1182         const u64 id = sys_reg_to_index(rd);
1183         int err;
1184         u64 val;
1185
1186         if (WARN_ON(!vcpu_has_sve(vcpu)))
1187                 return -ENOENT;
1188
1189         err = reg_from_user(&val, uaddr, id);
1190         if (err)
1191                 return err;
1192
1193         /* This is what we mean by invariant: you can't change it. */
1194         if (val != guest_id_aa64zfr0_el1(vcpu))
1195                 return -EINVAL;
1196
1197         return 0;
1198 }
1199
1200 /*
1201  * cpufeature ID register user accessors
1202  *
1203  * For now, these registers are immutable for userspace, so no values
1204  * are stored, and for set_id_reg() we don't allow the effective value
1205  * to be changed.
1206  */
1207 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1208                         const struct sys_reg_desc *rd, void __user *uaddr,
1209                         bool raz)
1210 {
1211         const u64 id = sys_reg_to_index(rd);
1212         const u64 val = read_id_reg(vcpu, rd, raz);
1213
1214         return reg_to_user(uaddr, &val, id);
1215 }
1216
1217 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1218                         const struct sys_reg_desc *rd, void __user *uaddr,
1219                         bool raz)
1220 {
1221         const u64 id = sys_reg_to_index(rd);
1222         int err;
1223         u64 val;
1224
1225         err = reg_from_user(&val, uaddr, id);
1226         if (err)
1227                 return err;
1228
1229         /* This is what we mean by invariant: you can't change it. */
1230         if (val != read_id_reg(vcpu, rd, raz))
1231                 return -EINVAL;
1232
1233         return 0;
1234 }
1235
1236 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1237                       const struct kvm_one_reg *reg, void __user *uaddr)
1238 {
1239         return __get_id_reg(vcpu, rd, uaddr, false);
1240 }
1241
1242 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1243                       const struct kvm_one_reg *reg, void __user *uaddr)
1244 {
1245         return __set_id_reg(vcpu, rd, uaddr, false);
1246 }
1247
1248 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1249                           const struct kvm_one_reg *reg, void __user *uaddr)
1250 {
1251         return __get_id_reg(vcpu, rd, uaddr, true);
1252 }
1253
1254 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1255                           const struct kvm_one_reg *reg, void __user *uaddr)
1256 {
1257         return __set_id_reg(vcpu, rd, uaddr, true);
1258 }
1259
1260 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1261                        const struct sys_reg_desc *r)
1262 {
1263         if (p->is_write)
1264                 return write_to_read_only(vcpu, p, r);
1265
1266         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1267         return true;
1268 }
1269
1270 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1271                          const struct sys_reg_desc *r)
1272 {
1273         if (p->is_write)
1274                 return write_to_read_only(vcpu, p, r);
1275
1276         p->regval = read_sysreg(clidr_el1);
1277         return true;
1278 }
1279
1280 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1281                           const struct sys_reg_desc *r)
1282 {
1283         if (p->is_write)
1284                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
1285         else
1286                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
1287         return true;
1288 }
1289
1290 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1291                           const struct sys_reg_desc *r)
1292 {
1293         u32 csselr;
1294
1295         if (p->is_write)
1296                 return write_to_read_only(vcpu, p, r);
1297
1298         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1299         p->regval = get_ccsidr(csselr);
1300
1301         /*
1302          * Guests should not be doing cache operations by set/way at all, and
1303          * for this reason, we trap them and attempt to infer the intent, so
1304          * that we can flush the entire guest's address space at the appropriate
1305          * time.
1306          * To prevent this trapping from causing performance problems, let's
1307          * expose the geometry of all data and unified caches (which are
1308          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1309          * [If guests should attempt to infer aliasing properties from the
1310          * geometry (which is not permitted by the architecture), they would
1311          * only do so for virtually indexed caches.]
1312          */
1313         if (!(csselr & 1)) // data or unified cache
1314                 p->regval &= ~GENMASK(27, 3);
1315         return true;
1316 }
1317
1318 /* sys_reg_desc initialiser for known cpufeature ID registers */
1319 #define ID_SANITISED(name) {                    \
1320         SYS_DESC(SYS_##name),                   \
1321         .access = access_id_reg,                \
1322         .get_user = get_id_reg,                 \
1323         .set_user = set_id_reg,                 \
1324 }
1325
1326 /*
1327  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1328  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1329  * (1 <= crm < 8, 0 <= Op2 < 8).
1330  */
1331 #define ID_UNALLOCATED(crm, op2) {                      \
1332         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1333         .access = access_raz_id_reg,                    \
1334         .get_user = get_raz_id_reg,                     \
1335         .set_user = set_raz_id_reg,                     \
1336 }
1337
1338 /*
1339  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1340  * For now, these are exposed just like unallocated ID regs: they appear
1341  * RAZ for the guest.
1342  */
1343 #define ID_HIDDEN(name) {                       \
1344         SYS_DESC(SYS_##name),                   \
1345         .access = access_raz_id_reg,            \
1346         .get_user = get_raz_id_reg,             \
1347         .set_user = set_raz_id_reg,             \
1348 }
1349
1350 /*
1351  * Architected system registers.
1352  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1353  *
1354  * Debug handling: We do trap most, if not all debug related system
1355  * registers. The implementation is good enough to ensure that a guest
1356  * can use these with minimal performance degradation. The drawback is
1357  * that we don't implement any of the external debug, none of the
1358  * OSlock protocol. This should be revisited if we ever encounter a
1359  * more demanding guest...
1360  */
1361 static const struct sys_reg_desc sys_reg_descs[] = {
1362         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1363         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1364         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1365
1366         DBG_BCR_BVR_WCR_WVR_EL1(0),
1367         DBG_BCR_BVR_WCR_WVR_EL1(1),
1368         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1369         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1370         DBG_BCR_BVR_WCR_WVR_EL1(2),
1371         DBG_BCR_BVR_WCR_WVR_EL1(3),
1372         DBG_BCR_BVR_WCR_WVR_EL1(4),
1373         DBG_BCR_BVR_WCR_WVR_EL1(5),
1374         DBG_BCR_BVR_WCR_WVR_EL1(6),
1375         DBG_BCR_BVR_WCR_WVR_EL1(7),
1376         DBG_BCR_BVR_WCR_WVR_EL1(8),
1377         DBG_BCR_BVR_WCR_WVR_EL1(9),
1378         DBG_BCR_BVR_WCR_WVR_EL1(10),
1379         DBG_BCR_BVR_WCR_WVR_EL1(11),
1380         DBG_BCR_BVR_WCR_WVR_EL1(12),
1381         DBG_BCR_BVR_WCR_WVR_EL1(13),
1382         DBG_BCR_BVR_WCR_WVR_EL1(14),
1383         DBG_BCR_BVR_WCR_WVR_EL1(15),
1384
1385         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1386         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1387         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1388         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1389         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1390         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1391         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1392         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1393
1394         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1395         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1396         // DBGDTR[TR]X_EL0 share the same encoding
1397         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1398
1399         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1400
1401         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1402
1403         /*
1404          * ID regs: all ID_SANITISED() entries here must have corresponding
1405          * entries in arm64_ftr_regs[].
1406          */
1407
1408         /* AArch64 mappings of the AArch32 ID registers */
1409         /* CRm=1 */
1410         ID_SANITISED(ID_PFR0_EL1),
1411         ID_SANITISED(ID_PFR1_EL1),
1412         ID_SANITISED(ID_DFR0_EL1),
1413         ID_HIDDEN(ID_AFR0_EL1),
1414         ID_SANITISED(ID_MMFR0_EL1),
1415         ID_SANITISED(ID_MMFR1_EL1),
1416         ID_SANITISED(ID_MMFR2_EL1),
1417         ID_SANITISED(ID_MMFR3_EL1),
1418
1419         /* CRm=2 */
1420         ID_SANITISED(ID_ISAR0_EL1),
1421         ID_SANITISED(ID_ISAR1_EL1),
1422         ID_SANITISED(ID_ISAR2_EL1),
1423         ID_SANITISED(ID_ISAR3_EL1),
1424         ID_SANITISED(ID_ISAR4_EL1),
1425         ID_SANITISED(ID_ISAR5_EL1),
1426         ID_SANITISED(ID_MMFR4_EL1),
1427         ID_UNALLOCATED(2,7),
1428
1429         /* CRm=3 */
1430         ID_SANITISED(MVFR0_EL1),
1431         ID_SANITISED(MVFR1_EL1),
1432         ID_SANITISED(MVFR2_EL1),
1433         ID_UNALLOCATED(3,3),
1434         ID_UNALLOCATED(3,4),
1435         ID_UNALLOCATED(3,5),
1436         ID_UNALLOCATED(3,6),
1437         ID_UNALLOCATED(3,7),
1438
1439         /* AArch64 ID registers */
1440         /* CRm=4 */
1441         ID_SANITISED(ID_AA64PFR0_EL1),
1442         ID_SANITISED(ID_AA64PFR1_EL1),
1443         ID_UNALLOCATED(4,2),
1444         ID_UNALLOCATED(4,3),
1445         { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1446         ID_UNALLOCATED(4,5),
1447         ID_UNALLOCATED(4,6),
1448         ID_UNALLOCATED(4,7),
1449
1450         /* CRm=5 */
1451         ID_SANITISED(ID_AA64DFR0_EL1),
1452         ID_SANITISED(ID_AA64DFR1_EL1),
1453         ID_UNALLOCATED(5,2),
1454         ID_UNALLOCATED(5,3),
1455         ID_HIDDEN(ID_AA64AFR0_EL1),
1456         ID_HIDDEN(ID_AA64AFR1_EL1),
1457         ID_UNALLOCATED(5,6),
1458         ID_UNALLOCATED(5,7),
1459
1460         /* CRm=6 */
1461         ID_SANITISED(ID_AA64ISAR0_EL1),
1462         ID_SANITISED(ID_AA64ISAR1_EL1),
1463         ID_UNALLOCATED(6,2),
1464         ID_UNALLOCATED(6,3),
1465         ID_UNALLOCATED(6,4),
1466         ID_UNALLOCATED(6,5),
1467         ID_UNALLOCATED(6,6),
1468         ID_UNALLOCATED(6,7),
1469
1470         /* CRm=7 */
1471         ID_SANITISED(ID_AA64MMFR0_EL1),
1472         ID_SANITISED(ID_AA64MMFR1_EL1),
1473         ID_SANITISED(ID_AA64MMFR2_EL1),
1474         ID_UNALLOCATED(7,3),
1475         ID_UNALLOCATED(7,4),
1476         ID_UNALLOCATED(7,5),
1477         ID_UNALLOCATED(7,6),
1478         ID_UNALLOCATED(7,7),
1479
1480         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1481         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1482         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1483         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1484         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1485         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1486
1487         PTRAUTH_KEY(APIA),
1488         PTRAUTH_KEY(APIB),
1489         PTRAUTH_KEY(APDA),
1490         PTRAUTH_KEY(APDB),
1491         PTRAUTH_KEY(APGA),
1492
1493         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1494         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1495         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1496
1497         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1498         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1499         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1500         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1501         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1502         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1503         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1504         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1505
1506         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1507         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1508
1509         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1510         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1511
1512         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1513         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1514
1515         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1516         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1517         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1518         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1519         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1520
1521         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1522         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1523
1524         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1525         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1526         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1527         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1528         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1529         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1530         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1531         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1532         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1533         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1534         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1535         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1536
1537         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1538         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1539
1540         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1541
1542         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1543         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1544         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1545         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1546
1547         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1548         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1549         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1550         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1551         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1552         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1553         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1554         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1555         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1556         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1557         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1558         /*
1559          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1560          * in 32bit mode. Here we choose to reset it as zero for consistency.
1561          */
1562         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1563         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1564
1565         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1566         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1567
1568         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1569         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1570         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1571
1572         /* PMEVCNTRn_EL0 */
1573         PMU_PMEVCNTR_EL0(0),
1574         PMU_PMEVCNTR_EL0(1),
1575         PMU_PMEVCNTR_EL0(2),
1576         PMU_PMEVCNTR_EL0(3),
1577         PMU_PMEVCNTR_EL0(4),
1578         PMU_PMEVCNTR_EL0(5),
1579         PMU_PMEVCNTR_EL0(6),
1580         PMU_PMEVCNTR_EL0(7),
1581         PMU_PMEVCNTR_EL0(8),
1582         PMU_PMEVCNTR_EL0(9),
1583         PMU_PMEVCNTR_EL0(10),
1584         PMU_PMEVCNTR_EL0(11),
1585         PMU_PMEVCNTR_EL0(12),
1586         PMU_PMEVCNTR_EL0(13),
1587         PMU_PMEVCNTR_EL0(14),
1588         PMU_PMEVCNTR_EL0(15),
1589         PMU_PMEVCNTR_EL0(16),
1590         PMU_PMEVCNTR_EL0(17),
1591         PMU_PMEVCNTR_EL0(18),
1592         PMU_PMEVCNTR_EL0(19),
1593         PMU_PMEVCNTR_EL0(20),
1594         PMU_PMEVCNTR_EL0(21),
1595         PMU_PMEVCNTR_EL0(22),
1596         PMU_PMEVCNTR_EL0(23),
1597         PMU_PMEVCNTR_EL0(24),
1598         PMU_PMEVCNTR_EL0(25),
1599         PMU_PMEVCNTR_EL0(26),
1600         PMU_PMEVCNTR_EL0(27),
1601         PMU_PMEVCNTR_EL0(28),
1602         PMU_PMEVCNTR_EL0(29),
1603         PMU_PMEVCNTR_EL0(30),
1604         /* PMEVTYPERn_EL0 */
1605         PMU_PMEVTYPER_EL0(0),
1606         PMU_PMEVTYPER_EL0(1),
1607         PMU_PMEVTYPER_EL0(2),
1608         PMU_PMEVTYPER_EL0(3),
1609         PMU_PMEVTYPER_EL0(4),
1610         PMU_PMEVTYPER_EL0(5),
1611         PMU_PMEVTYPER_EL0(6),
1612         PMU_PMEVTYPER_EL0(7),
1613         PMU_PMEVTYPER_EL0(8),
1614         PMU_PMEVTYPER_EL0(9),
1615         PMU_PMEVTYPER_EL0(10),
1616         PMU_PMEVTYPER_EL0(11),
1617         PMU_PMEVTYPER_EL0(12),
1618         PMU_PMEVTYPER_EL0(13),
1619         PMU_PMEVTYPER_EL0(14),
1620         PMU_PMEVTYPER_EL0(15),
1621         PMU_PMEVTYPER_EL0(16),
1622         PMU_PMEVTYPER_EL0(17),
1623         PMU_PMEVTYPER_EL0(18),
1624         PMU_PMEVTYPER_EL0(19),
1625         PMU_PMEVTYPER_EL0(20),
1626         PMU_PMEVTYPER_EL0(21),
1627         PMU_PMEVTYPER_EL0(22),
1628         PMU_PMEVTYPER_EL0(23),
1629         PMU_PMEVTYPER_EL0(24),
1630         PMU_PMEVTYPER_EL0(25),
1631         PMU_PMEVTYPER_EL0(26),
1632         PMU_PMEVTYPER_EL0(27),
1633         PMU_PMEVTYPER_EL0(28),
1634         PMU_PMEVTYPER_EL0(29),
1635         PMU_PMEVTYPER_EL0(30),
1636         /*
1637          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1638          * in 32bit mode. Here we choose to reset it as zero for consistency.
1639          */
1640         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1641
1642         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1643         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1644         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1645 };
1646
1647 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1648                         struct sys_reg_params *p,
1649                         const struct sys_reg_desc *r)
1650 {
1651         if (p->is_write) {
1652                 return ignore_write(vcpu, p);
1653         } else {
1654                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1655                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1656                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1657
1658                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1659                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1660                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1661                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1662                 return true;
1663         }
1664 }
1665
1666 static bool trap_debug32(struct kvm_vcpu *vcpu,
1667                          struct sys_reg_params *p,
1668                          const struct sys_reg_desc *r)
1669 {
1670         if (p->is_write) {
1671                 vcpu_cp14(vcpu, r->reg) = p->regval;
1672                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1673         } else {
1674                 p->regval = vcpu_cp14(vcpu, r->reg);
1675         }
1676
1677         return true;
1678 }
1679
1680 /* AArch32 debug register mappings
1681  *
1682  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1683  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1684  *
1685  * All control registers and watchpoint value registers are mapped to
1686  * the lower 32 bits of their AArch64 equivalents. We share the trap
1687  * handlers with the above AArch64 code which checks what mode the
1688  * system is in.
1689  */
1690
1691 static bool trap_xvr(struct kvm_vcpu *vcpu,
1692                      struct sys_reg_params *p,
1693                      const struct sys_reg_desc *rd)
1694 {
1695         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1696
1697         if (p->is_write) {
1698                 u64 val = *dbg_reg;
1699
1700                 val &= 0xffffffffUL;
1701                 val |= p->regval << 32;
1702                 *dbg_reg = val;
1703
1704                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1705         } else {
1706                 p->regval = *dbg_reg >> 32;
1707         }
1708
1709         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1710
1711         return true;
1712 }
1713
1714 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1715         /* DBGBVRn */                                                   \
1716         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1717         /* DBGBCRn */                                                   \
1718         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1719         /* DBGWVRn */                                                   \
1720         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1721         /* DBGWCRn */                                                   \
1722         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1723
1724 #define DBGBXVR(n)                                                      \
1725         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1726
1727 /*
1728  * Trapped cp14 registers. We generally ignore most of the external
1729  * debug, on the principle that they don't really make sense to a
1730  * guest. Revisit this one day, would this principle change.
1731  */
1732 static const struct sys_reg_desc cp14_regs[] = {
1733         /* DBGIDR */
1734         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1735         /* DBGDTRRXext */
1736         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1737
1738         DBG_BCR_BVR_WCR_WVR(0),
1739         /* DBGDSCRint */
1740         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1741         DBG_BCR_BVR_WCR_WVR(1),
1742         /* DBGDCCINT */
1743         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1744         /* DBGDSCRext */
1745         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1746         DBG_BCR_BVR_WCR_WVR(2),
1747         /* DBGDTR[RT]Xint */
1748         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1749         /* DBGDTR[RT]Xext */
1750         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1751         DBG_BCR_BVR_WCR_WVR(3),
1752         DBG_BCR_BVR_WCR_WVR(4),
1753         DBG_BCR_BVR_WCR_WVR(5),
1754         /* DBGWFAR */
1755         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1756         /* DBGOSECCR */
1757         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1758         DBG_BCR_BVR_WCR_WVR(6),
1759         /* DBGVCR */
1760         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1761         DBG_BCR_BVR_WCR_WVR(7),
1762         DBG_BCR_BVR_WCR_WVR(8),
1763         DBG_BCR_BVR_WCR_WVR(9),
1764         DBG_BCR_BVR_WCR_WVR(10),
1765         DBG_BCR_BVR_WCR_WVR(11),
1766         DBG_BCR_BVR_WCR_WVR(12),
1767         DBG_BCR_BVR_WCR_WVR(13),
1768         DBG_BCR_BVR_WCR_WVR(14),
1769         DBG_BCR_BVR_WCR_WVR(15),
1770
1771         /* DBGDRAR (32bit) */
1772         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1773
1774         DBGBXVR(0),
1775         /* DBGOSLAR */
1776         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1777         DBGBXVR(1),
1778         /* DBGOSLSR */
1779         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1780         DBGBXVR(2),
1781         DBGBXVR(3),
1782         /* DBGOSDLR */
1783         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1784         DBGBXVR(4),
1785         /* DBGPRCR */
1786         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1787         DBGBXVR(5),
1788         DBGBXVR(6),
1789         DBGBXVR(7),
1790         DBGBXVR(8),
1791         DBGBXVR(9),
1792         DBGBXVR(10),
1793         DBGBXVR(11),
1794         DBGBXVR(12),
1795         DBGBXVR(13),
1796         DBGBXVR(14),
1797         DBGBXVR(15),
1798
1799         /* DBGDSAR (32bit) */
1800         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1801
1802         /* DBGDEVID2 */
1803         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1804         /* DBGDEVID1 */
1805         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1806         /* DBGDEVID */
1807         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1808         /* DBGCLAIMSET */
1809         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1810         /* DBGCLAIMCLR */
1811         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1812         /* DBGAUTHSTATUS */
1813         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1814 };
1815
1816 /* Trapped cp14 64bit registers */
1817 static const struct sys_reg_desc cp14_64_regs[] = {
1818         /* DBGDRAR (64bit) */
1819         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1820
1821         /* DBGDSAR (64bit) */
1822         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1823 };
1824
1825 /* Macro to expand the PMEVCNTRn register */
1826 #define PMU_PMEVCNTR(n)                                                 \
1827         /* PMEVCNTRn */                                                 \
1828         { Op1(0), CRn(0b1110),                                          \
1829           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1830           access_pmu_evcntr }
1831
1832 /* Macro to expand the PMEVTYPERn register */
1833 #define PMU_PMEVTYPER(n)                                                \
1834         /* PMEVTYPERn */                                                \
1835         { Op1(0), CRn(0b1110),                                          \
1836           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1837           access_pmu_evtyper }
1838
1839 /*
1840  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1841  * depending on the way they are accessed (as a 32bit or a 64bit
1842  * register).
1843  */
1844 static const struct sys_reg_desc cp15_regs[] = {
1845         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1846         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1847         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1848         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1849         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1850         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1851         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1852         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1853         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1854         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1855         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1856         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1857
1858         /*
1859          * DC{C,I,CI}SW operations:
1860          */
1861         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1862         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1863         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1864
1865         /* PMU */
1866         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1867         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1868         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1869         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1870         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1871         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1872         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1873         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1874         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1875         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1876         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1877         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1878         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1879         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1880         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1881
1882         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1883         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1884         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1885         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1886
1887         /* ICC_SRE */
1888         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1889
1890         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1891
1892         /* Arch Tmers */
1893         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1894         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1895
1896         /* PMEVCNTRn */
1897         PMU_PMEVCNTR(0),
1898         PMU_PMEVCNTR(1),
1899         PMU_PMEVCNTR(2),
1900         PMU_PMEVCNTR(3),
1901         PMU_PMEVCNTR(4),
1902         PMU_PMEVCNTR(5),
1903         PMU_PMEVCNTR(6),
1904         PMU_PMEVCNTR(7),
1905         PMU_PMEVCNTR(8),
1906         PMU_PMEVCNTR(9),
1907         PMU_PMEVCNTR(10),
1908         PMU_PMEVCNTR(11),
1909         PMU_PMEVCNTR(12),
1910         PMU_PMEVCNTR(13),
1911         PMU_PMEVCNTR(14),
1912         PMU_PMEVCNTR(15),
1913         PMU_PMEVCNTR(16),
1914         PMU_PMEVCNTR(17),
1915         PMU_PMEVCNTR(18),
1916         PMU_PMEVCNTR(19),
1917         PMU_PMEVCNTR(20),
1918         PMU_PMEVCNTR(21),
1919         PMU_PMEVCNTR(22),
1920         PMU_PMEVCNTR(23),
1921         PMU_PMEVCNTR(24),
1922         PMU_PMEVCNTR(25),
1923         PMU_PMEVCNTR(26),
1924         PMU_PMEVCNTR(27),
1925         PMU_PMEVCNTR(28),
1926         PMU_PMEVCNTR(29),
1927         PMU_PMEVCNTR(30),
1928         /* PMEVTYPERn */
1929         PMU_PMEVTYPER(0),
1930         PMU_PMEVTYPER(1),
1931         PMU_PMEVTYPER(2),
1932         PMU_PMEVTYPER(3),
1933         PMU_PMEVTYPER(4),
1934         PMU_PMEVTYPER(5),
1935         PMU_PMEVTYPER(6),
1936         PMU_PMEVTYPER(7),
1937         PMU_PMEVTYPER(8),
1938         PMU_PMEVTYPER(9),
1939         PMU_PMEVTYPER(10),
1940         PMU_PMEVTYPER(11),
1941         PMU_PMEVTYPER(12),
1942         PMU_PMEVTYPER(13),
1943         PMU_PMEVTYPER(14),
1944         PMU_PMEVTYPER(15),
1945         PMU_PMEVTYPER(16),
1946         PMU_PMEVTYPER(17),
1947         PMU_PMEVTYPER(18),
1948         PMU_PMEVTYPER(19),
1949         PMU_PMEVTYPER(20),
1950         PMU_PMEVTYPER(21),
1951         PMU_PMEVTYPER(22),
1952         PMU_PMEVTYPER(23),
1953         PMU_PMEVTYPER(24),
1954         PMU_PMEVTYPER(25),
1955         PMU_PMEVTYPER(26),
1956         PMU_PMEVTYPER(27),
1957         PMU_PMEVTYPER(28),
1958         PMU_PMEVTYPER(29),
1959         PMU_PMEVTYPER(30),
1960         /* PMCCFILTR */
1961         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1962
1963         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1964         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1965         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
1966 };
1967
1968 static const struct sys_reg_desc cp15_64_regs[] = {
1969         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1970         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1971         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1972         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1973         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1974         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1975         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
1976 };
1977
1978 /* Target specific emulation tables */
1979 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1980
1981 void kvm_register_target_sys_reg_table(unsigned int target,
1982                                        struct kvm_sys_reg_target_table *table)
1983 {
1984         target_tables[target] = table;
1985 }
1986
1987 /* Get specific register table for this target. */
1988 static const struct sys_reg_desc *get_target_table(unsigned target,
1989                                                    bool mode_is_64,
1990                                                    size_t *num)
1991 {
1992         struct kvm_sys_reg_target_table *table;
1993
1994         table = target_tables[target];
1995         if (mode_is_64) {
1996                 *num = table->table64.num;
1997                 return table->table64.table;
1998         } else {
1999                 *num = table->table32.num;
2000                 return table->table32.table;
2001         }
2002 }
2003
2004 static int match_sys_reg(const void *key, const void *elt)
2005 {
2006         const unsigned long pval = (unsigned long)key;
2007         const struct sys_reg_desc *r = elt;
2008
2009         return pval - reg_to_encoding(r);
2010 }
2011
2012 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2013                                          const struct sys_reg_desc table[],
2014                                          unsigned int num)
2015 {
2016         unsigned long pval = reg_to_encoding(params);
2017
2018         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2019 }
2020
2021 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
2022 {
2023         kvm_inject_undefined(vcpu);
2024         return 1;
2025 }
2026
2027 static void perform_access(struct kvm_vcpu *vcpu,
2028                            struct sys_reg_params *params,
2029                            const struct sys_reg_desc *r)
2030 {
2031         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2032
2033         /* Check for regs disabled by runtime config */
2034         if (sysreg_hidden_from_guest(vcpu, r)) {
2035                 kvm_inject_undefined(vcpu);
2036                 return;
2037         }
2038
2039         /*
2040          * Not having an accessor means that we have configured a trap
2041          * that we don't know how to handle. This certainly qualifies
2042          * as a gross bug that should be fixed right away.
2043          */
2044         BUG_ON(!r->access);
2045
2046         /* Skip instruction if instructed so */
2047         if (likely(r->access(vcpu, params, r)))
2048                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2049 }
2050
2051 /*
2052  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2053  *                call the corresponding trap handler.
2054  *
2055  * @params: pointer to the descriptor of the access
2056  * @table: array of trap descriptors
2057  * @num: size of the trap descriptor array
2058  *
2059  * Return 0 if the access has been handled, and -1 if not.
2060  */
2061 static int emulate_cp(struct kvm_vcpu *vcpu,
2062                       struct sys_reg_params *params,
2063                       const struct sys_reg_desc *table,
2064                       size_t num)
2065 {
2066         const struct sys_reg_desc *r;
2067
2068         if (!table)
2069                 return -1;      /* Not handled */
2070
2071         r = find_reg(params, table, num);
2072
2073         if (r) {
2074                 perform_access(vcpu, params, r);
2075                 return 0;
2076         }
2077
2078         /* Not handled */
2079         return -1;
2080 }
2081
2082 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2083                                 struct sys_reg_params *params)
2084 {
2085         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
2086         int cp = -1;
2087
2088         switch(hsr_ec) {
2089         case ESR_ELx_EC_CP15_32:
2090         case ESR_ELx_EC_CP15_64:
2091                 cp = 15;
2092                 break;
2093         case ESR_ELx_EC_CP14_MR:
2094         case ESR_ELx_EC_CP14_64:
2095                 cp = 14;
2096                 break;
2097         default:
2098                 WARN_ON(1);
2099         }
2100
2101         kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
2102                 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2103         print_sys_reg_instr(params);
2104         kvm_inject_undefined(vcpu);
2105 }
2106
2107 /**
2108  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2109  * @vcpu: The VCPU pointer
2110  * @run:  The kvm_run struct
2111  */
2112 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2113                             const struct sys_reg_desc *global,
2114                             size_t nr_global,
2115                             const struct sys_reg_desc *target_specific,
2116                             size_t nr_specific)
2117 {
2118         struct sys_reg_params params;
2119         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2120         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2121         int Rt2 = (hsr >> 10) & 0x1f;
2122
2123         params.is_aarch32 = true;
2124         params.is_32bit = false;
2125         params.CRm = (hsr >> 1) & 0xf;
2126         params.is_write = ((hsr & 1) == 0);
2127
2128         params.Op0 = 0;
2129         params.Op1 = (hsr >> 16) & 0xf;
2130         params.Op2 = 0;
2131         params.CRn = 0;
2132
2133         /*
2134          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2135          * backends between AArch32 and AArch64, we get away with it.
2136          */
2137         if (params.is_write) {
2138                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2139                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2140         }
2141
2142         /*
2143          * Try to emulate the coprocessor access using the target
2144          * specific table first, and using the global table afterwards.
2145          * If either of the tables contains a handler, handle the
2146          * potential register operation in the case of a read and return
2147          * with success.
2148          */
2149         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2150             !emulate_cp(vcpu, &params, global, nr_global)) {
2151                 /* Split up the value between registers for the read side */
2152                 if (!params.is_write) {
2153                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2154                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2155                 }
2156
2157                 return 1;
2158         }
2159
2160         unhandled_cp_access(vcpu, &params);
2161         return 1;
2162 }
2163
2164 /**
2165  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2166  * @vcpu: The VCPU pointer
2167  * @run:  The kvm_run struct
2168  */
2169 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2170                             const struct sys_reg_desc *global,
2171                             size_t nr_global,
2172                             const struct sys_reg_desc *target_specific,
2173                             size_t nr_specific)
2174 {
2175         struct sys_reg_params params;
2176         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2177         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2178
2179         params.is_aarch32 = true;
2180         params.is_32bit = true;
2181         params.CRm = (hsr >> 1) & 0xf;
2182         params.regval = vcpu_get_reg(vcpu, Rt);
2183         params.is_write = ((hsr & 1) == 0);
2184         params.CRn = (hsr >> 10) & 0xf;
2185         params.Op0 = 0;
2186         params.Op1 = (hsr >> 14) & 0x7;
2187         params.Op2 = (hsr >> 17) & 0x7;
2188
2189         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2190             !emulate_cp(vcpu, &params, global, nr_global)) {
2191                 if (!params.is_write)
2192                         vcpu_set_reg(vcpu, Rt, params.regval);
2193                 return 1;
2194         }
2195
2196         unhandled_cp_access(vcpu, &params);
2197         return 1;
2198 }
2199
2200 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2201 {
2202         const struct sys_reg_desc *target_specific;
2203         size_t num;
2204
2205         target_specific = get_target_table(vcpu->arch.target, false, &num);
2206         return kvm_handle_cp_64(vcpu,
2207                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2208                                 target_specific, num);
2209 }
2210
2211 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2212 {
2213         const struct sys_reg_desc *target_specific;
2214         size_t num;
2215
2216         target_specific = get_target_table(vcpu->arch.target, false, &num);
2217         return kvm_handle_cp_32(vcpu,
2218                                 cp15_regs, ARRAY_SIZE(cp15_regs),
2219                                 target_specific, num);
2220 }
2221
2222 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2223 {
2224         return kvm_handle_cp_64(vcpu,
2225                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2226                                 NULL, 0);
2227 }
2228
2229 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2230 {
2231         return kvm_handle_cp_32(vcpu,
2232                                 cp14_regs, ARRAY_SIZE(cp14_regs),
2233                                 NULL, 0);
2234 }
2235
2236 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2237                            struct sys_reg_params *params)
2238 {
2239         size_t num;
2240         const struct sys_reg_desc *table, *r;
2241
2242         table = get_target_table(vcpu->arch.target, true, &num);
2243
2244         /* Search target-specific then generic table. */
2245         r = find_reg(params, table, num);
2246         if (!r)
2247                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2248
2249         if (likely(r)) {
2250                 perform_access(vcpu, params, r);
2251         } else {
2252                 kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2253                         *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2254                 print_sys_reg_instr(params);
2255                 kvm_inject_undefined(vcpu);
2256         }
2257         return 1;
2258 }
2259
2260 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2261                                 const struct sys_reg_desc *table, size_t num,
2262                                 unsigned long *bmap)
2263 {
2264         unsigned long i;
2265
2266         for (i = 0; i < num; i++)
2267                 if (table[i].reset) {
2268                         int reg = table[i].reg;
2269
2270                         table[i].reset(vcpu, &table[i]);
2271                         if (reg > 0 && reg < NR_SYS_REGS)
2272                                 set_bit(reg, bmap);
2273                 }
2274 }
2275
2276 /**
2277  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2278  * @vcpu: The VCPU pointer
2279  * @run:  The kvm_run struct
2280  */
2281 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2282 {
2283         struct sys_reg_params params;
2284         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2285         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2286         int ret;
2287
2288         trace_kvm_handle_sys_reg(esr);
2289
2290         params.is_aarch32 = false;
2291         params.is_32bit = false;
2292         params.Op0 = (esr >> 20) & 3;
2293         params.Op1 = (esr >> 14) & 0x7;
2294         params.CRn = (esr >> 10) & 0xf;
2295         params.CRm = (esr >> 1) & 0xf;
2296         params.Op2 = (esr >> 17) & 0x7;
2297         params.regval = vcpu_get_reg(vcpu, Rt);
2298         params.is_write = !(esr & 1);
2299
2300         ret = emulate_sys_reg(vcpu, &params);
2301
2302         if (!params.is_write)
2303                 vcpu_set_reg(vcpu, Rt, params.regval);
2304         return ret;
2305 }
2306
2307 /******************************************************************************
2308  * Userspace API
2309  *****************************************************************************/
2310
2311 static bool index_to_params(u64 id, struct sys_reg_params *params)
2312 {
2313         switch (id & KVM_REG_SIZE_MASK) {
2314         case KVM_REG_SIZE_U64:
2315                 /* Any unused index bits means it's not valid. */
2316                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2317                               | KVM_REG_ARM_COPROC_MASK
2318                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2319                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2320                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2321                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2322                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2323                         return false;
2324                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2325                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2326                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2327                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2328                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2329                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2330                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2331                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2332                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2333                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2334                 return true;
2335         default:
2336                 return false;
2337         }
2338 }
2339
2340 const struct sys_reg_desc *find_reg_by_id(u64 id,
2341                                           struct sys_reg_params *params,
2342                                           const struct sys_reg_desc table[],
2343                                           unsigned int num)
2344 {
2345         if (!index_to_params(id, params))
2346                 return NULL;
2347
2348         return find_reg(params, table, num);
2349 }
2350
2351 /* Decode an index value, and find the sys_reg_desc entry. */
2352 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2353                                                     u64 id)
2354 {
2355         size_t num;
2356         const struct sys_reg_desc *table, *r;
2357         struct sys_reg_params params;
2358
2359         /* We only do sys_reg for now. */
2360         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2361                 return NULL;
2362
2363         table = get_target_table(vcpu->arch.target, true, &num);
2364         r = find_reg_by_id(id, &params, table, num);
2365         if (!r)
2366                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2367
2368         /* Not saved in the sys_reg array and not otherwise accessible? */
2369         if (r && !(r->reg || r->get_user))
2370                 r = NULL;
2371
2372         return r;
2373 }
2374
2375 /*
2376  * These are the invariant sys_reg registers: we let the guest see the
2377  * host versions of these, so they're part of the guest state.
2378  *
2379  * A future CPU may provide a mechanism to present different values to
2380  * the guest, or a future kvm may trap them.
2381  */
2382
2383 #define FUNCTION_INVARIANT(reg)                                         \
2384         static void get_##reg(struct kvm_vcpu *v,                       \
2385                               const struct sys_reg_desc *r)             \
2386         {                                                               \
2387                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2388         }
2389
2390 FUNCTION_INVARIANT(midr_el1)
2391 FUNCTION_INVARIANT(revidr_el1)
2392 FUNCTION_INVARIANT(clidr_el1)
2393 FUNCTION_INVARIANT(aidr_el1)
2394
2395 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2396 {
2397         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2398 }
2399
2400 /* ->val is filled in by kvm_sys_reg_table_init() */
2401 static struct sys_reg_desc invariant_sys_regs[] = {
2402         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2403         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2404         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2405         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2406         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2407 };
2408
2409 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2410 {
2411         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2412                 return -EFAULT;
2413         return 0;
2414 }
2415
2416 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2417 {
2418         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2419                 return -EFAULT;
2420         return 0;
2421 }
2422
2423 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2424 {
2425         struct sys_reg_params params;
2426         const struct sys_reg_desc *r;
2427
2428         r = find_reg_by_id(id, &params, invariant_sys_regs,
2429                            ARRAY_SIZE(invariant_sys_regs));
2430         if (!r)
2431                 return -ENOENT;
2432
2433         return reg_to_user(uaddr, &r->val, id);
2434 }
2435
2436 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2437 {
2438         struct sys_reg_params params;
2439         const struct sys_reg_desc *r;
2440         int err;
2441         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2442
2443         r = find_reg_by_id(id, &params, invariant_sys_regs,
2444                            ARRAY_SIZE(invariant_sys_regs));
2445         if (!r)
2446                 return -ENOENT;
2447
2448         err = reg_from_user(&val, uaddr, id);
2449         if (err)
2450                 return err;
2451
2452         /* This is what we mean by invariant: you can't change it. */
2453         if (r->val != val)
2454                 return -EINVAL;
2455
2456         return 0;
2457 }
2458
2459 static bool is_valid_cache(u32 val)
2460 {
2461         u32 level, ctype;
2462
2463         if (val >= CSSELR_MAX)
2464                 return false;
2465
2466         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2467         level = (val >> 1);
2468         ctype = (cache_levels >> (level * 3)) & 7;
2469
2470         switch (ctype) {
2471         case 0: /* No cache */
2472                 return false;
2473         case 1: /* Instruction cache only */
2474                 return (val & 1);
2475         case 2: /* Data cache only */
2476         case 4: /* Unified cache */
2477                 return !(val & 1);
2478         case 3: /* Separate instruction and data caches */
2479                 return true;
2480         default: /* Reserved: we can't know instruction or data. */
2481                 return false;
2482         }
2483 }
2484
2485 static int demux_c15_get(u64 id, void __user *uaddr)
2486 {
2487         u32 val;
2488         u32 __user *uval = uaddr;
2489
2490         /* Fail if we have unknown bits set. */
2491         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2492                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2493                 return -ENOENT;
2494
2495         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2496         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2497                 if (KVM_REG_SIZE(id) != 4)
2498                         return -ENOENT;
2499                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2500                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2501                 if (!is_valid_cache(val))
2502                         return -ENOENT;
2503
2504                 return put_user(get_ccsidr(val), uval);
2505         default:
2506                 return -ENOENT;
2507         }
2508 }
2509
2510 static int demux_c15_set(u64 id, void __user *uaddr)
2511 {
2512         u32 val, newval;
2513         u32 __user *uval = uaddr;
2514
2515         /* Fail if we have unknown bits set. */
2516         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2517                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2518                 return -ENOENT;
2519
2520         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2521         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2522                 if (KVM_REG_SIZE(id) != 4)
2523                         return -ENOENT;
2524                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2525                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2526                 if (!is_valid_cache(val))
2527                         return -ENOENT;
2528
2529                 if (get_user(newval, uval))
2530                         return -EFAULT;
2531
2532                 /* This is also invariant: you can't change it. */
2533                 if (newval != get_ccsidr(val))
2534                         return -EINVAL;
2535                 return 0;
2536         default:
2537                 return -ENOENT;
2538         }
2539 }
2540
2541 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2542 {
2543         const struct sys_reg_desc *r;
2544         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2545
2546         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2547                 return demux_c15_get(reg->id, uaddr);
2548
2549         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2550                 return -ENOENT;
2551
2552         r = index_to_sys_reg_desc(vcpu, reg->id);
2553         if (!r)
2554                 return get_invariant_sys_reg(reg->id, uaddr);
2555
2556         /* Check for regs disabled by runtime config */
2557         if (sysreg_hidden_from_user(vcpu, r))
2558                 return -ENOENT;
2559
2560         if (r->get_user)
2561                 return (r->get_user)(vcpu, r, reg, uaddr);
2562
2563         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2564 }
2565
2566 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2567 {
2568         const struct sys_reg_desc *r;
2569         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2570
2571         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2572                 return demux_c15_set(reg->id, uaddr);
2573
2574         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2575                 return -ENOENT;
2576
2577         r = index_to_sys_reg_desc(vcpu, reg->id);
2578         if (!r)
2579                 return set_invariant_sys_reg(reg->id, uaddr);
2580
2581         /* Check for regs disabled by runtime config */
2582         if (sysreg_hidden_from_user(vcpu, r))
2583                 return -ENOENT;
2584
2585         if (r->set_user)
2586                 return (r->set_user)(vcpu, r, reg, uaddr);
2587
2588         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2589 }
2590
2591 static unsigned int num_demux_regs(void)
2592 {
2593         unsigned int i, count = 0;
2594
2595         for (i = 0; i < CSSELR_MAX; i++)
2596                 if (is_valid_cache(i))
2597                         count++;
2598
2599         return count;
2600 }
2601
2602 static int write_demux_regids(u64 __user *uindices)
2603 {
2604         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2605         unsigned int i;
2606
2607         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2608         for (i = 0; i < CSSELR_MAX; i++) {
2609                 if (!is_valid_cache(i))
2610                         continue;
2611                 if (put_user(val | i, uindices))
2612                         return -EFAULT;
2613                 uindices++;
2614         }
2615         return 0;
2616 }
2617
2618 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2619 {
2620         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2621                 KVM_REG_ARM64_SYSREG |
2622                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2623                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2624                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2625                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2626                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2627 }
2628
2629 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2630 {
2631         if (!*uind)
2632                 return true;
2633
2634         if (put_user(sys_reg_to_index(reg), *uind))
2635                 return false;
2636
2637         (*uind)++;
2638         return true;
2639 }
2640
2641 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2642                             const struct sys_reg_desc *rd,
2643                             u64 __user **uind,
2644                             unsigned int *total)
2645 {
2646         /*
2647          * Ignore registers we trap but don't save,
2648          * and for which no custom user accessor is provided.
2649          */
2650         if (!(rd->reg || rd->get_user))
2651                 return 0;
2652
2653         if (sysreg_hidden_from_user(vcpu, rd))
2654                 return 0;
2655
2656         if (!copy_reg_to_user(rd, uind))
2657                 return -EFAULT;
2658
2659         (*total)++;
2660         return 0;
2661 }
2662
2663 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2664 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2665 {
2666         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2667         unsigned int total = 0;
2668         size_t num;
2669         int err;
2670
2671         /* We check for duplicates here, to allow arch-specific overrides. */
2672         i1 = get_target_table(vcpu->arch.target, true, &num);
2673         end1 = i1 + num;
2674         i2 = sys_reg_descs;
2675         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2676
2677         BUG_ON(i1 == end1 || i2 == end2);
2678
2679         /* Walk carefully, as both tables may refer to the same register. */
2680         while (i1 || i2) {
2681                 int cmp = cmp_sys_reg(i1, i2);
2682                 /* target-specific overrides generic entry. */
2683                 if (cmp <= 0)
2684                         err = walk_one_sys_reg(vcpu, i1, &uind, &total);
2685                 else
2686                         err = walk_one_sys_reg(vcpu, i2, &uind, &total);
2687
2688                 if (err)
2689                         return err;
2690
2691                 if (cmp <= 0 && ++i1 == end1)
2692                         i1 = NULL;
2693                 if (cmp >= 0 && ++i2 == end2)
2694                         i2 = NULL;
2695         }
2696         return total;
2697 }
2698
2699 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2700 {
2701         return ARRAY_SIZE(invariant_sys_regs)
2702                 + num_demux_regs()
2703                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2704 }
2705
2706 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2707 {
2708         unsigned int i;
2709         int err;
2710
2711         /* Then give them all the invariant registers' indices. */
2712         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2713                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2714                         return -EFAULT;
2715                 uindices++;
2716         }
2717
2718         err = walk_sys_regs(vcpu, uindices);
2719         if (err < 0)
2720                 return err;
2721         uindices += err;
2722
2723         return write_demux_regids(uindices);
2724 }
2725
2726 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2727 {
2728         unsigned int i;
2729
2730         for (i = 1; i < n; i++) {
2731                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2732                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2733                         return 1;
2734                 }
2735         }
2736
2737         return 0;
2738 }
2739
2740 void kvm_sys_reg_table_init(void)
2741 {
2742         unsigned int i;
2743         struct sys_reg_desc clidr;
2744
2745         /* Make sure tables are unique and in order. */
2746         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2747         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2748         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2749         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2750         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2751         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2752
2753         /* We abuse the reset function to overwrite the table itself. */
2754         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2755                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2756
2757         /*
2758          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2759          *
2760          *   If software reads the Cache Type fields from Ctype1
2761          *   upwards, once it has seen a value of 0b000, no caches
2762          *   exist at further-out levels of the hierarchy. So, for
2763          *   example, if Ctype3 is the first Cache Type field with a
2764          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2765          *   ignored.
2766          */
2767         get_clidr_el1(NULL, &clidr); /* Ugly... */
2768         cache_levels = clidr.val;
2769         for (i = 0; i < 7; i++)
2770                 if (((cache_levels >> (i*3)) & 7) == 0)
2771                         break;
2772         /* Clear all higher bits. */
2773         cache_levels &= (1 << (i*3))-1;
2774 }
2775
2776 /**
2777  * kvm_reset_sys_regs - sets system registers to reset value
2778  * @vcpu: The VCPU pointer
2779  *
2780  * This function finds the right table above and sets the registers on the
2781  * virtual CPU struct to their architecturally defined reset values.
2782  */
2783 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2784 {
2785         size_t num;
2786         const struct sys_reg_desc *table;
2787         DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
2788
2789         /* Generic chip reset first (so target could override). */
2790         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
2791
2792         table = get_target_table(vcpu->arch.target, true, &num);
2793         reset_sys_reg_descs(vcpu, table, num, bmap);
2794
2795         for (num = 1; num < NR_SYS_REGS; num++) {
2796                 if (WARN(!test_bit(num, bmap),
2797                          "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2798                         break;
2799         }
2800 }