d5ee52d6bf7326f9254298631ef2fc0824c0e176
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * For AArch32, we only take care of what is being trapped. Anything
38  * that has to do with init and userspace access has to go via the
39  * 64bit interface.
40  */
41
42 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
43
44 static bool read_from_write_only(struct kvm_vcpu *vcpu,
45                                  struct sys_reg_params *params,
46                                  const struct sys_reg_desc *r)
47 {
48         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
49         print_sys_reg_instr(params);
50         kvm_inject_undefined(vcpu);
51         return false;
52 }
53
54 static bool write_to_read_only(struct kvm_vcpu *vcpu,
55                                struct sys_reg_params *params,
56                                const struct sys_reg_desc *r)
57 {
58         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
59         print_sys_reg_instr(params);
60         kvm_inject_undefined(vcpu);
61         return false;
62 }
63
64 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
65 {
66         u64 val = 0x8badf00d8badf00d;
67
68         if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
69             __vcpu_read_sys_reg_from_cpu(reg, &val))
70                 return val;
71
72         return __vcpu_sys_reg(vcpu, reg);
73 }
74
75 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
76 {
77         if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
78             __vcpu_write_sys_reg_to_cpu(val, reg))
79                 return;
80
81          __vcpu_sys_reg(vcpu, reg) = val;
82 }
83
84 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
85 static u32 cache_levels;
86
87 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
88 #define CSSELR_MAX 14
89
90 /* Which cache CCSIDR represents depends on CSSELR value. */
91 static u32 get_ccsidr(u32 csselr)
92 {
93         u32 ccsidr;
94
95         /* Make sure noone else changes CSSELR during this! */
96         local_irq_disable();
97         write_sysreg(csselr, csselr_el1);
98         isb();
99         ccsidr = read_sysreg(ccsidr_el1);
100         local_irq_enable();
101
102         return ccsidr;
103 }
104
105 /*
106  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
107  */
108 static bool access_dcsw(struct kvm_vcpu *vcpu,
109                         struct sys_reg_params *p,
110                         const struct sys_reg_desc *r)
111 {
112         if (!p->is_write)
113                 return read_from_write_only(vcpu, p, r);
114
115         /*
116          * Only track S/W ops if we don't have FWB. It still indicates
117          * that the guest is a bit broken (S/W operations should only
118          * be done by firmware, knowing that there is only a single
119          * CPU left in the system, and certainly not from non-secure
120          * software).
121          */
122         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
123                 kvm_set_way_flush(vcpu);
124
125         return true;
126 }
127
128 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
129 {
130         switch (r->aarch32_map) {
131         case AA32_LO:
132                 *mask = GENMASK_ULL(31, 0);
133                 *shift = 0;
134                 break;
135         case AA32_HI:
136                 *mask = GENMASK_ULL(63, 32);
137                 *shift = 32;
138                 break;
139         default:
140                 *mask = GENMASK_ULL(63, 0);
141                 *shift = 0;
142                 break;
143         }
144 }
145
146 /*
147  * Generic accessor for VM registers. Only called as long as HCR_TVM
148  * is set. If the guest enables the MMU, we stop trapping the VM
149  * sys_regs and leave it in complete control of the caches.
150  */
151 static bool access_vm_reg(struct kvm_vcpu *vcpu,
152                           struct sys_reg_params *p,
153                           const struct sys_reg_desc *r)
154 {
155         bool was_enabled = vcpu_has_cache_enabled(vcpu);
156         u64 val, mask, shift;
157
158         BUG_ON(!p->is_write);
159
160         get_access_mask(r, &mask, &shift);
161
162         if (~mask) {
163                 val = vcpu_read_sys_reg(vcpu, r->reg);
164                 val &= ~mask;
165         } else {
166                 val = 0;
167         }
168
169         val |= (p->regval & (mask >> shift)) << shift;
170         vcpu_write_sys_reg(vcpu, val, r->reg);
171
172         kvm_toggle_cache(vcpu, was_enabled);
173         return true;
174 }
175
176 static bool access_actlr(struct kvm_vcpu *vcpu,
177                          struct sys_reg_params *p,
178                          const struct sys_reg_desc *r)
179 {
180         u64 mask, shift;
181
182         if (p->is_write)
183                 return ignore_write(vcpu, p);
184
185         get_access_mask(r, &mask, &shift);
186         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
187
188         return true;
189 }
190
191 /*
192  * Trap handler for the GICv3 SGI generation system register.
193  * Forward the request to the VGIC emulation.
194  * The cp15_64 code makes sure this automatically works
195  * for both AArch64 and AArch32 accesses.
196  */
197 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
198                            struct sys_reg_params *p,
199                            const struct sys_reg_desc *r)
200 {
201         bool g1;
202
203         if (!p->is_write)
204                 return read_from_write_only(vcpu, p, r);
205
206         /*
207          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
208          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
209          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
210          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
211          * group.
212          */
213         if (p->Op0 == 0) {              /* AArch32 */
214                 switch (p->Op1) {
215                 default:                /* Keep GCC quiet */
216                 case 0:                 /* ICC_SGI1R */
217                         g1 = true;
218                         break;
219                 case 1:                 /* ICC_ASGI1R */
220                 case 2:                 /* ICC_SGI0R */
221                         g1 = false;
222                         break;
223                 }
224         } else {                        /* AArch64 */
225                 switch (p->Op2) {
226                 default:                /* Keep GCC quiet */
227                 case 5:                 /* ICC_SGI1R_EL1 */
228                         g1 = true;
229                         break;
230                 case 6:                 /* ICC_ASGI1R_EL1 */
231                 case 7:                 /* ICC_SGI0R_EL1 */
232                         g1 = false;
233                         break;
234                 }
235         }
236
237         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
238
239         return true;
240 }
241
242 static bool access_gic_sre(struct kvm_vcpu *vcpu,
243                            struct sys_reg_params *p,
244                            const struct sys_reg_desc *r)
245 {
246         if (p->is_write)
247                 return ignore_write(vcpu, p);
248
249         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
250         return true;
251 }
252
253 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
254                         struct sys_reg_params *p,
255                         const struct sys_reg_desc *r)
256 {
257         if (p->is_write)
258                 return ignore_write(vcpu, p);
259         else
260                 return read_zero(vcpu, p);
261 }
262
263 /*
264  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
265  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
266  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
267  * treat it separately.
268  */
269 static bool trap_loregion(struct kvm_vcpu *vcpu,
270                           struct sys_reg_params *p,
271                           const struct sys_reg_desc *r)
272 {
273         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
274         u32 sr = reg_to_encoding(r);
275
276         if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
277                 kvm_inject_undefined(vcpu);
278                 return false;
279         }
280
281         if (p->is_write && sr == SYS_LORID_EL1)
282                 return write_to_read_only(vcpu, p, r);
283
284         return trap_raz_wi(vcpu, p, r);
285 }
286
287 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
288                            struct sys_reg_params *p,
289                            const struct sys_reg_desc *r)
290 {
291         u64 oslsr;
292
293         if (!p->is_write)
294                 return read_from_write_only(vcpu, p, r);
295
296         /* Forward the OSLK bit to OSLSR */
297         oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
298         if (p->regval & SYS_OSLAR_OSLK)
299                 oslsr |= SYS_OSLSR_OSLK;
300
301         __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
302         return true;
303 }
304
305 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
306                            struct sys_reg_params *p,
307                            const struct sys_reg_desc *r)
308 {
309         if (p->is_write)
310                 return write_to_read_only(vcpu, p, r);
311
312         p->regval = __vcpu_sys_reg(vcpu, r->reg);
313         return true;
314 }
315
316 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
317                          u64 val)
318 {
319         /*
320          * The only modifiable bit is the OSLK bit. Refuse the write if
321          * userspace attempts to change any other bit in the register.
322          */
323         if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
324                 return -EINVAL;
325
326         __vcpu_sys_reg(vcpu, rd->reg) = val;
327         return 0;
328 }
329
330 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
331                                    struct sys_reg_params *p,
332                                    const struct sys_reg_desc *r)
333 {
334         if (p->is_write) {
335                 return ignore_write(vcpu, p);
336         } else {
337                 p->regval = read_sysreg(dbgauthstatus_el1);
338                 return true;
339         }
340 }
341
342 /*
343  * We want to avoid world-switching all the DBG registers all the
344  * time:
345  *
346  * - If we've touched any debug register, it is likely that we're
347  *   going to touch more of them. It then makes sense to disable the
348  *   traps and start doing the save/restore dance
349  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
350  *   then mandatory to save/restore the registers, as the guest
351  *   depends on them.
352  *
353  * For this, we use a DIRTY bit, indicating the guest has modified the
354  * debug registers, used as follow:
355  *
356  * On guest entry:
357  * - If the dirty bit is set (because we're coming back from trapping),
358  *   disable the traps, save host registers, restore guest registers.
359  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
360  *   set the dirty bit, disable the traps, save host registers,
361  *   restore guest registers.
362  * - Otherwise, enable the traps
363  *
364  * On guest exit:
365  * - If the dirty bit is set, save guest registers, restore host
366  *   registers and clear the dirty bit. This ensure that the host can
367  *   now use the debug registers.
368  */
369 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
370                             struct sys_reg_params *p,
371                             const struct sys_reg_desc *r)
372 {
373         if (p->is_write) {
374                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
375                 vcpu_set_flag(vcpu, DEBUG_DIRTY);
376         } else {
377                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
378         }
379
380         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
381
382         return true;
383 }
384
385 /*
386  * reg_to_dbg/dbg_to_reg
387  *
388  * A 32 bit write to a debug register leave top bits alone
389  * A 32 bit read from a debug register only returns the bottom bits
390  *
391  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
392  * switches between host and guest values in future.
393  */
394 static void reg_to_dbg(struct kvm_vcpu *vcpu,
395                        struct sys_reg_params *p,
396                        const struct sys_reg_desc *rd,
397                        u64 *dbg_reg)
398 {
399         u64 mask, shift, val;
400
401         get_access_mask(rd, &mask, &shift);
402
403         val = *dbg_reg;
404         val &= ~mask;
405         val |= (p->regval & (mask >> shift)) << shift;
406         *dbg_reg = val;
407
408         vcpu_set_flag(vcpu, DEBUG_DIRTY);
409 }
410
411 static void dbg_to_reg(struct kvm_vcpu *vcpu,
412                        struct sys_reg_params *p,
413                        const struct sys_reg_desc *rd,
414                        u64 *dbg_reg)
415 {
416         u64 mask, shift;
417
418         get_access_mask(rd, &mask, &shift);
419         p->regval = (*dbg_reg & mask) >> shift;
420 }
421
422 static bool trap_bvr(struct kvm_vcpu *vcpu,
423                      struct sys_reg_params *p,
424                      const struct sys_reg_desc *rd)
425 {
426         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
427
428         if (p->is_write)
429                 reg_to_dbg(vcpu, p, rd, dbg_reg);
430         else
431                 dbg_to_reg(vcpu, p, rd, dbg_reg);
432
433         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
434
435         return true;
436 }
437
438 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
439                    u64 val)
440 {
441         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
442         return 0;
443 }
444
445 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
446                    u64 *val)
447 {
448         *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
449         return 0;
450 }
451
452 static void reset_bvr(struct kvm_vcpu *vcpu,
453                       const struct sys_reg_desc *rd)
454 {
455         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
456 }
457
458 static bool trap_bcr(struct kvm_vcpu *vcpu,
459                      struct sys_reg_params *p,
460                      const struct sys_reg_desc *rd)
461 {
462         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
463
464         if (p->is_write)
465                 reg_to_dbg(vcpu, p, rd, dbg_reg);
466         else
467                 dbg_to_reg(vcpu, p, rd, dbg_reg);
468
469         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
470
471         return true;
472 }
473
474 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
475                    u64 val)
476 {
477         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
478         return 0;
479 }
480
481 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
482                    u64 *val)
483 {
484         *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
485         return 0;
486 }
487
488 static void reset_bcr(struct kvm_vcpu *vcpu,
489                       const struct sys_reg_desc *rd)
490 {
491         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
492 }
493
494 static bool trap_wvr(struct kvm_vcpu *vcpu,
495                      struct sys_reg_params *p,
496                      const struct sys_reg_desc *rd)
497 {
498         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
499
500         if (p->is_write)
501                 reg_to_dbg(vcpu, p, rd, dbg_reg);
502         else
503                 dbg_to_reg(vcpu, p, rd, dbg_reg);
504
505         trace_trap_reg(__func__, rd->CRm, p->is_write,
506                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
507
508         return true;
509 }
510
511 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
512                    u64 val)
513 {
514         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
515         return 0;
516 }
517
518 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
519                    u64 *val)
520 {
521         *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
522         return 0;
523 }
524
525 static void reset_wvr(struct kvm_vcpu *vcpu,
526                       const struct sys_reg_desc *rd)
527 {
528         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
529 }
530
531 static bool trap_wcr(struct kvm_vcpu *vcpu,
532                      struct sys_reg_params *p,
533                      const struct sys_reg_desc *rd)
534 {
535         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
536
537         if (p->is_write)
538                 reg_to_dbg(vcpu, p, rd, dbg_reg);
539         else
540                 dbg_to_reg(vcpu, p, rd, dbg_reg);
541
542         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
543
544         return true;
545 }
546
547 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
548                    u64 val)
549 {
550         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
551         return 0;
552 }
553
554 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
555                    u64 *val)
556 {
557         *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
558         return 0;
559 }
560
561 static void reset_wcr(struct kvm_vcpu *vcpu,
562                       const struct sys_reg_desc *rd)
563 {
564         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
565 }
566
567 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
568 {
569         u64 amair = read_sysreg(amair_el1);
570         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
571 }
572
573 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
574 {
575         u64 actlr = read_sysreg(actlr_el1);
576         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
577 }
578
579 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
580 {
581         u64 mpidr;
582
583         /*
584          * Map the vcpu_id into the first three affinity level fields of
585          * the MPIDR. We limit the number of VCPUs in level 0 due to a
586          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
587          * of the GICv3 to be able to address each CPU directly when
588          * sending IPIs.
589          */
590         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
591         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
592         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
593         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
594 }
595
596 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
597                                    const struct sys_reg_desc *r)
598 {
599         if (kvm_vcpu_has_pmu(vcpu))
600                 return 0;
601
602         return REG_HIDDEN;
603 }
604
605 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
606 {
607         u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
608
609         /* No PMU available, any PMU reg may UNDEF... */
610         if (!kvm_arm_support_pmu_v3())
611                 return;
612
613         n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
614         n &= ARMV8_PMU_PMCR_N_MASK;
615         if (n)
616                 mask |= GENMASK(n - 1, 0);
617
618         reset_unknown(vcpu, r);
619         __vcpu_sys_reg(vcpu, r->reg) &= mask;
620 }
621
622 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
623 {
624         reset_unknown(vcpu, r);
625         __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
626 }
627
628 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
629 {
630         reset_unknown(vcpu, r);
631         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
632 }
633
634 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
635 {
636         reset_unknown(vcpu, r);
637         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
638 }
639
640 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
641 {
642         u64 pmcr;
643
644         /* No PMU available, PMCR_EL0 may UNDEF... */
645         if (!kvm_arm_support_pmu_v3())
646                 return;
647
648         /* Only preserve PMCR_EL0.N, and reset the rest to 0 */
649         pmcr = read_sysreg(pmcr_el0) & ARMV8_PMU_PMCR_N_MASK;
650         if (!kvm_supports_32bit_el0())
651                 pmcr |= ARMV8_PMU_PMCR_LC;
652
653         __vcpu_sys_reg(vcpu, r->reg) = pmcr;
654 }
655
656 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
657 {
658         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
659         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
660
661         if (!enabled)
662                 kvm_inject_undefined(vcpu);
663
664         return !enabled;
665 }
666
667 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
668 {
669         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
670 }
671
672 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
673 {
674         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
675 }
676
677 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
678 {
679         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
680 }
681
682 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
683 {
684         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
685 }
686
687 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
688                         const struct sys_reg_desc *r)
689 {
690         u64 val;
691
692         if (pmu_access_el0_disabled(vcpu))
693                 return false;
694
695         if (p->is_write) {
696                 /*
697                  * Only update writeable bits of PMCR (continuing into
698                  * kvm_pmu_handle_pmcr() as well)
699                  */
700                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
701                 val &= ~ARMV8_PMU_PMCR_MASK;
702                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
703                 if (!kvm_supports_32bit_el0())
704                         val |= ARMV8_PMU_PMCR_LC;
705                 kvm_pmu_handle_pmcr(vcpu, val);
706                 kvm_vcpu_pmu_restore_guest(vcpu);
707         } else {
708                 /* PMCR.P & PMCR.C are RAZ */
709                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
710                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
711                 p->regval = val;
712         }
713
714         return true;
715 }
716
717 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
718                           const struct sys_reg_desc *r)
719 {
720         if (pmu_access_event_counter_el0_disabled(vcpu))
721                 return false;
722
723         if (p->is_write)
724                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
725         else
726                 /* return PMSELR.SEL field */
727                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
728                             & ARMV8_PMU_COUNTER_MASK;
729
730         return true;
731 }
732
733 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
734                           const struct sys_reg_desc *r)
735 {
736         u64 pmceid, mask, shift;
737
738         BUG_ON(p->is_write);
739
740         if (pmu_access_el0_disabled(vcpu))
741                 return false;
742
743         get_access_mask(r, &mask, &shift);
744
745         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
746         pmceid &= mask;
747         pmceid >>= shift;
748
749         p->regval = pmceid;
750
751         return true;
752 }
753
754 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
755 {
756         u64 pmcr, val;
757
758         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
759         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
760         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
761                 kvm_inject_undefined(vcpu);
762                 return false;
763         }
764
765         return true;
766 }
767
768 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
769                               struct sys_reg_params *p,
770                               const struct sys_reg_desc *r)
771 {
772         u64 idx = ~0UL;
773
774         if (r->CRn == 9 && r->CRm == 13) {
775                 if (r->Op2 == 2) {
776                         /* PMXEVCNTR_EL0 */
777                         if (pmu_access_event_counter_el0_disabled(vcpu))
778                                 return false;
779
780                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
781                               & ARMV8_PMU_COUNTER_MASK;
782                 } else if (r->Op2 == 0) {
783                         /* PMCCNTR_EL0 */
784                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
785                                 return false;
786
787                         idx = ARMV8_PMU_CYCLE_IDX;
788                 }
789         } else if (r->CRn == 0 && r->CRm == 9) {
790                 /* PMCCNTR */
791                 if (pmu_access_event_counter_el0_disabled(vcpu))
792                         return false;
793
794                 idx = ARMV8_PMU_CYCLE_IDX;
795         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
796                 /* PMEVCNTRn_EL0 */
797                 if (pmu_access_event_counter_el0_disabled(vcpu))
798                         return false;
799
800                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
801         }
802
803         /* Catch any decoding mistake */
804         WARN_ON(idx == ~0UL);
805
806         if (!pmu_counter_idx_valid(vcpu, idx))
807                 return false;
808
809         if (p->is_write) {
810                 if (pmu_access_el0_disabled(vcpu))
811                         return false;
812
813                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
814         } else {
815                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
816         }
817
818         return true;
819 }
820
821 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
822                                const struct sys_reg_desc *r)
823 {
824         u64 idx, reg;
825
826         if (pmu_access_el0_disabled(vcpu))
827                 return false;
828
829         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
830                 /* PMXEVTYPER_EL0 */
831                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
832                 reg = PMEVTYPER0_EL0 + idx;
833         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
834                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
835                 if (idx == ARMV8_PMU_CYCLE_IDX)
836                         reg = PMCCFILTR_EL0;
837                 else
838                         /* PMEVTYPERn_EL0 */
839                         reg = PMEVTYPER0_EL0 + idx;
840         } else {
841                 BUG();
842         }
843
844         if (!pmu_counter_idx_valid(vcpu, idx))
845                 return false;
846
847         if (p->is_write) {
848                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
849                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
850                 kvm_vcpu_pmu_restore_guest(vcpu);
851         } else {
852                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
853         }
854
855         return true;
856 }
857
858 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
859                            const struct sys_reg_desc *r)
860 {
861         u64 val, mask;
862
863         if (pmu_access_el0_disabled(vcpu))
864                 return false;
865
866         mask = kvm_pmu_valid_counter_mask(vcpu);
867         if (p->is_write) {
868                 val = p->regval & mask;
869                 if (r->Op2 & 0x1) {
870                         /* accessing PMCNTENSET_EL0 */
871                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
872                         kvm_pmu_enable_counter_mask(vcpu, val);
873                         kvm_vcpu_pmu_restore_guest(vcpu);
874                 } else {
875                         /* accessing PMCNTENCLR_EL0 */
876                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
877                         kvm_pmu_disable_counter_mask(vcpu, val);
878                 }
879         } else {
880                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
881         }
882
883         return true;
884 }
885
886 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
887                            const struct sys_reg_desc *r)
888 {
889         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
890
891         if (check_pmu_access_disabled(vcpu, 0))
892                 return false;
893
894         if (p->is_write) {
895                 u64 val = p->regval & mask;
896
897                 if (r->Op2 & 0x1)
898                         /* accessing PMINTENSET_EL1 */
899                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
900                 else
901                         /* accessing PMINTENCLR_EL1 */
902                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
903         } else {
904                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
905         }
906
907         return true;
908 }
909
910 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
911                          const struct sys_reg_desc *r)
912 {
913         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
914
915         if (pmu_access_el0_disabled(vcpu))
916                 return false;
917
918         if (p->is_write) {
919                 if (r->CRm & 0x2)
920                         /* accessing PMOVSSET_EL0 */
921                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
922                 else
923                         /* accessing PMOVSCLR_EL0 */
924                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
925         } else {
926                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
927         }
928
929         return true;
930 }
931
932 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
933                            const struct sys_reg_desc *r)
934 {
935         u64 mask;
936
937         if (!p->is_write)
938                 return read_from_write_only(vcpu, p, r);
939
940         if (pmu_write_swinc_el0_disabled(vcpu))
941                 return false;
942
943         mask = kvm_pmu_valid_counter_mask(vcpu);
944         kvm_pmu_software_increment(vcpu, p->regval & mask);
945         return true;
946 }
947
948 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
949                              const struct sys_reg_desc *r)
950 {
951         if (p->is_write) {
952                 if (!vcpu_mode_priv(vcpu)) {
953                         kvm_inject_undefined(vcpu);
954                         return false;
955                 }
956
957                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
958                                p->regval & ARMV8_PMU_USERENR_MASK;
959         } else {
960                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
961                             & ARMV8_PMU_USERENR_MASK;
962         }
963
964         return true;
965 }
966
967 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
968 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
969         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
970           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
971         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
972           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
973         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
974           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
975         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
976           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
977
978 #define PMU_SYS_REG(r)                                          \
979         SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
980
981 /* Macro to expand the PMEVCNTRn_EL0 register */
982 #define PMU_PMEVCNTR_EL0(n)                                             \
983         { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
984           .reset = reset_pmevcntr,                                      \
985           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
986
987 /* Macro to expand the PMEVTYPERn_EL0 register */
988 #define PMU_PMEVTYPER_EL0(n)                                            \
989         { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
990           .reset = reset_pmevtyper,                                     \
991           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
992
993 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
994                          const struct sys_reg_desc *r)
995 {
996         kvm_inject_undefined(vcpu);
997
998         return false;
999 }
1000
1001 /* Macro to expand the AMU counter and type registers*/
1002 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1003 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1004 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1005 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1006
1007 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1008                         const struct sys_reg_desc *rd)
1009 {
1010         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1011 }
1012
1013 /*
1014  * If we land here on a PtrAuth access, that is because we didn't
1015  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1016  * way this happens is when the guest does not have PtrAuth support
1017  * enabled.
1018  */
1019 #define __PTRAUTH_KEY(k)                                                \
1020         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
1021         .visibility = ptrauth_visibility}
1022
1023 #define PTRAUTH_KEY(k)                                                  \
1024         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1025         __PTRAUTH_KEY(k ## KEYHI_EL1)
1026
1027 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1028                               struct sys_reg_params *p,
1029                               const struct sys_reg_desc *r)
1030 {
1031         enum kvm_arch_timers tmr;
1032         enum kvm_arch_timer_regs treg;
1033         u64 reg = reg_to_encoding(r);
1034
1035         switch (reg) {
1036         case SYS_CNTP_TVAL_EL0:
1037         case SYS_AARCH32_CNTP_TVAL:
1038                 tmr = TIMER_PTIMER;
1039                 treg = TIMER_REG_TVAL;
1040                 break;
1041         case SYS_CNTP_CTL_EL0:
1042         case SYS_AARCH32_CNTP_CTL:
1043                 tmr = TIMER_PTIMER;
1044                 treg = TIMER_REG_CTL;
1045                 break;
1046         case SYS_CNTP_CVAL_EL0:
1047         case SYS_AARCH32_CNTP_CVAL:
1048                 tmr = TIMER_PTIMER;
1049                 treg = TIMER_REG_CVAL;
1050                 break;
1051         default:
1052                 BUG();
1053         }
1054
1055         if (p->is_write)
1056                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1057         else
1058                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1059
1060         return true;
1061 }
1062
1063 static u8 vcpu_pmuver(const struct kvm_vcpu *vcpu)
1064 {
1065         if (kvm_vcpu_has_pmu(vcpu))
1066                 return vcpu->kvm->arch.dfr0_pmuver.imp;
1067
1068         return vcpu->kvm->arch.dfr0_pmuver.unimp;
1069 }
1070
1071 static u8 perfmon_to_pmuver(u8 perfmon)
1072 {
1073         switch (perfmon) {
1074         case ID_DFR0_EL1_PerfMon_PMUv3:
1075                 return ID_AA64DFR0_EL1_PMUVer_IMP;
1076         case ID_DFR0_EL1_PerfMon_IMPDEF:
1077                 return ID_AA64DFR0_EL1_PMUVer_IMP_DEF;
1078         default:
1079                 /* Anything ARMv8.1+ and NI have the same value. For now. */
1080                 return perfmon;
1081         }
1082 }
1083
1084 static u8 pmuver_to_perfmon(u8 pmuver)
1085 {
1086         switch (pmuver) {
1087         case ID_AA64DFR0_EL1_PMUVer_IMP:
1088                 return ID_DFR0_EL1_PerfMon_PMUv3;
1089         case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1090                 return ID_DFR0_EL1_PerfMon_IMPDEF;
1091         default:
1092                 /* Anything ARMv8.1+ and NI have the same value. For now. */
1093                 return pmuver;
1094         }
1095 }
1096
1097 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1098 static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r)
1099 {
1100         u32 id = reg_to_encoding(r);
1101         u64 val;
1102
1103         if (sysreg_visible_as_raz(vcpu, r))
1104                 return 0;
1105
1106         val = read_sanitised_ftr_reg(id);
1107
1108         switch (id) {
1109         case SYS_ID_AA64PFR0_EL1:
1110                 if (!vcpu_has_sve(vcpu))
1111                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE);
1112                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU);
1113                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2);
1114                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1115                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3);
1116                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1117                 if (kvm_vgic_global_state.type == VGIC_V3) {
1118                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC);
1119                         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), 1);
1120                 }
1121                 break;
1122         case SYS_ID_AA64PFR1_EL1:
1123                 if (!kvm_has_mte(vcpu->kvm))
1124                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1125
1126                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1127                 break;
1128         case SYS_ID_AA64ISAR1_EL1:
1129                 if (!vcpu_has_ptrauth(vcpu))
1130                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1131                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1132                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1133                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1134                 break;
1135         case SYS_ID_AA64ISAR2_EL1:
1136                 if (!vcpu_has_ptrauth(vcpu))
1137                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1138                                  ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1139                 if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1140                         val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1141                 break;
1142         case SYS_ID_AA64DFR0_EL1:
1143                 /* Limit debug to ARMv8.0 */
1144                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer);
1145                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), 6);
1146                 /* Set PMUver to the required version */
1147                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1148                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer),
1149                                   vcpu_pmuver(vcpu));
1150                 /* Hide SPE from guests */
1151                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer);
1152                 break;
1153         case SYS_ID_DFR0_EL1:
1154                 val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1155                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon),
1156                                   pmuver_to_perfmon(vcpu_pmuver(vcpu)));
1157                 break;
1158         }
1159
1160         return val;
1161 }
1162
1163 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1164                                   const struct sys_reg_desc *r)
1165 {
1166         u32 id = reg_to_encoding(r);
1167
1168         switch (id) {
1169         case SYS_ID_AA64ZFR0_EL1:
1170                 if (!vcpu_has_sve(vcpu))
1171                         return REG_RAZ;
1172                 break;
1173         }
1174
1175         return 0;
1176 }
1177
1178 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1179                                        const struct sys_reg_desc *r)
1180 {
1181         /*
1182          * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1183          * EL. Promote to RAZ/WI in order to guarantee consistency between
1184          * systems.
1185          */
1186         if (!kvm_supports_32bit_el0())
1187                 return REG_RAZ | REG_USER_WI;
1188
1189         return id_visibility(vcpu, r);
1190 }
1191
1192 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1193                                    const struct sys_reg_desc *r)
1194 {
1195         return REG_RAZ;
1196 }
1197
1198 /* cpufeature ID register access trap handlers */
1199
1200 static bool access_id_reg(struct kvm_vcpu *vcpu,
1201                           struct sys_reg_params *p,
1202                           const struct sys_reg_desc *r)
1203 {
1204         if (p->is_write)
1205                 return write_to_read_only(vcpu, p, r);
1206
1207         p->regval = read_id_reg(vcpu, r);
1208         return true;
1209 }
1210
1211 /* Visibility overrides for SVE-specific control registers */
1212 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1213                                    const struct sys_reg_desc *rd)
1214 {
1215         if (vcpu_has_sve(vcpu))
1216                 return 0;
1217
1218         return REG_HIDDEN;
1219 }
1220
1221 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1222                                const struct sys_reg_desc *rd,
1223                                u64 val)
1224 {
1225         u8 csv2, csv3;
1226
1227         /*
1228          * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1229          * it doesn't promise more than what is actually provided (the
1230          * guest could otherwise be covered in ectoplasmic residue).
1231          */
1232         csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV2_SHIFT);
1233         if (csv2 > 1 ||
1234             (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1235                 return -EINVAL;
1236
1237         /* Same thing for CSV3 */
1238         csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV3_SHIFT);
1239         if (csv3 > 1 ||
1240             (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1241                 return -EINVAL;
1242
1243         /* We can only differ with CSV[23], and anything else is an error */
1244         val ^= read_id_reg(vcpu, rd);
1245         val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
1246                  ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
1247         if (val)
1248                 return -EINVAL;
1249
1250         vcpu->kvm->arch.pfr0_csv2 = csv2;
1251         vcpu->kvm->arch.pfr0_csv3 = csv3;
1252
1253         return 0;
1254 }
1255
1256 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1257                                const struct sys_reg_desc *rd,
1258                                u64 val)
1259 {
1260         u8 pmuver, host_pmuver;
1261         bool valid_pmu;
1262
1263         host_pmuver = kvm_arm_pmu_get_pmuver_limit();
1264
1265         /*
1266          * Allow AA64DFR0_EL1.PMUver to be set from userspace as long
1267          * as it doesn't promise more than what the HW gives us. We
1268          * allow an IMPDEF PMU though, only if no PMU is supported
1269          * (KVM backward compatibility handling).
1270          */
1271         pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), val);
1272         if ((pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF && pmuver > host_pmuver))
1273                 return -EINVAL;
1274
1275         valid_pmu = (pmuver != 0 && pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF);
1276
1277         /* Make sure view register and PMU support do match */
1278         if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1279                 return -EINVAL;
1280
1281         /* We can only differ with PMUver, and anything else is an error */
1282         val ^= read_id_reg(vcpu, rd);
1283         val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1284         if (val)
1285                 return -EINVAL;
1286
1287         if (valid_pmu)
1288                 vcpu->kvm->arch.dfr0_pmuver.imp = pmuver;
1289         else
1290                 vcpu->kvm->arch.dfr0_pmuver.unimp = pmuver;
1291
1292         return 0;
1293 }
1294
1295 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1296                            const struct sys_reg_desc *rd,
1297                            u64 val)
1298 {
1299         u8 perfmon, host_perfmon;
1300         bool valid_pmu;
1301
1302         host_perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1303
1304         /*
1305          * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1306          * it doesn't promise more than what the HW gives us on the
1307          * AArch64 side (as everything is emulated with that), and
1308          * that this is a PMUv3.
1309          */
1310         perfmon = FIELD_GET(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon), val);
1311         if ((perfmon != ID_DFR0_EL1_PerfMon_IMPDEF && perfmon > host_perfmon) ||
1312             (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3))
1313                 return -EINVAL;
1314
1315         valid_pmu = (perfmon != 0 && perfmon != ID_DFR0_EL1_PerfMon_IMPDEF);
1316
1317         /* Make sure view register and PMU support do match */
1318         if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1319                 return -EINVAL;
1320
1321         /* We can only differ with PerfMon, and anything else is an error */
1322         val ^= read_id_reg(vcpu, rd);
1323         val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1324         if (val)
1325                 return -EINVAL;
1326
1327         if (valid_pmu)
1328                 vcpu->kvm->arch.dfr0_pmuver.imp = perfmon_to_pmuver(perfmon);
1329         else
1330                 vcpu->kvm->arch.dfr0_pmuver.unimp = perfmon_to_pmuver(perfmon);
1331
1332         return 0;
1333 }
1334
1335 /*
1336  * cpufeature ID register user accessors
1337  *
1338  * For now, these registers are immutable for userspace, so no values
1339  * are stored, and for set_id_reg() we don't allow the effective value
1340  * to be changed.
1341  */
1342 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1343                       u64 *val)
1344 {
1345         *val = read_id_reg(vcpu, rd);
1346         return 0;
1347 }
1348
1349 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1350                       u64 val)
1351 {
1352         /* This is what we mean by invariant: you can't change it. */
1353         if (val != read_id_reg(vcpu, rd))
1354                 return -EINVAL;
1355
1356         return 0;
1357 }
1358
1359 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1360                        u64 *val)
1361 {
1362         *val = 0;
1363         return 0;
1364 }
1365
1366 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1367                       u64 val)
1368 {
1369         return 0;
1370 }
1371
1372 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1373                        const struct sys_reg_desc *r)
1374 {
1375         if (p->is_write)
1376                 return write_to_read_only(vcpu, p, r);
1377
1378         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1379         return true;
1380 }
1381
1382 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1383                          const struct sys_reg_desc *r)
1384 {
1385         if (p->is_write)
1386                 return write_to_read_only(vcpu, p, r);
1387
1388         p->regval = read_sysreg(clidr_el1);
1389         return true;
1390 }
1391
1392 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1393                           const struct sys_reg_desc *r)
1394 {
1395         int reg = r->reg;
1396
1397         if (p->is_write)
1398                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1399         else
1400                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1401         return true;
1402 }
1403
1404 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1405                           const struct sys_reg_desc *r)
1406 {
1407         u32 csselr;
1408
1409         if (p->is_write)
1410                 return write_to_read_only(vcpu, p, r);
1411
1412         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1413         p->regval = get_ccsidr(csselr);
1414
1415         /*
1416          * Guests should not be doing cache operations by set/way at all, and
1417          * for this reason, we trap them and attempt to infer the intent, so
1418          * that we can flush the entire guest's address space at the appropriate
1419          * time.
1420          * To prevent this trapping from causing performance problems, let's
1421          * expose the geometry of all data and unified caches (which are
1422          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1423          * [If guests should attempt to infer aliasing properties from the
1424          * geometry (which is not permitted by the architecture), they would
1425          * only do so for virtually indexed caches.]
1426          */
1427         if (!(csselr & 1)) // data or unified cache
1428                 p->regval &= ~GENMASK(27, 3);
1429         return true;
1430 }
1431
1432 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1433                                    const struct sys_reg_desc *rd)
1434 {
1435         if (kvm_has_mte(vcpu->kvm))
1436                 return 0;
1437
1438         return REG_HIDDEN;
1439 }
1440
1441 #define MTE_REG(name) {                         \
1442         SYS_DESC(SYS_##name),                   \
1443         .access = undef_access,                 \
1444         .reset = reset_unknown,                 \
1445         .reg = name,                            \
1446         .visibility = mte_visibility,           \
1447 }
1448
1449 /* sys_reg_desc initialiser for known cpufeature ID registers */
1450 #define ID_SANITISED(name) {                    \
1451         SYS_DESC(SYS_##name),                   \
1452         .access = access_id_reg,                \
1453         .get_user = get_id_reg,                 \
1454         .set_user = set_id_reg,                 \
1455         .visibility = id_visibility,            \
1456 }
1457
1458 /* sys_reg_desc initialiser for known cpufeature ID registers */
1459 #define AA32_ID_SANITISED(name) {               \
1460         SYS_DESC(SYS_##name),                   \
1461         .access = access_id_reg,                \
1462         .get_user = get_id_reg,                 \
1463         .set_user = set_id_reg,                 \
1464         .visibility = aa32_id_visibility,       \
1465 }
1466
1467 /*
1468  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1469  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1470  * (1 <= crm < 8, 0 <= Op2 < 8).
1471  */
1472 #define ID_UNALLOCATED(crm, op2) {                      \
1473         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1474         .access = access_id_reg,                        \
1475         .get_user = get_id_reg,                         \
1476         .set_user = set_id_reg,                         \
1477         .visibility = raz_visibility                    \
1478 }
1479
1480 /*
1481  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1482  * For now, these are exposed just like unallocated ID regs: they appear
1483  * RAZ for the guest.
1484  */
1485 #define ID_HIDDEN(name) {                       \
1486         SYS_DESC(SYS_##name),                   \
1487         .access = access_id_reg,                \
1488         .get_user = get_id_reg,                 \
1489         .set_user = set_id_reg,                 \
1490         .visibility = raz_visibility,           \
1491 }
1492
1493 /*
1494  * Architected system registers.
1495  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1496  *
1497  * Debug handling: We do trap most, if not all debug related system
1498  * registers. The implementation is good enough to ensure that a guest
1499  * can use these with minimal performance degradation. The drawback is
1500  * that we don't implement any of the external debug architecture.
1501  * This should be revisited if we ever encounter a more demanding
1502  * guest...
1503  */
1504 static const struct sys_reg_desc sys_reg_descs[] = {
1505         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1506         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1507         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1508
1509         DBG_BCR_BVR_WCR_WVR_EL1(0),
1510         DBG_BCR_BVR_WCR_WVR_EL1(1),
1511         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1512         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1513         DBG_BCR_BVR_WCR_WVR_EL1(2),
1514         DBG_BCR_BVR_WCR_WVR_EL1(3),
1515         DBG_BCR_BVR_WCR_WVR_EL1(4),
1516         DBG_BCR_BVR_WCR_WVR_EL1(5),
1517         DBG_BCR_BVR_WCR_WVR_EL1(6),
1518         DBG_BCR_BVR_WCR_WVR_EL1(7),
1519         DBG_BCR_BVR_WCR_WVR_EL1(8),
1520         DBG_BCR_BVR_WCR_WVR_EL1(9),
1521         DBG_BCR_BVR_WCR_WVR_EL1(10),
1522         DBG_BCR_BVR_WCR_WVR_EL1(11),
1523         DBG_BCR_BVR_WCR_WVR_EL1(12),
1524         DBG_BCR_BVR_WCR_WVR_EL1(13),
1525         DBG_BCR_BVR_WCR_WVR_EL1(14),
1526         DBG_BCR_BVR_WCR_WVR_EL1(15),
1527
1528         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1529         { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1530         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1531                 SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1532         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1533         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1534         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1535         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1536         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1537
1538         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1539         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1540         // DBGDTR[TR]X_EL0 share the same encoding
1541         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1542
1543         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1544
1545         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1546
1547         /*
1548          * ID regs: all ID_SANITISED() entries here must have corresponding
1549          * entries in arm64_ftr_regs[].
1550          */
1551
1552         /* AArch64 mappings of the AArch32 ID registers */
1553         /* CRm=1 */
1554         AA32_ID_SANITISED(ID_PFR0_EL1),
1555         AA32_ID_SANITISED(ID_PFR1_EL1),
1556         { SYS_DESC(SYS_ID_DFR0_EL1), .access = access_id_reg,
1557           .get_user = get_id_reg, .set_user = set_id_dfr0_el1,
1558           .visibility = aa32_id_visibility, },
1559         ID_HIDDEN(ID_AFR0_EL1),
1560         AA32_ID_SANITISED(ID_MMFR0_EL1),
1561         AA32_ID_SANITISED(ID_MMFR1_EL1),
1562         AA32_ID_SANITISED(ID_MMFR2_EL1),
1563         AA32_ID_SANITISED(ID_MMFR3_EL1),
1564
1565         /* CRm=2 */
1566         AA32_ID_SANITISED(ID_ISAR0_EL1),
1567         AA32_ID_SANITISED(ID_ISAR1_EL1),
1568         AA32_ID_SANITISED(ID_ISAR2_EL1),
1569         AA32_ID_SANITISED(ID_ISAR3_EL1),
1570         AA32_ID_SANITISED(ID_ISAR4_EL1),
1571         AA32_ID_SANITISED(ID_ISAR5_EL1),
1572         AA32_ID_SANITISED(ID_MMFR4_EL1),
1573         AA32_ID_SANITISED(ID_ISAR6_EL1),
1574
1575         /* CRm=3 */
1576         AA32_ID_SANITISED(MVFR0_EL1),
1577         AA32_ID_SANITISED(MVFR1_EL1),
1578         AA32_ID_SANITISED(MVFR2_EL1),
1579         ID_UNALLOCATED(3,3),
1580         AA32_ID_SANITISED(ID_PFR2_EL1),
1581         ID_HIDDEN(ID_DFR1_EL1),
1582         AA32_ID_SANITISED(ID_MMFR5_EL1),
1583         ID_UNALLOCATED(3,7),
1584
1585         /* AArch64 ID registers */
1586         /* CRm=4 */
1587         { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1588           .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1589         ID_SANITISED(ID_AA64PFR1_EL1),
1590         ID_UNALLOCATED(4,2),
1591         ID_UNALLOCATED(4,3),
1592         ID_SANITISED(ID_AA64ZFR0_EL1),
1593         ID_HIDDEN(ID_AA64SMFR0_EL1),
1594         ID_UNALLOCATED(4,6),
1595         ID_UNALLOCATED(4,7),
1596
1597         /* CRm=5 */
1598         { SYS_DESC(SYS_ID_AA64DFR0_EL1), .access = access_id_reg,
1599           .get_user = get_id_reg, .set_user = set_id_aa64dfr0_el1, },
1600         ID_SANITISED(ID_AA64DFR1_EL1),
1601         ID_UNALLOCATED(5,2),
1602         ID_UNALLOCATED(5,3),
1603         ID_HIDDEN(ID_AA64AFR0_EL1),
1604         ID_HIDDEN(ID_AA64AFR1_EL1),
1605         ID_UNALLOCATED(5,6),
1606         ID_UNALLOCATED(5,7),
1607
1608         /* CRm=6 */
1609         ID_SANITISED(ID_AA64ISAR0_EL1),
1610         ID_SANITISED(ID_AA64ISAR1_EL1),
1611         ID_SANITISED(ID_AA64ISAR2_EL1),
1612         ID_UNALLOCATED(6,3),
1613         ID_UNALLOCATED(6,4),
1614         ID_UNALLOCATED(6,5),
1615         ID_UNALLOCATED(6,6),
1616         ID_UNALLOCATED(6,7),
1617
1618         /* CRm=7 */
1619         ID_SANITISED(ID_AA64MMFR0_EL1),
1620         ID_SANITISED(ID_AA64MMFR1_EL1),
1621         ID_SANITISED(ID_AA64MMFR2_EL1),
1622         ID_UNALLOCATED(7,3),
1623         ID_UNALLOCATED(7,4),
1624         ID_UNALLOCATED(7,5),
1625         ID_UNALLOCATED(7,6),
1626         ID_UNALLOCATED(7,7),
1627
1628         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1629         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1630         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1631
1632         MTE_REG(RGSR_EL1),
1633         MTE_REG(GCR_EL1),
1634
1635         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1636         { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1637         { SYS_DESC(SYS_SMPRI_EL1), undef_access },
1638         { SYS_DESC(SYS_SMCR_EL1), undef_access },
1639         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1640         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1641         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1642
1643         PTRAUTH_KEY(APIA),
1644         PTRAUTH_KEY(APIB),
1645         PTRAUTH_KEY(APDA),
1646         PTRAUTH_KEY(APDB),
1647         PTRAUTH_KEY(APGA),
1648
1649         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1650         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1651         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1652
1653         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1654         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1655         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1656         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1657         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1658         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1659         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1660         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1661
1662         MTE_REG(TFSR_EL1),
1663         MTE_REG(TFSRE0_EL1),
1664
1665         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1666         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1667
1668         { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1669         { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1670         { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1671         { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1672         { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1673         { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1674         { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1675         { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1676         { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1677         { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1678         { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1679         /* PMBIDR_EL1 is not trapped */
1680
1681         { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1682           .access = access_pminten, .reg = PMINTENSET_EL1 },
1683         { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1684           .access = access_pminten, .reg = PMINTENSET_EL1 },
1685         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1686
1687         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1688         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1689
1690         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1691         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1692         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1693         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1694         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1695
1696         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1697         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1698
1699         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1700         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1701         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1702         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1703         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1704         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1705         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1706         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1707         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1708         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1709         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1710         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1711
1712         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1713         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1714
1715         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1716
1717         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1718
1719         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1720         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1721         { SYS_DESC(SYS_SMIDR_EL1), undef_access },
1722         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1723         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1724         { SYS_DESC(SYS_SVCR), undef_access },
1725
1726         { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1727           .reset = reset_pmcr, .reg = PMCR_EL0 },
1728         { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1729           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1730         { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1731           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1732         { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1733           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1734         /*
1735          * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1736          * previously (and pointlessly) advertised in the past...
1737          */
1738         { PMU_SYS_REG(SYS_PMSWINC_EL0),
1739           .get_user = get_raz_reg, .set_user = set_wi_reg,
1740           .access = access_pmswinc, .reset = NULL },
1741         { PMU_SYS_REG(SYS_PMSELR_EL0),
1742           .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1743         { PMU_SYS_REG(SYS_PMCEID0_EL0),
1744           .access = access_pmceid, .reset = NULL },
1745         { PMU_SYS_REG(SYS_PMCEID1_EL0),
1746           .access = access_pmceid, .reset = NULL },
1747         { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1748           .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1749         { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1750           .access = access_pmu_evtyper, .reset = NULL },
1751         { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1752           .access = access_pmu_evcntr, .reset = NULL },
1753         /*
1754          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1755          * in 32bit mode. Here we choose to reset it as zero for consistency.
1756          */
1757         { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1758           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1759         { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1760           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1761
1762         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1763         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1764         { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
1765
1766         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1767
1768         { SYS_DESC(SYS_AMCR_EL0), undef_access },
1769         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1770         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1771         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1772         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1773         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1774         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1775         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1776         AMU_AMEVCNTR0_EL0(0),
1777         AMU_AMEVCNTR0_EL0(1),
1778         AMU_AMEVCNTR0_EL0(2),
1779         AMU_AMEVCNTR0_EL0(3),
1780         AMU_AMEVCNTR0_EL0(4),
1781         AMU_AMEVCNTR0_EL0(5),
1782         AMU_AMEVCNTR0_EL0(6),
1783         AMU_AMEVCNTR0_EL0(7),
1784         AMU_AMEVCNTR0_EL0(8),
1785         AMU_AMEVCNTR0_EL0(9),
1786         AMU_AMEVCNTR0_EL0(10),
1787         AMU_AMEVCNTR0_EL0(11),
1788         AMU_AMEVCNTR0_EL0(12),
1789         AMU_AMEVCNTR0_EL0(13),
1790         AMU_AMEVCNTR0_EL0(14),
1791         AMU_AMEVCNTR0_EL0(15),
1792         AMU_AMEVTYPER0_EL0(0),
1793         AMU_AMEVTYPER0_EL0(1),
1794         AMU_AMEVTYPER0_EL0(2),
1795         AMU_AMEVTYPER0_EL0(3),
1796         AMU_AMEVTYPER0_EL0(4),
1797         AMU_AMEVTYPER0_EL0(5),
1798         AMU_AMEVTYPER0_EL0(6),
1799         AMU_AMEVTYPER0_EL0(7),
1800         AMU_AMEVTYPER0_EL0(8),
1801         AMU_AMEVTYPER0_EL0(9),
1802         AMU_AMEVTYPER0_EL0(10),
1803         AMU_AMEVTYPER0_EL0(11),
1804         AMU_AMEVTYPER0_EL0(12),
1805         AMU_AMEVTYPER0_EL0(13),
1806         AMU_AMEVTYPER0_EL0(14),
1807         AMU_AMEVTYPER0_EL0(15),
1808         AMU_AMEVCNTR1_EL0(0),
1809         AMU_AMEVCNTR1_EL0(1),
1810         AMU_AMEVCNTR1_EL0(2),
1811         AMU_AMEVCNTR1_EL0(3),
1812         AMU_AMEVCNTR1_EL0(4),
1813         AMU_AMEVCNTR1_EL0(5),
1814         AMU_AMEVCNTR1_EL0(6),
1815         AMU_AMEVCNTR1_EL0(7),
1816         AMU_AMEVCNTR1_EL0(8),
1817         AMU_AMEVCNTR1_EL0(9),
1818         AMU_AMEVCNTR1_EL0(10),
1819         AMU_AMEVCNTR1_EL0(11),
1820         AMU_AMEVCNTR1_EL0(12),
1821         AMU_AMEVCNTR1_EL0(13),
1822         AMU_AMEVCNTR1_EL0(14),
1823         AMU_AMEVCNTR1_EL0(15),
1824         AMU_AMEVTYPER1_EL0(0),
1825         AMU_AMEVTYPER1_EL0(1),
1826         AMU_AMEVTYPER1_EL0(2),
1827         AMU_AMEVTYPER1_EL0(3),
1828         AMU_AMEVTYPER1_EL0(4),
1829         AMU_AMEVTYPER1_EL0(5),
1830         AMU_AMEVTYPER1_EL0(6),
1831         AMU_AMEVTYPER1_EL0(7),
1832         AMU_AMEVTYPER1_EL0(8),
1833         AMU_AMEVTYPER1_EL0(9),
1834         AMU_AMEVTYPER1_EL0(10),
1835         AMU_AMEVTYPER1_EL0(11),
1836         AMU_AMEVTYPER1_EL0(12),
1837         AMU_AMEVTYPER1_EL0(13),
1838         AMU_AMEVTYPER1_EL0(14),
1839         AMU_AMEVTYPER1_EL0(15),
1840
1841         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1842         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1843         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1844
1845         /* PMEVCNTRn_EL0 */
1846         PMU_PMEVCNTR_EL0(0),
1847         PMU_PMEVCNTR_EL0(1),
1848         PMU_PMEVCNTR_EL0(2),
1849         PMU_PMEVCNTR_EL0(3),
1850         PMU_PMEVCNTR_EL0(4),
1851         PMU_PMEVCNTR_EL0(5),
1852         PMU_PMEVCNTR_EL0(6),
1853         PMU_PMEVCNTR_EL0(7),
1854         PMU_PMEVCNTR_EL0(8),
1855         PMU_PMEVCNTR_EL0(9),
1856         PMU_PMEVCNTR_EL0(10),
1857         PMU_PMEVCNTR_EL0(11),
1858         PMU_PMEVCNTR_EL0(12),
1859         PMU_PMEVCNTR_EL0(13),
1860         PMU_PMEVCNTR_EL0(14),
1861         PMU_PMEVCNTR_EL0(15),
1862         PMU_PMEVCNTR_EL0(16),
1863         PMU_PMEVCNTR_EL0(17),
1864         PMU_PMEVCNTR_EL0(18),
1865         PMU_PMEVCNTR_EL0(19),
1866         PMU_PMEVCNTR_EL0(20),
1867         PMU_PMEVCNTR_EL0(21),
1868         PMU_PMEVCNTR_EL0(22),
1869         PMU_PMEVCNTR_EL0(23),
1870         PMU_PMEVCNTR_EL0(24),
1871         PMU_PMEVCNTR_EL0(25),
1872         PMU_PMEVCNTR_EL0(26),
1873         PMU_PMEVCNTR_EL0(27),
1874         PMU_PMEVCNTR_EL0(28),
1875         PMU_PMEVCNTR_EL0(29),
1876         PMU_PMEVCNTR_EL0(30),
1877         /* PMEVTYPERn_EL0 */
1878         PMU_PMEVTYPER_EL0(0),
1879         PMU_PMEVTYPER_EL0(1),
1880         PMU_PMEVTYPER_EL0(2),
1881         PMU_PMEVTYPER_EL0(3),
1882         PMU_PMEVTYPER_EL0(4),
1883         PMU_PMEVTYPER_EL0(5),
1884         PMU_PMEVTYPER_EL0(6),
1885         PMU_PMEVTYPER_EL0(7),
1886         PMU_PMEVTYPER_EL0(8),
1887         PMU_PMEVTYPER_EL0(9),
1888         PMU_PMEVTYPER_EL0(10),
1889         PMU_PMEVTYPER_EL0(11),
1890         PMU_PMEVTYPER_EL0(12),
1891         PMU_PMEVTYPER_EL0(13),
1892         PMU_PMEVTYPER_EL0(14),
1893         PMU_PMEVTYPER_EL0(15),
1894         PMU_PMEVTYPER_EL0(16),
1895         PMU_PMEVTYPER_EL0(17),
1896         PMU_PMEVTYPER_EL0(18),
1897         PMU_PMEVTYPER_EL0(19),
1898         PMU_PMEVTYPER_EL0(20),
1899         PMU_PMEVTYPER_EL0(21),
1900         PMU_PMEVTYPER_EL0(22),
1901         PMU_PMEVTYPER_EL0(23),
1902         PMU_PMEVTYPER_EL0(24),
1903         PMU_PMEVTYPER_EL0(25),
1904         PMU_PMEVTYPER_EL0(26),
1905         PMU_PMEVTYPER_EL0(27),
1906         PMU_PMEVTYPER_EL0(28),
1907         PMU_PMEVTYPER_EL0(29),
1908         PMU_PMEVTYPER_EL0(30),
1909         /*
1910          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1911          * in 32bit mode. Here we choose to reset it as zero for consistency.
1912          */
1913         { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1914           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1915
1916         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1917         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1918         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1919 };
1920
1921 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1922                         struct sys_reg_params *p,
1923                         const struct sys_reg_desc *r)
1924 {
1925         if (p->is_write) {
1926                 return ignore_write(vcpu, p);
1927         } else {
1928                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1929                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1930                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
1931
1932                 p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
1933                              (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
1934                              (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
1935                              | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1936                 return true;
1937         }
1938 }
1939
1940 /*
1941  * AArch32 debug register mappings
1942  *
1943  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1944  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1945  *
1946  * None of the other registers share their location, so treat them as
1947  * if they were 64bit.
1948  */
1949 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
1950         /* DBGBVRn */                                                         \
1951         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1952         /* DBGBCRn */                                                         \
1953         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
1954         /* DBGWVRn */                                                         \
1955         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
1956         /* DBGWCRn */                                                         \
1957         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1958
1959 #define DBGBXVR(n)                                                            \
1960         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1961
1962 /*
1963  * Trapped cp14 registers. We generally ignore most of the external
1964  * debug, on the principle that they don't really make sense to a
1965  * guest. Revisit this one day, would this principle change.
1966  */
1967 static const struct sys_reg_desc cp14_regs[] = {
1968         /* DBGDIDR */
1969         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1970         /* DBGDTRRXext */
1971         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1972
1973         DBG_BCR_BVR_WCR_WVR(0),
1974         /* DBGDSCRint */
1975         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1976         DBG_BCR_BVR_WCR_WVR(1),
1977         /* DBGDCCINT */
1978         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1979         /* DBGDSCRext */
1980         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1981         DBG_BCR_BVR_WCR_WVR(2),
1982         /* DBGDTR[RT]Xint */
1983         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1984         /* DBGDTR[RT]Xext */
1985         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1986         DBG_BCR_BVR_WCR_WVR(3),
1987         DBG_BCR_BVR_WCR_WVR(4),
1988         DBG_BCR_BVR_WCR_WVR(5),
1989         /* DBGWFAR */
1990         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1991         /* DBGOSECCR */
1992         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1993         DBG_BCR_BVR_WCR_WVR(6),
1994         /* DBGVCR */
1995         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1996         DBG_BCR_BVR_WCR_WVR(7),
1997         DBG_BCR_BVR_WCR_WVR(8),
1998         DBG_BCR_BVR_WCR_WVR(9),
1999         DBG_BCR_BVR_WCR_WVR(10),
2000         DBG_BCR_BVR_WCR_WVR(11),
2001         DBG_BCR_BVR_WCR_WVR(12),
2002         DBG_BCR_BVR_WCR_WVR(13),
2003         DBG_BCR_BVR_WCR_WVR(14),
2004         DBG_BCR_BVR_WCR_WVR(15),
2005
2006         /* DBGDRAR (32bit) */
2007         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2008
2009         DBGBXVR(0),
2010         /* DBGOSLAR */
2011         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2012         DBGBXVR(1),
2013         /* DBGOSLSR */
2014         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2015         DBGBXVR(2),
2016         DBGBXVR(3),
2017         /* DBGOSDLR */
2018         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2019         DBGBXVR(4),
2020         /* DBGPRCR */
2021         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2022         DBGBXVR(5),
2023         DBGBXVR(6),
2024         DBGBXVR(7),
2025         DBGBXVR(8),
2026         DBGBXVR(9),
2027         DBGBXVR(10),
2028         DBGBXVR(11),
2029         DBGBXVR(12),
2030         DBGBXVR(13),
2031         DBGBXVR(14),
2032         DBGBXVR(15),
2033
2034         /* DBGDSAR (32bit) */
2035         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2036
2037         /* DBGDEVID2 */
2038         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2039         /* DBGDEVID1 */
2040         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2041         /* DBGDEVID */
2042         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2043         /* DBGCLAIMSET */
2044         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2045         /* DBGCLAIMCLR */
2046         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2047         /* DBGAUTHSTATUS */
2048         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2049 };
2050
2051 /* Trapped cp14 64bit registers */
2052 static const struct sys_reg_desc cp14_64_regs[] = {
2053         /* DBGDRAR (64bit) */
2054         { Op1( 0), CRm( 1), .access = trap_raz_wi },
2055
2056         /* DBGDSAR (64bit) */
2057         { Op1( 0), CRm( 2), .access = trap_raz_wi },
2058 };
2059
2060 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)                  \
2061         AA32(_map),                                                     \
2062         Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),                     \
2063         .visibility = pmu_visibility
2064
2065 /* Macro to expand the PMEVCNTRn register */
2066 #define PMU_PMEVCNTR(n)                                                 \
2067         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2068           (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2069           .access = access_pmu_evcntr }
2070
2071 /* Macro to expand the PMEVTYPERn register */
2072 #define PMU_PMEVTYPER(n)                                                \
2073         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2074           (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2075           .access = access_pmu_evtyper }
2076 /*
2077  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2078  * depending on the way they are accessed (as a 32bit or a 64bit
2079  * register).
2080  */
2081 static const struct sys_reg_desc cp15_regs[] = {
2082         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2083         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2084         /* ACTLR */
2085         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2086         /* ACTLR2 */
2087         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2088         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2089         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2090         /* TTBCR */
2091         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2092         /* TTBCR2 */
2093         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2094         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2095         /* DFSR */
2096         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2097         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2098         /* ADFSR */
2099         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2100         /* AIFSR */
2101         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2102         /* DFAR */
2103         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2104         /* IFAR */
2105         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2106
2107         /*
2108          * DC{C,I,CI}SW operations:
2109          */
2110         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2111         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2112         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2113
2114         /* PMU */
2115         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2116         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2117         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2118         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2119         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2120         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2121         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2122         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2123         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2124         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2125         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2126         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2127         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2128         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2129         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2130         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2131         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2132         /* PMMIR */
2133         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2134
2135         /* PRRR/MAIR0 */
2136         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2137         /* NMRR/MAIR1 */
2138         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2139         /* AMAIR0 */
2140         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2141         /* AMAIR1 */
2142         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2143
2144         /* ICC_SRE */
2145         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2146
2147         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2148
2149         /* Arch Tmers */
2150         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2151         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2152
2153         /* PMEVCNTRn */
2154         PMU_PMEVCNTR(0),
2155         PMU_PMEVCNTR(1),
2156         PMU_PMEVCNTR(2),
2157         PMU_PMEVCNTR(3),
2158         PMU_PMEVCNTR(4),
2159         PMU_PMEVCNTR(5),
2160         PMU_PMEVCNTR(6),
2161         PMU_PMEVCNTR(7),
2162         PMU_PMEVCNTR(8),
2163         PMU_PMEVCNTR(9),
2164         PMU_PMEVCNTR(10),
2165         PMU_PMEVCNTR(11),
2166         PMU_PMEVCNTR(12),
2167         PMU_PMEVCNTR(13),
2168         PMU_PMEVCNTR(14),
2169         PMU_PMEVCNTR(15),
2170         PMU_PMEVCNTR(16),
2171         PMU_PMEVCNTR(17),
2172         PMU_PMEVCNTR(18),
2173         PMU_PMEVCNTR(19),
2174         PMU_PMEVCNTR(20),
2175         PMU_PMEVCNTR(21),
2176         PMU_PMEVCNTR(22),
2177         PMU_PMEVCNTR(23),
2178         PMU_PMEVCNTR(24),
2179         PMU_PMEVCNTR(25),
2180         PMU_PMEVCNTR(26),
2181         PMU_PMEVCNTR(27),
2182         PMU_PMEVCNTR(28),
2183         PMU_PMEVCNTR(29),
2184         PMU_PMEVCNTR(30),
2185         /* PMEVTYPERn */
2186         PMU_PMEVTYPER(0),
2187         PMU_PMEVTYPER(1),
2188         PMU_PMEVTYPER(2),
2189         PMU_PMEVTYPER(3),
2190         PMU_PMEVTYPER(4),
2191         PMU_PMEVTYPER(5),
2192         PMU_PMEVTYPER(6),
2193         PMU_PMEVTYPER(7),
2194         PMU_PMEVTYPER(8),
2195         PMU_PMEVTYPER(9),
2196         PMU_PMEVTYPER(10),
2197         PMU_PMEVTYPER(11),
2198         PMU_PMEVTYPER(12),
2199         PMU_PMEVTYPER(13),
2200         PMU_PMEVTYPER(14),
2201         PMU_PMEVTYPER(15),
2202         PMU_PMEVTYPER(16),
2203         PMU_PMEVTYPER(17),
2204         PMU_PMEVTYPER(18),
2205         PMU_PMEVTYPER(19),
2206         PMU_PMEVTYPER(20),
2207         PMU_PMEVTYPER(21),
2208         PMU_PMEVTYPER(22),
2209         PMU_PMEVTYPER(23),
2210         PMU_PMEVTYPER(24),
2211         PMU_PMEVTYPER(25),
2212         PMU_PMEVTYPER(26),
2213         PMU_PMEVTYPER(27),
2214         PMU_PMEVTYPER(28),
2215         PMU_PMEVTYPER(29),
2216         PMU_PMEVTYPER(30),
2217         /* PMCCFILTR */
2218         { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2219
2220         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2221         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2222         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2223 };
2224
2225 static const struct sys_reg_desc cp15_64_regs[] = {
2226         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2227         { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2228         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2229         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2230         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2231         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2232         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2233 };
2234
2235 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2236                                bool is_32)
2237 {
2238         unsigned int i;
2239
2240         for (i = 0; i < n; i++) {
2241                 if (!is_32 && table[i].reg && !table[i].reset) {
2242                         kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2243                         return false;
2244                 }
2245
2246                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2247                         kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2248                         return false;
2249                 }
2250         }
2251
2252         return true;
2253 }
2254
2255 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2256 {
2257         kvm_inject_undefined(vcpu);
2258         return 1;
2259 }
2260
2261 static void perform_access(struct kvm_vcpu *vcpu,
2262                            struct sys_reg_params *params,
2263                            const struct sys_reg_desc *r)
2264 {
2265         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2266
2267         /* Check for regs disabled by runtime config */
2268         if (sysreg_hidden(vcpu, r)) {
2269                 kvm_inject_undefined(vcpu);
2270                 return;
2271         }
2272
2273         /*
2274          * Not having an accessor means that we have configured a trap
2275          * that we don't know how to handle. This certainly qualifies
2276          * as a gross bug that should be fixed right away.
2277          */
2278         BUG_ON(!r->access);
2279
2280         /* Skip instruction if instructed so */
2281         if (likely(r->access(vcpu, params, r)))
2282                 kvm_incr_pc(vcpu);
2283 }
2284
2285 /*
2286  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2287  *                call the corresponding trap handler.
2288  *
2289  * @params: pointer to the descriptor of the access
2290  * @table: array of trap descriptors
2291  * @num: size of the trap descriptor array
2292  *
2293  * Return true if the access has been handled, false if not.
2294  */
2295 static bool emulate_cp(struct kvm_vcpu *vcpu,
2296                        struct sys_reg_params *params,
2297                        const struct sys_reg_desc *table,
2298                        size_t num)
2299 {
2300         const struct sys_reg_desc *r;
2301
2302         if (!table)
2303                 return false;   /* Not handled */
2304
2305         r = find_reg(params, table, num);
2306
2307         if (r) {
2308                 perform_access(vcpu, params, r);
2309                 return true;
2310         }
2311
2312         /* Not handled */
2313         return false;
2314 }
2315
2316 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2317                                 struct sys_reg_params *params)
2318 {
2319         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2320         int cp = -1;
2321
2322         switch (esr_ec) {
2323         case ESR_ELx_EC_CP15_32:
2324         case ESR_ELx_EC_CP15_64:
2325                 cp = 15;
2326                 break;
2327         case ESR_ELx_EC_CP14_MR:
2328         case ESR_ELx_EC_CP14_64:
2329                 cp = 14;
2330                 break;
2331         default:
2332                 WARN_ON(1);
2333         }
2334
2335         print_sys_reg_msg(params,
2336                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2337                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2338         kvm_inject_undefined(vcpu);
2339 }
2340
2341 /**
2342  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2343  * @vcpu: The VCPU pointer
2344  * @run:  The kvm_run struct
2345  */
2346 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2347                             const struct sys_reg_desc *global,
2348                             size_t nr_global)
2349 {
2350         struct sys_reg_params params;
2351         u64 esr = kvm_vcpu_get_esr(vcpu);
2352         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2353         int Rt2 = (esr >> 10) & 0x1f;
2354
2355         params.CRm = (esr >> 1) & 0xf;
2356         params.is_write = ((esr & 1) == 0);
2357
2358         params.Op0 = 0;
2359         params.Op1 = (esr >> 16) & 0xf;
2360         params.Op2 = 0;
2361         params.CRn = 0;
2362
2363         /*
2364          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2365          * backends between AArch32 and AArch64, we get away with it.
2366          */
2367         if (params.is_write) {
2368                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2369                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2370         }
2371
2372         /*
2373          * If the table contains a handler, handle the
2374          * potential register operation in the case of a read and return
2375          * with success.
2376          */
2377         if (emulate_cp(vcpu, &params, global, nr_global)) {
2378                 /* Split up the value between registers for the read side */
2379                 if (!params.is_write) {
2380                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2381                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2382                 }
2383
2384                 return 1;
2385         }
2386
2387         unhandled_cp_access(vcpu, &params);
2388         return 1;
2389 }
2390
2391 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2392
2393 /*
2394  * The CP10 ID registers are architecturally mapped to AArch64 feature
2395  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2396  * from AArch32.
2397  */
2398 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2399 {
2400         u8 reg_id = (esr >> 10) & 0xf;
2401         bool valid;
2402
2403         params->is_write = ((esr & 1) == 0);
2404         params->Op0 = 3;
2405         params->Op1 = 0;
2406         params->CRn = 0;
2407         params->CRm = 3;
2408
2409         /* CP10 ID registers are read-only */
2410         valid = !params->is_write;
2411
2412         switch (reg_id) {
2413         /* MVFR0 */
2414         case 0b0111:
2415                 params->Op2 = 0;
2416                 break;
2417         /* MVFR1 */
2418         case 0b0110:
2419                 params->Op2 = 1;
2420                 break;
2421         /* MVFR2 */
2422         case 0b0101:
2423                 params->Op2 = 2;
2424                 break;
2425         default:
2426                 valid = false;
2427         }
2428
2429         if (valid)
2430                 return true;
2431
2432         kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2433                       params->is_write ? "write" : "read", reg_id);
2434         return false;
2435 }
2436
2437 /**
2438  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2439  *                        VFP Register' from AArch32.
2440  * @vcpu: The vCPU pointer
2441  *
2442  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2443  * Work out the correct AArch64 system register encoding and reroute to the
2444  * AArch64 system register emulation.
2445  */
2446 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2447 {
2448         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2449         u64 esr = kvm_vcpu_get_esr(vcpu);
2450         struct sys_reg_params params;
2451
2452         /* UNDEF on any unhandled register access */
2453         if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2454                 kvm_inject_undefined(vcpu);
2455                 return 1;
2456         }
2457
2458         if (emulate_sys_reg(vcpu, &params))
2459                 vcpu_set_reg(vcpu, Rt, params.regval);
2460
2461         return 1;
2462 }
2463
2464 /**
2465  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2466  *                             CRn=0, which corresponds to the AArch32 feature
2467  *                             registers.
2468  * @vcpu: the vCPU pointer
2469  * @params: the system register access parameters.
2470  *
2471  * Our cp15 system register tables do not enumerate the AArch32 feature
2472  * registers. Conveniently, our AArch64 table does, and the AArch32 system
2473  * register encoding can be trivially remapped into the AArch64 for the feature
2474  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2475  *
2476  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2477  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2478  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2479  * treat undefined registers in this range as RAZ.
2480  */
2481 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
2482                                    struct sys_reg_params *params)
2483 {
2484         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2485
2486         /* Treat impossible writes to RO registers as UNDEFINED */
2487         if (params->is_write) {
2488                 unhandled_cp_access(vcpu, params);
2489                 return 1;
2490         }
2491
2492         params->Op0 = 3;
2493
2494         /*
2495          * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
2496          * Avoid conflicting with future expansion of AArch64 feature registers
2497          * and simply treat them as RAZ here.
2498          */
2499         if (params->CRm > 3)
2500                 params->regval = 0;
2501         else if (!emulate_sys_reg(vcpu, params))
2502                 return 1;
2503
2504         vcpu_set_reg(vcpu, Rt, params->regval);
2505         return 1;
2506 }
2507
2508 /**
2509  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2510  * @vcpu: The VCPU pointer
2511  * @run:  The kvm_run struct
2512  */
2513 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2514                             struct sys_reg_params *params,
2515                             const struct sys_reg_desc *global,
2516                             size_t nr_global)
2517 {
2518         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2519
2520         params->regval = vcpu_get_reg(vcpu, Rt);
2521
2522         if (emulate_cp(vcpu, params, global, nr_global)) {
2523                 if (!params->is_write)
2524                         vcpu_set_reg(vcpu, Rt, params->regval);
2525                 return 1;
2526         }
2527
2528         unhandled_cp_access(vcpu, params);
2529         return 1;
2530 }
2531
2532 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2533 {
2534         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2535 }
2536
2537 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2538 {
2539         struct sys_reg_params params;
2540
2541         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2542
2543         /*
2544          * Certain AArch32 ID registers are handled by rerouting to the AArch64
2545          * system register table. Registers in the ID range where CRm=0 are
2546          * excluded from this scheme as they do not trivially map into AArch64
2547          * system register encodings.
2548          */
2549         if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
2550                 return kvm_emulate_cp15_id_reg(vcpu, &params);
2551
2552         return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
2553 }
2554
2555 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2556 {
2557         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2558 }
2559
2560 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2561 {
2562         struct sys_reg_params params;
2563
2564         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2565
2566         return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
2567 }
2568
2569 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2570 {
2571         // See ARM DDI 0487E.a, section D12.3.2
2572         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2573 }
2574
2575 /**
2576  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
2577  * @vcpu: The VCPU pointer
2578  * @params: Decoded system register parameters
2579  *
2580  * Return: true if the system register access was successful, false otherwise.
2581  */
2582 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
2583                            struct sys_reg_params *params)
2584 {
2585         const struct sys_reg_desc *r;
2586
2587         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2588
2589         if (likely(r)) {
2590                 perform_access(vcpu, params, r);
2591                 return true;
2592         }
2593
2594         if (is_imp_def_sys_reg(params)) {
2595                 kvm_inject_undefined(vcpu);
2596         } else {
2597                 print_sys_reg_msg(params,
2598                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2599                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2600                 kvm_inject_undefined(vcpu);
2601         }
2602         return false;
2603 }
2604
2605 /**
2606  * kvm_reset_sys_regs - sets system registers to reset value
2607  * @vcpu: The VCPU pointer
2608  *
2609  * This function finds the right table above and sets the registers on the
2610  * virtual CPU struct to their architecturally defined reset values.
2611  */
2612 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2613 {
2614         unsigned long i;
2615
2616         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2617                 if (sys_reg_descs[i].reset)
2618                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2619 }
2620
2621 /**
2622  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2623  * @vcpu: The VCPU pointer
2624  */
2625 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2626 {
2627         struct sys_reg_params params;
2628         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2629         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2630
2631         trace_kvm_handle_sys_reg(esr);
2632
2633         params = esr_sys64_to_params(esr);
2634         params.regval = vcpu_get_reg(vcpu, Rt);
2635
2636         if (!emulate_sys_reg(vcpu, &params))
2637                 return 1;
2638
2639         if (!params.is_write)
2640                 vcpu_set_reg(vcpu, Rt, params.regval);
2641         return 1;
2642 }
2643
2644 /******************************************************************************
2645  * Userspace API
2646  *****************************************************************************/
2647
2648 static bool index_to_params(u64 id, struct sys_reg_params *params)
2649 {
2650         switch (id & KVM_REG_SIZE_MASK) {
2651         case KVM_REG_SIZE_U64:
2652                 /* Any unused index bits means it's not valid. */
2653                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2654                               | KVM_REG_ARM_COPROC_MASK
2655                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2656                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2657                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2658                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2659                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2660                         return false;
2661                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2662                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2663                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2664                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2665                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2666                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2667                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2668                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2669                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2670                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2671                 return true;
2672         default:
2673                 return false;
2674         }
2675 }
2676
2677 const struct sys_reg_desc *get_reg_by_id(u64 id,
2678                                          const struct sys_reg_desc table[],
2679                                          unsigned int num)
2680 {
2681         struct sys_reg_params params;
2682
2683         if (!index_to_params(id, &params))
2684                 return NULL;
2685
2686         return find_reg(&params, table, num);
2687 }
2688
2689 /* Decode an index value, and find the sys_reg_desc entry. */
2690 static const struct sys_reg_desc *
2691 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
2692                    const struct sys_reg_desc table[], unsigned int num)
2693
2694 {
2695         const struct sys_reg_desc *r;
2696
2697         /* We only do sys_reg for now. */
2698         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2699                 return NULL;
2700
2701         r = get_reg_by_id(id, table, num);
2702
2703         /* Not saved in the sys_reg array and not otherwise accessible? */
2704         if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
2705                 r = NULL;
2706
2707         return r;
2708 }
2709
2710 /*
2711  * These are the invariant sys_reg registers: we let the guest see the
2712  * host versions of these, so they're part of the guest state.
2713  *
2714  * A future CPU may provide a mechanism to present different values to
2715  * the guest, or a future kvm may trap them.
2716  */
2717
2718 #define FUNCTION_INVARIANT(reg)                                         \
2719         static void get_##reg(struct kvm_vcpu *v,                       \
2720                               const struct sys_reg_desc *r)             \
2721         {                                                               \
2722                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2723         }
2724
2725 FUNCTION_INVARIANT(midr_el1)
2726 FUNCTION_INVARIANT(revidr_el1)
2727 FUNCTION_INVARIANT(clidr_el1)
2728 FUNCTION_INVARIANT(aidr_el1)
2729
2730 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2731 {
2732         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2733 }
2734
2735 /* ->val is filled in by kvm_sys_reg_table_init() */
2736 static struct sys_reg_desc invariant_sys_regs[] = {
2737         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2738         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2739         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2740         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2741         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2742 };
2743
2744 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
2745 {
2746         const struct sys_reg_desc *r;
2747
2748         r = get_reg_by_id(id, invariant_sys_regs,
2749                           ARRAY_SIZE(invariant_sys_regs));
2750         if (!r)
2751                 return -ENOENT;
2752
2753         return put_user(r->val, uaddr);
2754 }
2755
2756 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
2757 {
2758         const struct sys_reg_desc *r;
2759         u64 val;
2760
2761         r = get_reg_by_id(id, invariant_sys_regs,
2762                           ARRAY_SIZE(invariant_sys_regs));
2763         if (!r)
2764                 return -ENOENT;
2765
2766         if (get_user(val, uaddr))
2767                 return -EFAULT;
2768
2769         /* This is what we mean by invariant: you can't change it. */
2770         if (r->val != val)
2771                 return -EINVAL;
2772
2773         return 0;
2774 }
2775
2776 static bool is_valid_cache(u32 val)
2777 {
2778         u32 level, ctype;
2779
2780         if (val >= CSSELR_MAX)
2781                 return false;
2782
2783         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2784         level = (val >> 1);
2785         ctype = (cache_levels >> (level * 3)) & 7;
2786
2787         switch (ctype) {
2788         case 0: /* No cache */
2789                 return false;
2790         case 1: /* Instruction cache only */
2791                 return (val & 1);
2792         case 2: /* Data cache only */
2793         case 4: /* Unified cache */
2794                 return !(val & 1);
2795         case 3: /* Separate instruction and data caches */
2796                 return true;
2797         default: /* Reserved: we can't know instruction or data. */
2798                 return false;
2799         }
2800 }
2801
2802 static int demux_c15_get(u64 id, void __user *uaddr)
2803 {
2804         u32 val;
2805         u32 __user *uval = uaddr;
2806
2807         /* Fail if we have unknown bits set. */
2808         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2809                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2810                 return -ENOENT;
2811
2812         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2813         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2814                 if (KVM_REG_SIZE(id) != 4)
2815                         return -ENOENT;
2816                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2817                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2818                 if (!is_valid_cache(val))
2819                         return -ENOENT;
2820
2821                 return put_user(get_ccsidr(val), uval);
2822         default:
2823                 return -ENOENT;
2824         }
2825 }
2826
2827 static int demux_c15_set(u64 id, void __user *uaddr)
2828 {
2829         u32 val, newval;
2830         u32 __user *uval = uaddr;
2831
2832         /* Fail if we have unknown bits set. */
2833         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2834                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2835                 return -ENOENT;
2836
2837         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2838         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2839                 if (KVM_REG_SIZE(id) != 4)
2840                         return -ENOENT;
2841                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2842                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2843                 if (!is_valid_cache(val))
2844                         return -ENOENT;
2845
2846                 if (get_user(newval, uval))
2847                         return -EFAULT;
2848
2849                 /* This is also invariant: you can't change it. */
2850                 if (newval != get_ccsidr(val))
2851                         return -EINVAL;
2852                 return 0;
2853         default:
2854                 return -ENOENT;
2855         }
2856 }
2857
2858 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
2859                          const struct sys_reg_desc table[], unsigned int num)
2860 {
2861         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
2862         const struct sys_reg_desc *r;
2863         u64 val;
2864         int ret;
2865
2866         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
2867         if (!r)
2868                 return -ENOENT;
2869
2870         if (r->get_user) {
2871                 ret = (r->get_user)(vcpu, r, &val);
2872         } else {
2873                 val = __vcpu_sys_reg(vcpu, r->reg);
2874                 ret = 0;
2875         }
2876
2877         if (!ret)
2878                 ret = put_user(val, uaddr);
2879
2880         return ret;
2881 }
2882
2883 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2884 {
2885         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2886         int err;
2887
2888         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2889                 return demux_c15_get(reg->id, uaddr);
2890
2891         err = get_invariant_sys_reg(reg->id, uaddr);
2892         if (err != -ENOENT)
2893                 return err;
2894
2895         return kvm_sys_reg_get_user(vcpu, reg,
2896                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2897 }
2898
2899 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
2900                          const struct sys_reg_desc table[], unsigned int num)
2901 {
2902         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
2903         const struct sys_reg_desc *r;
2904         u64 val;
2905         int ret;
2906
2907         if (get_user(val, uaddr))
2908                 return -EFAULT;
2909
2910         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
2911         if (!r)
2912                 return -ENOENT;
2913
2914         if (sysreg_user_write_ignore(vcpu, r))
2915                 return 0;
2916
2917         if (r->set_user) {
2918                 ret = (r->set_user)(vcpu, r, val);
2919         } else {
2920                 __vcpu_sys_reg(vcpu, r->reg) = val;
2921                 ret = 0;
2922         }
2923
2924         return ret;
2925 }
2926
2927 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2928 {
2929         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2930         int err;
2931
2932         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2933                 return demux_c15_set(reg->id, uaddr);
2934
2935         err = set_invariant_sys_reg(reg->id, uaddr);
2936         if (err != -ENOENT)
2937                 return err;
2938
2939         return kvm_sys_reg_set_user(vcpu, reg,
2940                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2941 }
2942
2943 static unsigned int num_demux_regs(void)
2944 {
2945         unsigned int i, count = 0;
2946
2947         for (i = 0; i < CSSELR_MAX; i++)
2948                 if (is_valid_cache(i))
2949                         count++;
2950
2951         return count;
2952 }
2953
2954 static int write_demux_regids(u64 __user *uindices)
2955 {
2956         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2957         unsigned int i;
2958
2959         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2960         for (i = 0; i < CSSELR_MAX; i++) {
2961                 if (!is_valid_cache(i))
2962                         continue;
2963                 if (put_user(val | i, uindices))
2964                         return -EFAULT;
2965                 uindices++;
2966         }
2967         return 0;
2968 }
2969
2970 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2971 {
2972         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2973                 KVM_REG_ARM64_SYSREG |
2974                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2975                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2976                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2977                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2978                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2979 }
2980
2981 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2982 {
2983         if (!*uind)
2984                 return true;
2985
2986         if (put_user(sys_reg_to_index(reg), *uind))
2987                 return false;
2988
2989         (*uind)++;
2990         return true;
2991 }
2992
2993 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2994                             const struct sys_reg_desc *rd,
2995                             u64 __user **uind,
2996                             unsigned int *total)
2997 {
2998         /*
2999          * Ignore registers we trap but don't save,
3000          * and for which no custom user accessor is provided.
3001          */
3002         if (!(rd->reg || rd->get_user))
3003                 return 0;
3004
3005         if (sysreg_hidden(vcpu, rd))
3006                 return 0;
3007
3008         if (!copy_reg_to_user(rd, uind))
3009                 return -EFAULT;
3010
3011         (*total)++;
3012         return 0;
3013 }
3014
3015 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3016 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3017 {
3018         const struct sys_reg_desc *i2, *end2;
3019         unsigned int total = 0;
3020         int err;
3021
3022         i2 = sys_reg_descs;
3023         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3024
3025         while (i2 != end2) {
3026                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3027                 if (err)
3028                         return err;
3029         }
3030         return total;
3031 }
3032
3033 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3034 {
3035         return ARRAY_SIZE(invariant_sys_regs)
3036                 + num_demux_regs()
3037                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
3038 }
3039
3040 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3041 {
3042         unsigned int i;
3043         int err;
3044
3045         /* Then give them all the invariant registers' indices. */
3046         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3047                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3048                         return -EFAULT;
3049                 uindices++;
3050         }
3051
3052         err = walk_sys_regs(vcpu, uindices);
3053         if (err < 0)
3054                 return err;
3055         uindices += err;
3056
3057         return write_demux_regids(uindices);
3058 }
3059
3060 int kvm_sys_reg_table_init(void)
3061 {
3062         bool valid = true;
3063         unsigned int i;
3064         struct sys_reg_desc clidr;
3065
3066         /* Make sure tables are unique and in order. */
3067         valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3068         valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3069         valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3070         valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3071         valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3072         valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3073
3074         if (!valid)
3075                 return -EINVAL;
3076
3077         /* We abuse the reset function to overwrite the table itself. */
3078         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3079                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3080
3081         /*
3082          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
3083          *
3084          *   If software reads the Cache Type fields from Ctype1
3085          *   upwards, once it has seen a value of 0b000, no caches
3086          *   exist at further-out levels of the hierarchy. So, for
3087          *   example, if Ctype3 is the first Cache Type field with a
3088          *   value of 0b000, the values of Ctype4 to Ctype7 must be
3089          *   ignored.
3090          */
3091         get_clidr_el1(NULL, &clidr); /* Ugly... */
3092         cache_levels = clidr.val;
3093         for (i = 0; i < 7; i++)
3094                 if (((cache_levels >> (i*3)) & 7) == 0)
3095                         break;
3096         /* Clear all higher bits. */
3097         cache_levels &= (1 << (i*3))-1;
3098
3099         return 0;
3100 }