KVM: arm64: Fix ptrauth ID register masking logic
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/printk.h>
27 #include <linux/uaccess.h>
28
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/esr.h>
33 #include <asm/kvm_arm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_hyp.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/perf_event.h>
40 #include <asm/sysreg.h>
41
42 #include <trace/events/kvm.h>
43
44 #include "sys_regs.h"
45
46 #include "trace.h"
47
48 /*
49  * All of this file is extremly similar to the ARM coproc.c, but the
50  * types are different. My gut feeling is that it should be pretty
51  * easy to merge, but that would be an ABI breakage -- again. VFP
52  * would also need to be abstracted.
53  *
54  * For AArch32, we only take care of what is being trapped. Anything
55  * that has to do with init and userspace access has to go via the
56  * 64bit interface.
57  */
58
59 static bool read_from_write_only(struct kvm_vcpu *vcpu,
60                                  struct sys_reg_params *params,
61                                  const struct sys_reg_desc *r)
62 {
63         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
64         print_sys_reg_instr(params);
65         kvm_inject_undefined(vcpu);
66         return false;
67 }
68
69 static bool write_to_read_only(struct kvm_vcpu *vcpu,
70                                struct sys_reg_params *params,
71                                const struct sys_reg_desc *r)
72 {
73         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
74         print_sys_reg_instr(params);
75         kvm_inject_undefined(vcpu);
76         return false;
77 }
78
79 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
80 {
81         if (!vcpu->arch.sysregs_loaded_on_cpu)
82                 goto immediate_read;
83
84         /*
85          * System registers listed in the switch are not saved on every
86          * exit from the guest but are only saved on vcpu_put.
87          *
88          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
89          * should never be listed below, because the guest cannot modify its
90          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
91          * thread when emulating cross-VCPU communication.
92          */
93         switch (reg) {
94         case CSSELR_EL1:        return read_sysreg_s(SYS_CSSELR_EL1);
95         case SCTLR_EL1:         return read_sysreg_s(sctlr_EL12);
96         case ACTLR_EL1:         return read_sysreg_s(SYS_ACTLR_EL1);
97         case CPACR_EL1:         return read_sysreg_s(cpacr_EL12);
98         case TTBR0_EL1:         return read_sysreg_s(ttbr0_EL12);
99         case TTBR1_EL1:         return read_sysreg_s(ttbr1_EL12);
100         case TCR_EL1:           return read_sysreg_s(tcr_EL12);
101         case ESR_EL1:           return read_sysreg_s(esr_EL12);
102         case AFSR0_EL1:         return read_sysreg_s(afsr0_EL12);
103         case AFSR1_EL1:         return read_sysreg_s(afsr1_EL12);
104         case FAR_EL1:           return read_sysreg_s(far_EL12);
105         case MAIR_EL1:          return read_sysreg_s(mair_EL12);
106         case VBAR_EL1:          return read_sysreg_s(vbar_EL12);
107         case CONTEXTIDR_EL1:    return read_sysreg_s(contextidr_EL12);
108         case TPIDR_EL0:         return read_sysreg_s(SYS_TPIDR_EL0);
109         case TPIDRRO_EL0:       return read_sysreg_s(SYS_TPIDRRO_EL0);
110         case TPIDR_EL1:         return read_sysreg_s(SYS_TPIDR_EL1);
111         case AMAIR_EL1:         return read_sysreg_s(amair_EL12);
112         case CNTKCTL_EL1:       return read_sysreg_s(cntkctl_EL12);
113         case PAR_EL1:           return read_sysreg_s(SYS_PAR_EL1);
114         case DACR32_EL2:        return read_sysreg_s(SYS_DACR32_EL2);
115         case IFSR32_EL2:        return read_sysreg_s(SYS_IFSR32_EL2);
116         case DBGVCR32_EL2:      return read_sysreg_s(SYS_DBGVCR32_EL2);
117         }
118
119 immediate_read:
120         return __vcpu_sys_reg(vcpu, reg);
121 }
122
123 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
124 {
125         if (!vcpu->arch.sysregs_loaded_on_cpu)
126                 goto immediate_write;
127
128         /*
129          * System registers listed in the switch are not restored on every
130          * entry to the guest but are only restored on vcpu_load.
131          *
132          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
133          * should never be listed below, because the the MPIDR should only be
134          * set once, before running the VCPU, and never changed later.
135          */
136         switch (reg) {
137         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    return;
138         case SCTLR_EL1:         write_sysreg_s(val, sctlr_EL12);        return;
139         case ACTLR_EL1:         write_sysreg_s(val, SYS_ACTLR_EL1);     return;
140         case CPACR_EL1:         write_sysreg_s(val, cpacr_EL12);        return;
141         case TTBR0_EL1:         write_sysreg_s(val, ttbr0_EL12);        return;
142         case TTBR1_EL1:         write_sysreg_s(val, ttbr1_EL12);        return;
143         case TCR_EL1:           write_sysreg_s(val, tcr_EL12);          return;
144         case ESR_EL1:           write_sysreg_s(val, esr_EL12);          return;
145         case AFSR0_EL1:         write_sysreg_s(val, afsr0_EL12);        return;
146         case AFSR1_EL1:         write_sysreg_s(val, afsr1_EL12);        return;
147         case FAR_EL1:           write_sysreg_s(val, far_EL12);          return;
148         case MAIR_EL1:          write_sysreg_s(val, mair_EL12);         return;
149         case VBAR_EL1:          write_sysreg_s(val, vbar_EL12);         return;
150         case CONTEXTIDR_EL1:    write_sysreg_s(val, contextidr_EL12);   return;
151         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     return;
152         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   return;
153         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     return;
154         case AMAIR_EL1:         write_sysreg_s(val, amair_EL12);        return;
155         case CNTKCTL_EL1:       write_sysreg_s(val, cntkctl_EL12);      return;
156         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       return;
157         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    return;
158         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    return;
159         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  return;
160         }
161
162 immediate_write:
163          __vcpu_sys_reg(vcpu, reg) = val;
164 }
165
166 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
167 static u32 cache_levels;
168
169 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
170 #define CSSELR_MAX 12
171
172 /* Which cache CCSIDR represents depends on CSSELR value. */
173 static u32 get_ccsidr(u32 csselr)
174 {
175         u32 ccsidr;
176
177         /* Make sure noone else changes CSSELR during this! */
178         local_irq_disable();
179         write_sysreg(csselr, csselr_el1);
180         isb();
181         ccsidr = read_sysreg(ccsidr_el1);
182         local_irq_enable();
183
184         return ccsidr;
185 }
186
187 /*
188  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
189  */
190 static bool access_dcsw(struct kvm_vcpu *vcpu,
191                         struct sys_reg_params *p,
192                         const struct sys_reg_desc *r)
193 {
194         if (!p->is_write)
195                 return read_from_write_only(vcpu, p, r);
196
197         /*
198          * Only track S/W ops if we don't have FWB. It still indicates
199          * that the guest is a bit broken (S/W operations should only
200          * be done by firmware, knowing that there is only a single
201          * CPU left in the system, and certainly not from non-secure
202          * software).
203          */
204         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
205                 kvm_set_way_flush(vcpu);
206
207         return true;
208 }
209
210 /*
211  * Generic accessor for VM registers. Only called as long as HCR_TVM
212  * is set. If the guest enables the MMU, we stop trapping the VM
213  * sys_regs and leave it in complete control of the caches.
214  */
215 static bool access_vm_reg(struct kvm_vcpu *vcpu,
216                           struct sys_reg_params *p,
217                           const struct sys_reg_desc *r)
218 {
219         bool was_enabled = vcpu_has_cache_enabled(vcpu);
220         u64 val;
221         int reg = r->reg;
222
223         BUG_ON(!p->is_write);
224
225         /* See the 32bit mapping in kvm_host.h */
226         if (p->is_aarch32)
227                 reg = r->reg / 2;
228
229         if (!p->is_aarch32 || !p->is_32bit) {
230                 val = p->regval;
231         } else {
232                 val = vcpu_read_sys_reg(vcpu, reg);
233                 if (r->reg % 2)
234                         val = (p->regval << 32) | (u64)lower_32_bits(val);
235                 else
236                         val = ((u64)upper_32_bits(val) << 32) |
237                                 lower_32_bits(p->regval);
238         }
239         vcpu_write_sys_reg(vcpu, val, reg);
240
241         kvm_toggle_cache(vcpu, was_enabled);
242         return true;
243 }
244
245 /*
246  * Trap handler for the GICv3 SGI generation system register.
247  * Forward the request to the VGIC emulation.
248  * The cp15_64 code makes sure this automatically works
249  * for both AArch64 and AArch32 accesses.
250  */
251 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
252                            struct sys_reg_params *p,
253                            const struct sys_reg_desc *r)
254 {
255         bool g1;
256
257         if (!p->is_write)
258                 return read_from_write_only(vcpu, p, r);
259
260         /*
261          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
262          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
263          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
264          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
265          * group.
266          */
267         if (p->is_aarch32) {
268                 switch (p->Op1) {
269                 default:                /* Keep GCC quiet */
270                 case 0:                 /* ICC_SGI1R */
271                         g1 = true;
272                         break;
273                 case 1:                 /* ICC_ASGI1R */
274                 case 2:                 /* ICC_SGI0R */
275                         g1 = false;
276                         break;
277                 }
278         } else {
279                 switch (p->Op2) {
280                 default:                /* Keep GCC quiet */
281                 case 5:                 /* ICC_SGI1R_EL1 */
282                         g1 = true;
283                         break;
284                 case 6:                 /* ICC_ASGI1R_EL1 */
285                 case 7:                 /* ICC_SGI0R_EL1 */
286                         g1 = false;
287                         break;
288                 }
289         }
290
291         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
292
293         return true;
294 }
295
296 static bool access_gic_sre(struct kvm_vcpu *vcpu,
297                            struct sys_reg_params *p,
298                            const struct sys_reg_desc *r)
299 {
300         if (p->is_write)
301                 return ignore_write(vcpu, p);
302
303         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
304         return true;
305 }
306
307 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
308                         struct sys_reg_params *p,
309                         const struct sys_reg_desc *r)
310 {
311         if (p->is_write)
312                 return ignore_write(vcpu, p);
313         else
314                 return read_zero(vcpu, p);
315 }
316
317 /*
318  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
319  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
320  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
321  * treat it separately.
322  */
323 static bool trap_loregion(struct kvm_vcpu *vcpu,
324                           struct sys_reg_params *p,
325                           const struct sys_reg_desc *r)
326 {
327         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
328         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
329                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
330
331         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
332                 kvm_inject_undefined(vcpu);
333                 return false;
334         }
335
336         if (p->is_write && sr == SYS_LORID_EL1)
337                 return write_to_read_only(vcpu, p, r);
338
339         return trap_raz_wi(vcpu, p, r);
340 }
341
342 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
343                            struct sys_reg_params *p,
344                            const struct sys_reg_desc *r)
345 {
346         if (p->is_write) {
347                 return ignore_write(vcpu, p);
348         } else {
349                 p->regval = (1 << 3);
350                 return true;
351         }
352 }
353
354 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
355                                    struct sys_reg_params *p,
356                                    const struct sys_reg_desc *r)
357 {
358         if (p->is_write) {
359                 return ignore_write(vcpu, p);
360         } else {
361                 p->regval = read_sysreg(dbgauthstatus_el1);
362                 return true;
363         }
364 }
365
366 /*
367  * We want to avoid world-switching all the DBG registers all the
368  * time:
369  * 
370  * - If we've touched any debug register, it is likely that we're
371  *   going to touch more of them. It then makes sense to disable the
372  *   traps and start doing the save/restore dance
373  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
374  *   then mandatory to save/restore the registers, as the guest
375  *   depends on them.
376  * 
377  * For this, we use a DIRTY bit, indicating the guest has modified the
378  * debug registers, used as follow:
379  *
380  * On guest entry:
381  * - If the dirty bit is set (because we're coming back from trapping),
382  *   disable the traps, save host registers, restore guest registers.
383  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
384  *   set the dirty bit, disable the traps, save host registers,
385  *   restore guest registers.
386  * - Otherwise, enable the traps
387  *
388  * On guest exit:
389  * - If the dirty bit is set, save guest registers, restore host
390  *   registers and clear the dirty bit. This ensure that the host can
391  *   now use the debug registers.
392  */
393 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
394                             struct sys_reg_params *p,
395                             const struct sys_reg_desc *r)
396 {
397         if (p->is_write) {
398                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
399                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
400         } else {
401                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
402         }
403
404         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
405
406         return true;
407 }
408
409 /*
410  * reg_to_dbg/dbg_to_reg
411  *
412  * A 32 bit write to a debug register leave top bits alone
413  * A 32 bit read from a debug register only returns the bottom bits
414  *
415  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
416  * hyp.S code switches between host and guest values in future.
417  */
418 static void reg_to_dbg(struct kvm_vcpu *vcpu,
419                        struct sys_reg_params *p,
420                        u64 *dbg_reg)
421 {
422         u64 val = p->regval;
423
424         if (p->is_32bit) {
425                 val &= 0xffffffffUL;
426                 val |= ((*dbg_reg >> 32) << 32);
427         }
428
429         *dbg_reg = val;
430         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
431 }
432
433 static void dbg_to_reg(struct kvm_vcpu *vcpu,
434                        struct sys_reg_params *p,
435                        u64 *dbg_reg)
436 {
437         p->regval = *dbg_reg;
438         if (p->is_32bit)
439                 p->regval &= 0xffffffffUL;
440 }
441
442 static bool trap_bvr(struct kvm_vcpu *vcpu,
443                      struct sys_reg_params *p,
444                      const struct sys_reg_desc *rd)
445 {
446         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
447
448         if (p->is_write)
449                 reg_to_dbg(vcpu, p, dbg_reg);
450         else
451                 dbg_to_reg(vcpu, p, dbg_reg);
452
453         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
454
455         return true;
456 }
457
458 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
459                 const struct kvm_one_reg *reg, void __user *uaddr)
460 {
461         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
462
463         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
464                 return -EFAULT;
465         return 0;
466 }
467
468 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
469         const struct kvm_one_reg *reg, void __user *uaddr)
470 {
471         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
472
473         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
474                 return -EFAULT;
475         return 0;
476 }
477
478 static void reset_bvr(struct kvm_vcpu *vcpu,
479                       const struct sys_reg_desc *rd)
480 {
481         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
482 }
483
484 static bool trap_bcr(struct kvm_vcpu *vcpu,
485                      struct sys_reg_params *p,
486                      const struct sys_reg_desc *rd)
487 {
488         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
489
490         if (p->is_write)
491                 reg_to_dbg(vcpu, p, dbg_reg);
492         else
493                 dbg_to_reg(vcpu, p, dbg_reg);
494
495         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
496
497         return true;
498 }
499
500 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501                 const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
504
505         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
506                 return -EFAULT;
507
508         return 0;
509 }
510
511 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
512         const struct kvm_one_reg *reg, void __user *uaddr)
513 {
514         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
515
516         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
517                 return -EFAULT;
518         return 0;
519 }
520
521 static void reset_bcr(struct kvm_vcpu *vcpu,
522                       const struct sys_reg_desc *rd)
523 {
524         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
525 }
526
527 static bool trap_wvr(struct kvm_vcpu *vcpu,
528                      struct sys_reg_params *p,
529                      const struct sys_reg_desc *rd)
530 {
531         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
532
533         if (p->is_write)
534                 reg_to_dbg(vcpu, p, dbg_reg);
535         else
536                 dbg_to_reg(vcpu, p, dbg_reg);
537
538         trace_trap_reg(__func__, rd->reg, p->is_write,
539                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
540
541         return true;
542 }
543
544 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
545                 const struct kvm_one_reg *reg, void __user *uaddr)
546 {
547         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
548
549         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
550                 return -EFAULT;
551         return 0;
552 }
553
554 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
555         const struct kvm_one_reg *reg, void __user *uaddr)
556 {
557         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
558
559         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
560                 return -EFAULT;
561         return 0;
562 }
563
564 static void reset_wvr(struct kvm_vcpu *vcpu,
565                       const struct sys_reg_desc *rd)
566 {
567         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
568 }
569
570 static bool trap_wcr(struct kvm_vcpu *vcpu,
571                      struct sys_reg_params *p,
572                      const struct sys_reg_desc *rd)
573 {
574         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
575
576         if (p->is_write)
577                 reg_to_dbg(vcpu, p, dbg_reg);
578         else
579                 dbg_to_reg(vcpu, p, dbg_reg);
580
581         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
582
583         return true;
584 }
585
586 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
587                 const struct kvm_one_reg *reg, void __user *uaddr)
588 {
589         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
590
591         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
592                 return -EFAULT;
593         return 0;
594 }
595
596 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
597         const struct kvm_one_reg *reg, void __user *uaddr)
598 {
599         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
600
601         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
602                 return -EFAULT;
603         return 0;
604 }
605
606 static void reset_wcr(struct kvm_vcpu *vcpu,
607                       const struct sys_reg_desc *rd)
608 {
609         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
610 }
611
612 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
613 {
614         u64 amair = read_sysreg(amair_el1);
615         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
616 }
617
618 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
619 {
620         u64 mpidr;
621
622         /*
623          * Map the vcpu_id into the first three affinity level fields of
624          * the MPIDR. We limit the number of VCPUs in level 0 due to a
625          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
626          * of the GICv3 to be able to address each CPU directly when
627          * sending IPIs.
628          */
629         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
630         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
631         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
632         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
633 }
634
635 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
636 {
637         u64 pmcr, val;
638
639         pmcr = read_sysreg(pmcr_el0);
640         /*
641          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
642          * except PMCR.E resetting to zero.
643          */
644         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
645                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
646         __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
647 }
648
649 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
650 {
651         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
652         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
653
654         if (!enabled)
655                 kvm_inject_undefined(vcpu);
656
657         return !enabled;
658 }
659
660 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
661 {
662         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
663 }
664
665 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
666 {
667         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
668 }
669
670 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
671 {
672         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
673 }
674
675 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
676 {
677         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
678 }
679
680 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
681                         const struct sys_reg_desc *r)
682 {
683         u64 val;
684
685         if (!kvm_arm_pmu_v3_ready(vcpu))
686                 return trap_raz_wi(vcpu, p, r);
687
688         if (pmu_access_el0_disabled(vcpu))
689                 return false;
690
691         if (p->is_write) {
692                 /* Only update writeable bits of PMCR */
693                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
694                 val &= ~ARMV8_PMU_PMCR_MASK;
695                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
696                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
697                 kvm_pmu_handle_pmcr(vcpu, val);
698                 kvm_vcpu_pmu_restore_guest(vcpu);
699         } else {
700                 /* PMCR.P & PMCR.C are RAZ */
701                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
702                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
703                 p->regval = val;
704         }
705
706         return true;
707 }
708
709 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
710                           const struct sys_reg_desc *r)
711 {
712         if (!kvm_arm_pmu_v3_ready(vcpu))
713                 return trap_raz_wi(vcpu, p, r);
714
715         if (pmu_access_event_counter_el0_disabled(vcpu))
716                 return false;
717
718         if (p->is_write)
719                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
720         else
721                 /* return PMSELR.SEL field */
722                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
723                             & ARMV8_PMU_COUNTER_MASK;
724
725         return true;
726 }
727
728 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
729                           const struct sys_reg_desc *r)
730 {
731         u64 pmceid;
732
733         if (!kvm_arm_pmu_v3_ready(vcpu))
734                 return trap_raz_wi(vcpu, p, r);
735
736         BUG_ON(p->is_write);
737
738         if (pmu_access_el0_disabled(vcpu))
739                 return false;
740
741         if (!(p->Op2 & 1))
742                 pmceid = read_sysreg(pmceid0_el0);
743         else
744                 pmceid = read_sysreg(pmceid1_el0);
745
746         p->regval = pmceid;
747
748         return true;
749 }
750
751 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
752 {
753         u64 pmcr, val;
754
755         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
756         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
757         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
758                 kvm_inject_undefined(vcpu);
759                 return false;
760         }
761
762         return true;
763 }
764
765 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
766                               struct sys_reg_params *p,
767                               const struct sys_reg_desc *r)
768 {
769         u64 idx;
770
771         if (!kvm_arm_pmu_v3_ready(vcpu))
772                 return trap_raz_wi(vcpu, p, r);
773
774         if (r->CRn == 9 && r->CRm == 13) {
775                 if (r->Op2 == 2) {
776                         /* PMXEVCNTR_EL0 */
777                         if (pmu_access_event_counter_el0_disabled(vcpu))
778                                 return false;
779
780                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
781                               & ARMV8_PMU_COUNTER_MASK;
782                 } else if (r->Op2 == 0) {
783                         /* PMCCNTR_EL0 */
784                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
785                                 return false;
786
787                         idx = ARMV8_PMU_CYCLE_IDX;
788                 } else {
789                         return false;
790                 }
791         } else if (r->CRn == 0 && r->CRm == 9) {
792                 /* PMCCNTR */
793                 if (pmu_access_event_counter_el0_disabled(vcpu))
794                         return false;
795
796                 idx = ARMV8_PMU_CYCLE_IDX;
797         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
798                 /* PMEVCNTRn_EL0 */
799                 if (pmu_access_event_counter_el0_disabled(vcpu))
800                         return false;
801
802                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
803         } else {
804                 return false;
805         }
806
807         if (!pmu_counter_idx_valid(vcpu, idx))
808                 return false;
809
810         if (p->is_write) {
811                 if (pmu_access_el0_disabled(vcpu))
812                         return false;
813
814                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
815         } else {
816                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
817         }
818
819         return true;
820 }
821
822 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
823                                const struct sys_reg_desc *r)
824 {
825         u64 idx, reg;
826
827         if (!kvm_arm_pmu_v3_ready(vcpu))
828                 return trap_raz_wi(vcpu, p, r);
829
830         if (pmu_access_el0_disabled(vcpu))
831                 return false;
832
833         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
834                 /* PMXEVTYPER_EL0 */
835                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
836                 reg = PMEVTYPER0_EL0 + idx;
837         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
838                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
839                 if (idx == ARMV8_PMU_CYCLE_IDX)
840                         reg = PMCCFILTR_EL0;
841                 else
842                         /* PMEVTYPERn_EL0 */
843                         reg = PMEVTYPER0_EL0 + idx;
844         } else {
845                 BUG();
846         }
847
848         if (!pmu_counter_idx_valid(vcpu, idx))
849                 return false;
850
851         if (p->is_write) {
852                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
853                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
854                 kvm_vcpu_pmu_restore_guest(vcpu);
855         } else {
856                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
857         }
858
859         return true;
860 }
861
862 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
863                            const struct sys_reg_desc *r)
864 {
865         u64 val, mask;
866
867         if (!kvm_arm_pmu_v3_ready(vcpu))
868                 return trap_raz_wi(vcpu, p, r);
869
870         if (pmu_access_el0_disabled(vcpu))
871                 return false;
872
873         mask = kvm_pmu_valid_counter_mask(vcpu);
874         if (p->is_write) {
875                 val = p->regval & mask;
876                 if (r->Op2 & 0x1) {
877                         /* accessing PMCNTENSET_EL0 */
878                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
879                         kvm_pmu_enable_counter(vcpu, val);
880                         kvm_vcpu_pmu_restore_guest(vcpu);
881                 } else {
882                         /* accessing PMCNTENCLR_EL0 */
883                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
884                         kvm_pmu_disable_counter(vcpu, val);
885                 }
886         } else {
887                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
888         }
889
890         return true;
891 }
892
893 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
894                            const struct sys_reg_desc *r)
895 {
896         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
897
898         if (!kvm_arm_pmu_v3_ready(vcpu))
899                 return trap_raz_wi(vcpu, p, r);
900
901         if (!vcpu_mode_priv(vcpu)) {
902                 kvm_inject_undefined(vcpu);
903                 return false;
904         }
905
906         if (p->is_write) {
907                 u64 val = p->regval & mask;
908
909                 if (r->Op2 & 0x1)
910                         /* accessing PMINTENSET_EL1 */
911                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
912                 else
913                         /* accessing PMINTENCLR_EL1 */
914                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
915         } else {
916                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
917         }
918
919         return true;
920 }
921
922 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
923                          const struct sys_reg_desc *r)
924 {
925         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
926
927         if (!kvm_arm_pmu_v3_ready(vcpu))
928                 return trap_raz_wi(vcpu, p, r);
929
930         if (pmu_access_el0_disabled(vcpu))
931                 return false;
932
933         if (p->is_write) {
934                 if (r->CRm & 0x2)
935                         /* accessing PMOVSSET_EL0 */
936                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
937                 else
938                         /* accessing PMOVSCLR_EL0 */
939                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
940         } else {
941                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
942         }
943
944         return true;
945 }
946
947 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
948                            const struct sys_reg_desc *r)
949 {
950         u64 mask;
951
952         if (!kvm_arm_pmu_v3_ready(vcpu))
953                 return trap_raz_wi(vcpu, p, r);
954
955         if (!p->is_write)
956                 return read_from_write_only(vcpu, p, r);
957
958         if (pmu_write_swinc_el0_disabled(vcpu))
959                 return false;
960
961         mask = kvm_pmu_valid_counter_mask(vcpu);
962         kvm_pmu_software_increment(vcpu, p->regval & mask);
963         return true;
964 }
965
966 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
967                              const struct sys_reg_desc *r)
968 {
969         if (!kvm_arm_pmu_v3_ready(vcpu))
970                 return trap_raz_wi(vcpu, p, r);
971
972         if (p->is_write) {
973                 if (!vcpu_mode_priv(vcpu)) {
974                         kvm_inject_undefined(vcpu);
975                         return false;
976                 }
977
978                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
979                                p->regval & ARMV8_PMU_USERENR_MASK;
980         } else {
981                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
982                             & ARMV8_PMU_USERENR_MASK;
983         }
984
985         return true;
986 }
987
988 #define reg_to_encoding(x)                                              \
989         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
990                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
991
992 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
993 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
994         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
995           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
996         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
997           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
998         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
999           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
1000         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1001           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
1002
1003 /* Macro to expand the PMEVCNTRn_EL0 register */
1004 #define PMU_PMEVCNTR_EL0(n)                                             \
1005         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
1006           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1007
1008 /* Macro to expand the PMEVTYPERn_EL0 register */
1009 #define PMU_PMEVTYPER_EL0(n)                                            \
1010         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1011           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1012
1013 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1014                          struct sys_reg_params *p,
1015                          const struct sys_reg_desc *rd)
1016 {
1017         kvm_arm_vcpu_ptrauth_trap(vcpu);
1018
1019         /*
1020          * Return false for both cases as we never skip the trapped
1021          * instruction:
1022          *
1023          * - Either we re-execute the same key register access instruction
1024          *   after enabling ptrauth.
1025          * - Or an UNDEF is injected as ptrauth is not supported/enabled.
1026          */
1027         return false;
1028 }
1029
1030 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1031                         const struct sys_reg_desc *rd)
1032 {
1033         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1034 }
1035
1036 #define __PTRAUTH_KEY(k)                                                \
1037         { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,           \
1038         .visibility = ptrauth_visibility}
1039
1040 #define PTRAUTH_KEY(k)                                                  \
1041         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1042         __PTRAUTH_KEY(k ## KEYHI_EL1)
1043
1044 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1045                               struct sys_reg_params *p,
1046                               const struct sys_reg_desc *r)
1047 {
1048         enum kvm_arch_timers tmr;
1049         enum kvm_arch_timer_regs treg;
1050         u64 reg = reg_to_encoding(r);
1051
1052         switch (reg) {
1053         case SYS_CNTP_TVAL_EL0:
1054         case SYS_AARCH32_CNTP_TVAL:
1055                 tmr = TIMER_PTIMER;
1056                 treg = TIMER_REG_TVAL;
1057                 break;
1058         case SYS_CNTP_CTL_EL0:
1059         case SYS_AARCH32_CNTP_CTL:
1060                 tmr = TIMER_PTIMER;
1061                 treg = TIMER_REG_CTL;
1062                 break;
1063         case SYS_CNTP_CVAL_EL0:
1064         case SYS_AARCH32_CNTP_CVAL:
1065                 tmr = TIMER_PTIMER;
1066                 treg = TIMER_REG_CVAL;
1067                 break;
1068         default:
1069                 BUG();
1070         }
1071
1072         if (p->is_write)
1073                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1074         else
1075                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1076
1077         return true;
1078 }
1079
1080 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1081 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1082                 struct sys_reg_desc const *r, bool raz)
1083 {
1084         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1085                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1086         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1087
1088         if (id == SYS_ID_AA64PFR0_EL1 && !vcpu_has_sve(vcpu)) {
1089                 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1090         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1091                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1092                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1093                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1094                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1095         }
1096
1097         return val;
1098 }
1099
1100 /* cpufeature ID register access trap handlers */
1101
1102 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1103                             struct sys_reg_params *p,
1104                             const struct sys_reg_desc *r,
1105                             bool raz)
1106 {
1107         if (p->is_write)
1108                 return write_to_read_only(vcpu, p, r);
1109
1110         p->regval = read_id_reg(vcpu, r, raz);
1111         return true;
1112 }
1113
1114 static bool access_id_reg(struct kvm_vcpu *vcpu,
1115                           struct sys_reg_params *p,
1116                           const struct sys_reg_desc *r)
1117 {
1118         return __access_id_reg(vcpu, p, r, false);
1119 }
1120
1121 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1122                               struct sys_reg_params *p,
1123                               const struct sys_reg_desc *r)
1124 {
1125         return __access_id_reg(vcpu, p, r, true);
1126 }
1127
1128 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1129 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1130 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1131
1132 /* Visibility overrides for SVE-specific control registers */
1133 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1134                                    const struct sys_reg_desc *rd)
1135 {
1136         if (vcpu_has_sve(vcpu))
1137                 return 0;
1138
1139         return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1140 }
1141
1142 /* Visibility overrides for SVE-specific ID registers */
1143 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1144                                       const struct sys_reg_desc *rd)
1145 {
1146         if (vcpu_has_sve(vcpu))
1147                 return 0;
1148
1149         return REG_HIDDEN_USER;
1150 }
1151
1152 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1153 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1154 {
1155         if (!vcpu_has_sve(vcpu))
1156                 return 0;
1157
1158         return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1159 }
1160
1161 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1162                                    struct sys_reg_params *p,
1163                                    const struct sys_reg_desc *rd)
1164 {
1165         if (p->is_write)
1166                 return write_to_read_only(vcpu, p, rd);
1167
1168         p->regval = guest_id_aa64zfr0_el1(vcpu);
1169         return true;
1170 }
1171
1172 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1173                 const struct sys_reg_desc *rd,
1174                 const struct kvm_one_reg *reg, void __user *uaddr)
1175 {
1176         u64 val;
1177
1178         if (WARN_ON(!vcpu_has_sve(vcpu)))
1179                 return -ENOENT;
1180
1181         val = guest_id_aa64zfr0_el1(vcpu);
1182         return reg_to_user(uaddr, &val, reg->id);
1183 }
1184
1185 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1186                 const struct sys_reg_desc *rd,
1187                 const struct kvm_one_reg *reg, void __user *uaddr)
1188 {
1189         const u64 id = sys_reg_to_index(rd);
1190         int err;
1191         u64 val;
1192
1193         if (WARN_ON(!vcpu_has_sve(vcpu)))
1194                 return -ENOENT;
1195
1196         err = reg_from_user(&val, uaddr, id);
1197         if (err)
1198                 return err;
1199
1200         /* This is what we mean by invariant: you can't change it. */
1201         if (val != guest_id_aa64zfr0_el1(vcpu))
1202                 return -EINVAL;
1203
1204         return 0;
1205 }
1206
1207 /*
1208  * cpufeature ID register user accessors
1209  *
1210  * For now, these registers are immutable for userspace, so no values
1211  * are stored, and for set_id_reg() we don't allow the effective value
1212  * to be changed.
1213  */
1214 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1215                         const struct sys_reg_desc *rd, void __user *uaddr,
1216                         bool raz)
1217 {
1218         const u64 id = sys_reg_to_index(rd);
1219         const u64 val = read_id_reg(vcpu, rd, raz);
1220
1221         return reg_to_user(uaddr, &val, id);
1222 }
1223
1224 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1225                         const struct sys_reg_desc *rd, void __user *uaddr,
1226                         bool raz)
1227 {
1228         const u64 id = sys_reg_to_index(rd);
1229         int err;
1230         u64 val;
1231
1232         err = reg_from_user(&val, uaddr, id);
1233         if (err)
1234                 return err;
1235
1236         /* This is what we mean by invariant: you can't change it. */
1237         if (val != read_id_reg(vcpu, rd, raz))
1238                 return -EINVAL;
1239
1240         return 0;
1241 }
1242
1243 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1244                       const struct kvm_one_reg *reg, void __user *uaddr)
1245 {
1246         return __get_id_reg(vcpu, rd, uaddr, false);
1247 }
1248
1249 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1250                       const struct kvm_one_reg *reg, void __user *uaddr)
1251 {
1252         return __set_id_reg(vcpu, rd, uaddr, false);
1253 }
1254
1255 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1256                           const struct kvm_one_reg *reg, void __user *uaddr)
1257 {
1258         return __get_id_reg(vcpu, rd, uaddr, true);
1259 }
1260
1261 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1262                           const struct kvm_one_reg *reg, void __user *uaddr)
1263 {
1264         return __set_id_reg(vcpu, rd, uaddr, true);
1265 }
1266
1267 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1268                        const struct sys_reg_desc *r)
1269 {
1270         if (p->is_write)
1271                 return write_to_read_only(vcpu, p, r);
1272
1273         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1274         return true;
1275 }
1276
1277 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1278                          const struct sys_reg_desc *r)
1279 {
1280         if (p->is_write)
1281                 return write_to_read_only(vcpu, p, r);
1282
1283         p->regval = read_sysreg(clidr_el1);
1284         return true;
1285 }
1286
1287 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1288                           const struct sys_reg_desc *r)
1289 {
1290         if (p->is_write)
1291                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
1292         else
1293                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
1294         return true;
1295 }
1296
1297 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1298                           const struct sys_reg_desc *r)
1299 {
1300         u32 csselr;
1301
1302         if (p->is_write)
1303                 return write_to_read_only(vcpu, p, r);
1304
1305         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1306         p->regval = get_ccsidr(csselr);
1307
1308         /*
1309          * Guests should not be doing cache operations by set/way at all, and
1310          * for this reason, we trap them and attempt to infer the intent, so
1311          * that we can flush the entire guest's address space at the appropriate
1312          * time.
1313          * To prevent this trapping from causing performance problems, let's
1314          * expose the geometry of all data and unified caches (which are
1315          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1316          * [If guests should attempt to infer aliasing properties from the
1317          * geometry (which is not permitted by the architecture), they would
1318          * only do so for virtually indexed caches.]
1319          */
1320         if (!(csselr & 1)) // data or unified cache
1321                 p->regval &= ~GENMASK(27, 3);
1322         return true;
1323 }
1324
1325 /* sys_reg_desc initialiser for known cpufeature ID registers */
1326 #define ID_SANITISED(name) {                    \
1327         SYS_DESC(SYS_##name),                   \
1328         .access = access_id_reg,                \
1329         .get_user = get_id_reg,                 \
1330         .set_user = set_id_reg,                 \
1331 }
1332
1333 /*
1334  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1335  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1336  * (1 <= crm < 8, 0 <= Op2 < 8).
1337  */
1338 #define ID_UNALLOCATED(crm, op2) {                      \
1339         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1340         .access = access_raz_id_reg,                    \
1341         .get_user = get_raz_id_reg,                     \
1342         .set_user = set_raz_id_reg,                     \
1343 }
1344
1345 /*
1346  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1347  * For now, these are exposed just like unallocated ID regs: they appear
1348  * RAZ for the guest.
1349  */
1350 #define ID_HIDDEN(name) {                       \
1351         SYS_DESC(SYS_##name),                   \
1352         .access = access_raz_id_reg,            \
1353         .get_user = get_raz_id_reg,             \
1354         .set_user = set_raz_id_reg,             \
1355 }
1356
1357 /*
1358  * Architected system registers.
1359  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1360  *
1361  * Debug handling: We do trap most, if not all debug related system
1362  * registers. The implementation is good enough to ensure that a guest
1363  * can use these with minimal performance degradation. The drawback is
1364  * that we don't implement any of the external debug, none of the
1365  * OSlock protocol. This should be revisited if we ever encounter a
1366  * more demanding guest...
1367  */
1368 static const struct sys_reg_desc sys_reg_descs[] = {
1369         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1370         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1371         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1372
1373         DBG_BCR_BVR_WCR_WVR_EL1(0),
1374         DBG_BCR_BVR_WCR_WVR_EL1(1),
1375         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1376         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1377         DBG_BCR_BVR_WCR_WVR_EL1(2),
1378         DBG_BCR_BVR_WCR_WVR_EL1(3),
1379         DBG_BCR_BVR_WCR_WVR_EL1(4),
1380         DBG_BCR_BVR_WCR_WVR_EL1(5),
1381         DBG_BCR_BVR_WCR_WVR_EL1(6),
1382         DBG_BCR_BVR_WCR_WVR_EL1(7),
1383         DBG_BCR_BVR_WCR_WVR_EL1(8),
1384         DBG_BCR_BVR_WCR_WVR_EL1(9),
1385         DBG_BCR_BVR_WCR_WVR_EL1(10),
1386         DBG_BCR_BVR_WCR_WVR_EL1(11),
1387         DBG_BCR_BVR_WCR_WVR_EL1(12),
1388         DBG_BCR_BVR_WCR_WVR_EL1(13),
1389         DBG_BCR_BVR_WCR_WVR_EL1(14),
1390         DBG_BCR_BVR_WCR_WVR_EL1(15),
1391
1392         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1393         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1394         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1395         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1396         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1397         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1398         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1399         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1400
1401         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1402         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1403         // DBGDTR[TR]X_EL0 share the same encoding
1404         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1405
1406         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1407
1408         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1409
1410         /*
1411          * ID regs: all ID_SANITISED() entries here must have corresponding
1412          * entries in arm64_ftr_regs[].
1413          */
1414
1415         /* AArch64 mappings of the AArch32 ID registers */
1416         /* CRm=1 */
1417         ID_SANITISED(ID_PFR0_EL1),
1418         ID_SANITISED(ID_PFR1_EL1),
1419         ID_SANITISED(ID_DFR0_EL1),
1420         ID_HIDDEN(ID_AFR0_EL1),
1421         ID_SANITISED(ID_MMFR0_EL1),
1422         ID_SANITISED(ID_MMFR1_EL1),
1423         ID_SANITISED(ID_MMFR2_EL1),
1424         ID_SANITISED(ID_MMFR3_EL1),
1425
1426         /* CRm=2 */
1427         ID_SANITISED(ID_ISAR0_EL1),
1428         ID_SANITISED(ID_ISAR1_EL1),
1429         ID_SANITISED(ID_ISAR2_EL1),
1430         ID_SANITISED(ID_ISAR3_EL1),
1431         ID_SANITISED(ID_ISAR4_EL1),
1432         ID_SANITISED(ID_ISAR5_EL1),
1433         ID_SANITISED(ID_MMFR4_EL1),
1434         ID_UNALLOCATED(2,7),
1435
1436         /* CRm=3 */
1437         ID_SANITISED(MVFR0_EL1),
1438         ID_SANITISED(MVFR1_EL1),
1439         ID_SANITISED(MVFR2_EL1),
1440         ID_UNALLOCATED(3,3),
1441         ID_UNALLOCATED(3,4),
1442         ID_UNALLOCATED(3,5),
1443         ID_UNALLOCATED(3,6),
1444         ID_UNALLOCATED(3,7),
1445
1446         /* AArch64 ID registers */
1447         /* CRm=4 */
1448         ID_SANITISED(ID_AA64PFR0_EL1),
1449         ID_SANITISED(ID_AA64PFR1_EL1),
1450         ID_UNALLOCATED(4,2),
1451         ID_UNALLOCATED(4,3),
1452         { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1453         ID_UNALLOCATED(4,5),
1454         ID_UNALLOCATED(4,6),
1455         ID_UNALLOCATED(4,7),
1456
1457         /* CRm=5 */
1458         ID_SANITISED(ID_AA64DFR0_EL1),
1459         ID_SANITISED(ID_AA64DFR1_EL1),
1460         ID_UNALLOCATED(5,2),
1461         ID_UNALLOCATED(5,3),
1462         ID_HIDDEN(ID_AA64AFR0_EL1),
1463         ID_HIDDEN(ID_AA64AFR1_EL1),
1464         ID_UNALLOCATED(5,6),
1465         ID_UNALLOCATED(5,7),
1466
1467         /* CRm=6 */
1468         ID_SANITISED(ID_AA64ISAR0_EL1),
1469         ID_SANITISED(ID_AA64ISAR1_EL1),
1470         ID_UNALLOCATED(6,2),
1471         ID_UNALLOCATED(6,3),
1472         ID_UNALLOCATED(6,4),
1473         ID_UNALLOCATED(6,5),
1474         ID_UNALLOCATED(6,6),
1475         ID_UNALLOCATED(6,7),
1476
1477         /* CRm=7 */
1478         ID_SANITISED(ID_AA64MMFR0_EL1),
1479         ID_SANITISED(ID_AA64MMFR1_EL1),
1480         ID_SANITISED(ID_AA64MMFR2_EL1),
1481         ID_UNALLOCATED(7,3),
1482         ID_UNALLOCATED(7,4),
1483         ID_UNALLOCATED(7,5),
1484         ID_UNALLOCATED(7,6),
1485         ID_UNALLOCATED(7,7),
1486
1487         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1488         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1489         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1490         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1491         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1492         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1493
1494         PTRAUTH_KEY(APIA),
1495         PTRAUTH_KEY(APIB),
1496         PTRAUTH_KEY(APDA),
1497         PTRAUTH_KEY(APDB),
1498         PTRAUTH_KEY(APGA),
1499
1500         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1501         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1502         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1503
1504         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1505         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1506         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1507         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1508         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1509         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1510         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1511         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1512
1513         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1514         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1515
1516         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1517         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1518
1519         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1520         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1521
1522         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1523         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1524         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1525         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1526         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1527
1528         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1529         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1530
1531         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1532         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1533         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1534         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1535         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1536         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1537         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1538         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1539         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1540         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1541         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1542         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1543
1544         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1545         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1546
1547         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1548
1549         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1550         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1551         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1552         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1553
1554         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
1555         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1556         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1557         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1558         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1559         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1560         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1561         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1562         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1563         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1564         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1565         /*
1566          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1567          * in 32bit mode. Here we choose to reset it as zero for consistency.
1568          */
1569         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1570         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1571
1572         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1573         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1574
1575         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1576         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1577         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1578
1579         /* PMEVCNTRn_EL0 */
1580         PMU_PMEVCNTR_EL0(0),
1581         PMU_PMEVCNTR_EL0(1),
1582         PMU_PMEVCNTR_EL0(2),
1583         PMU_PMEVCNTR_EL0(3),
1584         PMU_PMEVCNTR_EL0(4),
1585         PMU_PMEVCNTR_EL0(5),
1586         PMU_PMEVCNTR_EL0(6),
1587         PMU_PMEVCNTR_EL0(7),
1588         PMU_PMEVCNTR_EL0(8),
1589         PMU_PMEVCNTR_EL0(9),
1590         PMU_PMEVCNTR_EL0(10),
1591         PMU_PMEVCNTR_EL0(11),
1592         PMU_PMEVCNTR_EL0(12),
1593         PMU_PMEVCNTR_EL0(13),
1594         PMU_PMEVCNTR_EL0(14),
1595         PMU_PMEVCNTR_EL0(15),
1596         PMU_PMEVCNTR_EL0(16),
1597         PMU_PMEVCNTR_EL0(17),
1598         PMU_PMEVCNTR_EL0(18),
1599         PMU_PMEVCNTR_EL0(19),
1600         PMU_PMEVCNTR_EL0(20),
1601         PMU_PMEVCNTR_EL0(21),
1602         PMU_PMEVCNTR_EL0(22),
1603         PMU_PMEVCNTR_EL0(23),
1604         PMU_PMEVCNTR_EL0(24),
1605         PMU_PMEVCNTR_EL0(25),
1606         PMU_PMEVCNTR_EL0(26),
1607         PMU_PMEVCNTR_EL0(27),
1608         PMU_PMEVCNTR_EL0(28),
1609         PMU_PMEVCNTR_EL0(29),
1610         PMU_PMEVCNTR_EL0(30),
1611         /* PMEVTYPERn_EL0 */
1612         PMU_PMEVTYPER_EL0(0),
1613         PMU_PMEVTYPER_EL0(1),
1614         PMU_PMEVTYPER_EL0(2),
1615         PMU_PMEVTYPER_EL0(3),
1616         PMU_PMEVTYPER_EL0(4),
1617         PMU_PMEVTYPER_EL0(5),
1618         PMU_PMEVTYPER_EL0(6),
1619         PMU_PMEVTYPER_EL0(7),
1620         PMU_PMEVTYPER_EL0(8),
1621         PMU_PMEVTYPER_EL0(9),
1622         PMU_PMEVTYPER_EL0(10),
1623         PMU_PMEVTYPER_EL0(11),
1624         PMU_PMEVTYPER_EL0(12),
1625         PMU_PMEVTYPER_EL0(13),
1626         PMU_PMEVTYPER_EL0(14),
1627         PMU_PMEVTYPER_EL0(15),
1628         PMU_PMEVTYPER_EL0(16),
1629         PMU_PMEVTYPER_EL0(17),
1630         PMU_PMEVTYPER_EL0(18),
1631         PMU_PMEVTYPER_EL0(19),
1632         PMU_PMEVTYPER_EL0(20),
1633         PMU_PMEVTYPER_EL0(21),
1634         PMU_PMEVTYPER_EL0(22),
1635         PMU_PMEVTYPER_EL0(23),
1636         PMU_PMEVTYPER_EL0(24),
1637         PMU_PMEVTYPER_EL0(25),
1638         PMU_PMEVTYPER_EL0(26),
1639         PMU_PMEVTYPER_EL0(27),
1640         PMU_PMEVTYPER_EL0(28),
1641         PMU_PMEVTYPER_EL0(29),
1642         PMU_PMEVTYPER_EL0(30),
1643         /*
1644          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1645          * in 32bit mode. Here we choose to reset it as zero for consistency.
1646          */
1647         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1648
1649         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1650         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1651         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1652 };
1653
1654 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1655                         struct sys_reg_params *p,
1656                         const struct sys_reg_desc *r)
1657 {
1658         if (p->is_write) {
1659                 return ignore_write(vcpu, p);
1660         } else {
1661                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1662                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1663                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1664
1665                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1666                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1667                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1668                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1669                 return true;
1670         }
1671 }
1672
1673 static bool trap_debug32(struct kvm_vcpu *vcpu,
1674                          struct sys_reg_params *p,
1675                          const struct sys_reg_desc *r)
1676 {
1677         if (p->is_write) {
1678                 vcpu_cp14(vcpu, r->reg) = p->regval;
1679                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1680         } else {
1681                 p->regval = vcpu_cp14(vcpu, r->reg);
1682         }
1683
1684         return true;
1685 }
1686
1687 /* AArch32 debug register mappings
1688  *
1689  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1690  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1691  *
1692  * All control registers and watchpoint value registers are mapped to
1693  * the lower 32 bits of their AArch64 equivalents. We share the trap
1694  * handlers with the above AArch64 code which checks what mode the
1695  * system is in.
1696  */
1697
1698 static bool trap_xvr(struct kvm_vcpu *vcpu,
1699                      struct sys_reg_params *p,
1700                      const struct sys_reg_desc *rd)
1701 {
1702         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1703
1704         if (p->is_write) {
1705                 u64 val = *dbg_reg;
1706
1707                 val &= 0xffffffffUL;
1708                 val |= p->regval << 32;
1709                 *dbg_reg = val;
1710
1711                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1712         } else {
1713                 p->regval = *dbg_reg >> 32;
1714         }
1715
1716         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1717
1718         return true;
1719 }
1720
1721 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1722         /* DBGBVRn */                                                   \
1723         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1724         /* DBGBCRn */                                                   \
1725         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1726         /* DBGWVRn */                                                   \
1727         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1728         /* DBGWCRn */                                                   \
1729         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1730
1731 #define DBGBXVR(n)                                                      \
1732         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1733
1734 /*
1735  * Trapped cp14 registers. We generally ignore most of the external
1736  * debug, on the principle that they don't really make sense to a
1737  * guest. Revisit this one day, would this principle change.
1738  */
1739 static const struct sys_reg_desc cp14_regs[] = {
1740         /* DBGIDR */
1741         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1742         /* DBGDTRRXext */
1743         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1744
1745         DBG_BCR_BVR_WCR_WVR(0),
1746         /* DBGDSCRint */
1747         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1748         DBG_BCR_BVR_WCR_WVR(1),
1749         /* DBGDCCINT */
1750         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1751         /* DBGDSCRext */
1752         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1753         DBG_BCR_BVR_WCR_WVR(2),
1754         /* DBGDTR[RT]Xint */
1755         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1756         /* DBGDTR[RT]Xext */
1757         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1758         DBG_BCR_BVR_WCR_WVR(3),
1759         DBG_BCR_BVR_WCR_WVR(4),
1760         DBG_BCR_BVR_WCR_WVR(5),
1761         /* DBGWFAR */
1762         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1763         /* DBGOSECCR */
1764         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1765         DBG_BCR_BVR_WCR_WVR(6),
1766         /* DBGVCR */
1767         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1768         DBG_BCR_BVR_WCR_WVR(7),
1769         DBG_BCR_BVR_WCR_WVR(8),
1770         DBG_BCR_BVR_WCR_WVR(9),
1771         DBG_BCR_BVR_WCR_WVR(10),
1772         DBG_BCR_BVR_WCR_WVR(11),
1773         DBG_BCR_BVR_WCR_WVR(12),
1774         DBG_BCR_BVR_WCR_WVR(13),
1775         DBG_BCR_BVR_WCR_WVR(14),
1776         DBG_BCR_BVR_WCR_WVR(15),
1777
1778         /* DBGDRAR (32bit) */
1779         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1780
1781         DBGBXVR(0),
1782         /* DBGOSLAR */
1783         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1784         DBGBXVR(1),
1785         /* DBGOSLSR */
1786         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1787         DBGBXVR(2),
1788         DBGBXVR(3),
1789         /* DBGOSDLR */
1790         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1791         DBGBXVR(4),
1792         /* DBGPRCR */
1793         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1794         DBGBXVR(5),
1795         DBGBXVR(6),
1796         DBGBXVR(7),
1797         DBGBXVR(8),
1798         DBGBXVR(9),
1799         DBGBXVR(10),
1800         DBGBXVR(11),
1801         DBGBXVR(12),
1802         DBGBXVR(13),
1803         DBGBXVR(14),
1804         DBGBXVR(15),
1805
1806         /* DBGDSAR (32bit) */
1807         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1808
1809         /* DBGDEVID2 */
1810         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1811         /* DBGDEVID1 */
1812         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1813         /* DBGDEVID */
1814         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1815         /* DBGCLAIMSET */
1816         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1817         /* DBGCLAIMCLR */
1818         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1819         /* DBGAUTHSTATUS */
1820         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1821 };
1822
1823 /* Trapped cp14 64bit registers */
1824 static const struct sys_reg_desc cp14_64_regs[] = {
1825         /* DBGDRAR (64bit) */
1826         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1827
1828         /* DBGDSAR (64bit) */
1829         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1830 };
1831
1832 /* Macro to expand the PMEVCNTRn register */
1833 #define PMU_PMEVCNTR(n)                                                 \
1834         /* PMEVCNTRn */                                                 \
1835         { Op1(0), CRn(0b1110),                                          \
1836           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1837           access_pmu_evcntr }
1838
1839 /* Macro to expand the PMEVTYPERn register */
1840 #define PMU_PMEVTYPER(n)                                                \
1841         /* PMEVTYPERn */                                                \
1842         { Op1(0), CRn(0b1110),                                          \
1843           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1844           access_pmu_evtyper }
1845
1846 /*
1847  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1848  * depending on the way they are accessed (as a 32bit or a 64bit
1849  * register).
1850  */
1851 static const struct sys_reg_desc cp15_regs[] = {
1852         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1853         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1854         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1855         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1856         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1857         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1858         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1859         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1860         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1861         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1862         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1863         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1864
1865         /*
1866          * DC{C,I,CI}SW operations:
1867          */
1868         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1869         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1870         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1871
1872         /* PMU */
1873         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1874         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1875         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1876         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1877         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1878         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1879         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1880         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1881         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1882         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1883         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1884         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1885         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1886         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1887         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1888
1889         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1890         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1891         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1892         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1893
1894         /* ICC_SRE */
1895         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1896
1897         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1898
1899         /* Arch Tmers */
1900         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1901         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1902
1903         /* PMEVCNTRn */
1904         PMU_PMEVCNTR(0),
1905         PMU_PMEVCNTR(1),
1906         PMU_PMEVCNTR(2),
1907         PMU_PMEVCNTR(3),
1908         PMU_PMEVCNTR(4),
1909         PMU_PMEVCNTR(5),
1910         PMU_PMEVCNTR(6),
1911         PMU_PMEVCNTR(7),
1912         PMU_PMEVCNTR(8),
1913         PMU_PMEVCNTR(9),
1914         PMU_PMEVCNTR(10),
1915         PMU_PMEVCNTR(11),
1916         PMU_PMEVCNTR(12),
1917         PMU_PMEVCNTR(13),
1918         PMU_PMEVCNTR(14),
1919         PMU_PMEVCNTR(15),
1920         PMU_PMEVCNTR(16),
1921         PMU_PMEVCNTR(17),
1922         PMU_PMEVCNTR(18),
1923         PMU_PMEVCNTR(19),
1924         PMU_PMEVCNTR(20),
1925         PMU_PMEVCNTR(21),
1926         PMU_PMEVCNTR(22),
1927         PMU_PMEVCNTR(23),
1928         PMU_PMEVCNTR(24),
1929         PMU_PMEVCNTR(25),
1930         PMU_PMEVCNTR(26),
1931         PMU_PMEVCNTR(27),
1932         PMU_PMEVCNTR(28),
1933         PMU_PMEVCNTR(29),
1934         PMU_PMEVCNTR(30),
1935         /* PMEVTYPERn */
1936         PMU_PMEVTYPER(0),
1937         PMU_PMEVTYPER(1),
1938         PMU_PMEVTYPER(2),
1939         PMU_PMEVTYPER(3),
1940         PMU_PMEVTYPER(4),
1941         PMU_PMEVTYPER(5),
1942         PMU_PMEVTYPER(6),
1943         PMU_PMEVTYPER(7),
1944         PMU_PMEVTYPER(8),
1945         PMU_PMEVTYPER(9),
1946         PMU_PMEVTYPER(10),
1947         PMU_PMEVTYPER(11),
1948         PMU_PMEVTYPER(12),
1949         PMU_PMEVTYPER(13),
1950         PMU_PMEVTYPER(14),
1951         PMU_PMEVTYPER(15),
1952         PMU_PMEVTYPER(16),
1953         PMU_PMEVTYPER(17),
1954         PMU_PMEVTYPER(18),
1955         PMU_PMEVTYPER(19),
1956         PMU_PMEVTYPER(20),
1957         PMU_PMEVTYPER(21),
1958         PMU_PMEVTYPER(22),
1959         PMU_PMEVTYPER(23),
1960         PMU_PMEVTYPER(24),
1961         PMU_PMEVTYPER(25),
1962         PMU_PMEVTYPER(26),
1963         PMU_PMEVTYPER(27),
1964         PMU_PMEVTYPER(28),
1965         PMU_PMEVTYPER(29),
1966         PMU_PMEVTYPER(30),
1967         /* PMCCFILTR */
1968         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1969
1970         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1971         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1972         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
1973 };
1974
1975 static const struct sys_reg_desc cp15_64_regs[] = {
1976         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1977         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1978         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1979         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1980         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1981         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1982         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
1983 };
1984
1985 /* Target specific emulation tables */
1986 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1987
1988 void kvm_register_target_sys_reg_table(unsigned int target,
1989                                        struct kvm_sys_reg_target_table *table)
1990 {
1991         target_tables[target] = table;
1992 }
1993
1994 /* Get specific register table for this target. */
1995 static const struct sys_reg_desc *get_target_table(unsigned target,
1996                                                    bool mode_is_64,
1997                                                    size_t *num)
1998 {
1999         struct kvm_sys_reg_target_table *table;
2000
2001         table = target_tables[target];
2002         if (mode_is_64) {
2003                 *num = table->table64.num;
2004                 return table->table64.table;
2005         } else {
2006                 *num = table->table32.num;
2007                 return table->table32.table;
2008         }
2009 }
2010
2011 static int match_sys_reg(const void *key, const void *elt)
2012 {
2013         const unsigned long pval = (unsigned long)key;
2014         const struct sys_reg_desc *r = elt;
2015
2016         return pval - reg_to_encoding(r);
2017 }
2018
2019 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2020                                          const struct sys_reg_desc table[],
2021                                          unsigned int num)
2022 {
2023         unsigned long pval = reg_to_encoding(params);
2024
2025         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2026 }
2027
2028 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
2029 {
2030         kvm_inject_undefined(vcpu);
2031         return 1;
2032 }
2033
2034 static void perform_access(struct kvm_vcpu *vcpu,
2035                            struct sys_reg_params *params,
2036                            const struct sys_reg_desc *r)
2037 {
2038         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2039
2040         /* Check for regs disabled by runtime config */
2041         if (sysreg_hidden_from_guest(vcpu, r)) {
2042                 kvm_inject_undefined(vcpu);
2043                 return;
2044         }
2045
2046         /*
2047          * Not having an accessor means that we have configured a trap
2048          * that we don't know how to handle. This certainly qualifies
2049          * as a gross bug that should be fixed right away.
2050          */
2051         BUG_ON(!r->access);
2052
2053         /* Skip instruction if instructed so */
2054         if (likely(r->access(vcpu, params, r)))
2055                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2056 }
2057
2058 /*
2059  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2060  *                call the corresponding trap handler.
2061  *
2062  * @params: pointer to the descriptor of the access
2063  * @table: array of trap descriptors
2064  * @num: size of the trap descriptor array
2065  *
2066  * Return 0 if the access has been handled, and -1 if not.
2067  */
2068 static int emulate_cp(struct kvm_vcpu *vcpu,
2069                       struct sys_reg_params *params,
2070                       const struct sys_reg_desc *table,
2071                       size_t num)
2072 {
2073         const struct sys_reg_desc *r;
2074
2075         if (!table)
2076                 return -1;      /* Not handled */
2077
2078         r = find_reg(params, table, num);
2079
2080         if (r) {
2081                 perform_access(vcpu, params, r);
2082                 return 0;
2083         }
2084
2085         /* Not handled */
2086         return -1;
2087 }
2088
2089 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2090                                 struct sys_reg_params *params)
2091 {
2092         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
2093         int cp = -1;
2094
2095         switch(hsr_ec) {
2096         case ESR_ELx_EC_CP15_32:
2097         case ESR_ELx_EC_CP15_64:
2098                 cp = 15;
2099                 break;
2100         case ESR_ELx_EC_CP14_MR:
2101         case ESR_ELx_EC_CP14_64:
2102                 cp = 14;
2103                 break;
2104         default:
2105                 WARN_ON(1);
2106         }
2107
2108         kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
2109                 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2110         print_sys_reg_instr(params);
2111         kvm_inject_undefined(vcpu);
2112 }
2113
2114 /**
2115  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2116  * @vcpu: The VCPU pointer
2117  * @run:  The kvm_run struct
2118  */
2119 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2120                             const struct sys_reg_desc *global,
2121                             size_t nr_global,
2122                             const struct sys_reg_desc *target_specific,
2123                             size_t nr_specific)
2124 {
2125         struct sys_reg_params params;
2126         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2127         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2128         int Rt2 = (hsr >> 10) & 0x1f;
2129
2130         params.is_aarch32 = true;
2131         params.is_32bit = false;
2132         params.CRm = (hsr >> 1) & 0xf;
2133         params.is_write = ((hsr & 1) == 0);
2134
2135         params.Op0 = 0;
2136         params.Op1 = (hsr >> 16) & 0xf;
2137         params.Op2 = 0;
2138         params.CRn = 0;
2139
2140         /*
2141          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2142          * backends between AArch32 and AArch64, we get away with it.
2143          */
2144         if (params.is_write) {
2145                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2146                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2147         }
2148
2149         /*
2150          * Try to emulate the coprocessor access using the target
2151          * specific table first, and using the global table afterwards.
2152          * If either of the tables contains a handler, handle the
2153          * potential register operation in the case of a read and return
2154          * with success.
2155          */
2156         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2157             !emulate_cp(vcpu, &params, global, nr_global)) {
2158                 /* Split up the value between registers for the read side */
2159                 if (!params.is_write) {
2160                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2161                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2162                 }
2163
2164                 return 1;
2165         }
2166
2167         unhandled_cp_access(vcpu, &params);
2168         return 1;
2169 }
2170
2171 /**
2172  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2173  * @vcpu: The VCPU pointer
2174  * @run:  The kvm_run struct
2175  */
2176 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2177                             const struct sys_reg_desc *global,
2178                             size_t nr_global,
2179                             const struct sys_reg_desc *target_specific,
2180                             size_t nr_specific)
2181 {
2182         struct sys_reg_params params;
2183         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2184         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2185
2186         params.is_aarch32 = true;
2187         params.is_32bit = true;
2188         params.CRm = (hsr >> 1) & 0xf;
2189         params.regval = vcpu_get_reg(vcpu, Rt);
2190         params.is_write = ((hsr & 1) == 0);
2191         params.CRn = (hsr >> 10) & 0xf;
2192         params.Op0 = 0;
2193         params.Op1 = (hsr >> 14) & 0x7;
2194         params.Op2 = (hsr >> 17) & 0x7;
2195
2196         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2197             !emulate_cp(vcpu, &params, global, nr_global)) {
2198                 if (!params.is_write)
2199                         vcpu_set_reg(vcpu, Rt, params.regval);
2200                 return 1;
2201         }
2202
2203         unhandled_cp_access(vcpu, &params);
2204         return 1;
2205 }
2206
2207 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2208 {
2209         const struct sys_reg_desc *target_specific;
2210         size_t num;
2211
2212         target_specific = get_target_table(vcpu->arch.target, false, &num);
2213         return kvm_handle_cp_64(vcpu,
2214                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2215                                 target_specific, num);
2216 }
2217
2218 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2219 {
2220         const struct sys_reg_desc *target_specific;
2221         size_t num;
2222
2223         target_specific = get_target_table(vcpu->arch.target, false, &num);
2224         return kvm_handle_cp_32(vcpu,
2225                                 cp15_regs, ARRAY_SIZE(cp15_regs),
2226                                 target_specific, num);
2227 }
2228
2229 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2230 {
2231         return kvm_handle_cp_64(vcpu,
2232                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2233                                 NULL, 0);
2234 }
2235
2236 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2237 {
2238         return kvm_handle_cp_32(vcpu,
2239                                 cp14_regs, ARRAY_SIZE(cp14_regs),
2240                                 NULL, 0);
2241 }
2242
2243 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2244                            struct sys_reg_params *params)
2245 {
2246         size_t num;
2247         const struct sys_reg_desc *table, *r;
2248
2249         table = get_target_table(vcpu->arch.target, true, &num);
2250
2251         /* Search target-specific then generic table. */
2252         r = find_reg(params, table, num);
2253         if (!r)
2254                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2255
2256         if (likely(r)) {
2257                 perform_access(vcpu, params, r);
2258         } else {
2259                 kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2260                         *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2261                 print_sys_reg_instr(params);
2262                 kvm_inject_undefined(vcpu);
2263         }
2264         return 1;
2265 }
2266
2267 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2268                               const struct sys_reg_desc *table, size_t num)
2269 {
2270         unsigned long i;
2271
2272         for (i = 0; i < num; i++)
2273                 if (table[i].reset)
2274                         table[i].reset(vcpu, &table[i]);
2275 }
2276
2277 /**
2278  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2279  * @vcpu: The VCPU pointer
2280  * @run:  The kvm_run struct
2281  */
2282 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2283 {
2284         struct sys_reg_params params;
2285         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2286         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2287         int ret;
2288
2289         trace_kvm_handle_sys_reg(esr);
2290
2291         params.is_aarch32 = false;
2292         params.is_32bit = false;
2293         params.Op0 = (esr >> 20) & 3;
2294         params.Op1 = (esr >> 14) & 0x7;
2295         params.CRn = (esr >> 10) & 0xf;
2296         params.CRm = (esr >> 1) & 0xf;
2297         params.Op2 = (esr >> 17) & 0x7;
2298         params.regval = vcpu_get_reg(vcpu, Rt);
2299         params.is_write = !(esr & 1);
2300
2301         ret = emulate_sys_reg(vcpu, &params);
2302
2303         if (!params.is_write)
2304                 vcpu_set_reg(vcpu, Rt, params.regval);
2305         return ret;
2306 }
2307
2308 /******************************************************************************
2309  * Userspace API
2310  *****************************************************************************/
2311
2312 static bool index_to_params(u64 id, struct sys_reg_params *params)
2313 {
2314         switch (id & KVM_REG_SIZE_MASK) {
2315         case KVM_REG_SIZE_U64:
2316                 /* Any unused index bits means it's not valid. */
2317                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2318                               | KVM_REG_ARM_COPROC_MASK
2319                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2320                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2321                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2322                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2323                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2324                         return false;
2325                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2326                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2327                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2328                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2329                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2330                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2331                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2332                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2333                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2334                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2335                 return true;
2336         default:
2337                 return false;
2338         }
2339 }
2340
2341 const struct sys_reg_desc *find_reg_by_id(u64 id,
2342                                           struct sys_reg_params *params,
2343                                           const struct sys_reg_desc table[],
2344                                           unsigned int num)
2345 {
2346         if (!index_to_params(id, params))
2347                 return NULL;
2348
2349         return find_reg(params, table, num);
2350 }
2351
2352 /* Decode an index value, and find the sys_reg_desc entry. */
2353 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2354                                                     u64 id)
2355 {
2356         size_t num;
2357         const struct sys_reg_desc *table, *r;
2358         struct sys_reg_params params;
2359
2360         /* We only do sys_reg for now. */
2361         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2362                 return NULL;
2363
2364         table = get_target_table(vcpu->arch.target, true, &num);
2365         r = find_reg_by_id(id, &params, table, num);
2366         if (!r)
2367                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2368
2369         /* Not saved in the sys_reg array and not otherwise accessible? */
2370         if (r && !(r->reg || r->get_user))
2371                 r = NULL;
2372
2373         return r;
2374 }
2375
2376 /*
2377  * These are the invariant sys_reg registers: we let the guest see the
2378  * host versions of these, so they're part of the guest state.
2379  *
2380  * A future CPU may provide a mechanism to present different values to
2381  * the guest, or a future kvm may trap them.
2382  */
2383
2384 #define FUNCTION_INVARIANT(reg)                                         \
2385         static void get_##reg(struct kvm_vcpu *v,                       \
2386                               const struct sys_reg_desc *r)             \
2387         {                                                               \
2388                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2389         }
2390
2391 FUNCTION_INVARIANT(midr_el1)
2392 FUNCTION_INVARIANT(revidr_el1)
2393 FUNCTION_INVARIANT(clidr_el1)
2394 FUNCTION_INVARIANT(aidr_el1)
2395
2396 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2397 {
2398         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2399 }
2400
2401 /* ->val is filled in by kvm_sys_reg_table_init() */
2402 static struct sys_reg_desc invariant_sys_regs[] = {
2403         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2404         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2405         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2406         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2407         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2408 };
2409
2410 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2411 {
2412         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2413                 return -EFAULT;
2414         return 0;
2415 }
2416
2417 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2418 {
2419         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2420                 return -EFAULT;
2421         return 0;
2422 }
2423
2424 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2425 {
2426         struct sys_reg_params params;
2427         const struct sys_reg_desc *r;
2428
2429         r = find_reg_by_id(id, &params, invariant_sys_regs,
2430                            ARRAY_SIZE(invariant_sys_regs));
2431         if (!r)
2432                 return -ENOENT;
2433
2434         return reg_to_user(uaddr, &r->val, id);
2435 }
2436
2437 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2438 {
2439         struct sys_reg_params params;
2440         const struct sys_reg_desc *r;
2441         int err;
2442         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2443
2444         r = find_reg_by_id(id, &params, invariant_sys_regs,
2445                            ARRAY_SIZE(invariant_sys_regs));
2446         if (!r)
2447                 return -ENOENT;
2448
2449         err = reg_from_user(&val, uaddr, id);
2450         if (err)
2451                 return err;
2452
2453         /* This is what we mean by invariant: you can't change it. */
2454         if (r->val != val)
2455                 return -EINVAL;
2456
2457         return 0;
2458 }
2459
2460 static bool is_valid_cache(u32 val)
2461 {
2462         u32 level, ctype;
2463
2464         if (val >= CSSELR_MAX)
2465                 return false;
2466
2467         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2468         level = (val >> 1);
2469         ctype = (cache_levels >> (level * 3)) & 7;
2470
2471         switch (ctype) {
2472         case 0: /* No cache */
2473                 return false;
2474         case 1: /* Instruction cache only */
2475                 return (val & 1);
2476         case 2: /* Data cache only */
2477         case 4: /* Unified cache */
2478                 return !(val & 1);
2479         case 3: /* Separate instruction and data caches */
2480                 return true;
2481         default: /* Reserved: we can't know instruction or data. */
2482                 return false;
2483         }
2484 }
2485
2486 static int demux_c15_get(u64 id, void __user *uaddr)
2487 {
2488         u32 val;
2489         u32 __user *uval = uaddr;
2490
2491         /* Fail if we have unknown bits set. */
2492         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2493                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2494                 return -ENOENT;
2495
2496         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2497         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2498                 if (KVM_REG_SIZE(id) != 4)
2499                         return -ENOENT;
2500                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2501                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2502                 if (!is_valid_cache(val))
2503                         return -ENOENT;
2504
2505                 return put_user(get_ccsidr(val), uval);
2506         default:
2507                 return -ENOENT;
2508         }
2509 }
2510
2511 static int demux_c15_set(u64 id, void __user *uaddr)
2512 {
2513         u32 val, newval;
2514         u32 __user *uval = uaddr;
2515
2516         /* Fail if we have unknown bits set. */
2517         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2518                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2519                 return -ENOENT;
2520
2521         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2522         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2523                 if (KVM_REG_SIZE(id) != 4)
2524                         return -ENOENT;
2525                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2526                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2527                 if (!is_valid_cache(val))
2528                         return -ENOENT;
2529
2530                 if (get_user(newval, uval))
2531                         return -EFAULT;
2532
2533                 /* This is also invariant: you can't change it. */
2534                 if (newval != get_ccsidr(val))
2535                         return -EINVAL;
2536                 return 0;
2537         default:
2538                 return -ENOENT;
2539         }
2540 }
2541
2542 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2543 {
2544         const struct sys_reg_desc *r;
2545         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2546
2547         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2548                 return demux_c15_get(reg->id, uaddr);
2549
2550         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2551                 return -ENOENT;
2552
2553         r = index_to_sys_reg_desc(vcpu, reg->id);
2554         if (!r)
2555                 return get_invariant_sys_reg(reg->id, uaddr);
2556
2557         /* Check for regs disabled by runtime config */
2558         if (sysreg_hidden_from_user(vcpu, r))
2559                 return -ENOENT;
2560
2561         if (r->get_user)
2562                 return (r->get_user)(vcpu, r, reg, uaddr);
2563
2564         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2565 }
2566
2567 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2568 {
2569         const struct sys_reg_desc *r;
2570         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2571
2572         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2573                 return demux_c15_set(reg->id, uaddr);
2574
2575         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2576                 return -ENOENT;
2577
2578         r = index_to_sys_reg_desc(vcpu, reg->id);
2579         if (!r)
2580                 return set_invariant_sys_reg(reg->id, uaddr);
2581
2582         /* Check for regs disabled by runtime config */
2583         if (sysreg_hidden_from_user(vcpu, r))
2584                 return -ENOENT;
2585
2586         if (r->set_user)
2587                 return (r->set_user)(vcpu, r, reg, uaddr);
2588
2589         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2590 }
2591
2592 static unsigned int num_demux_regs(void)
2593 {
2594         unsigned int i, count = 0;
2595
2596         for (i = 0; i < CSSELR_MAX; i++)
2597                 if (is_valid_cache(i))
2598                         count++;
2599
2600         return count;
2601 }
2602
2603 static int write_demux_regids(u64 __user *uindices)
2604 {
2605         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2606         unsigned int i;
2607
2608         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2609         for (i = 0; i < CSSELR_MAX; i++) {
2610                 if (!is_valid_cache(i))
2611                         continue;
2612                 if (put_user(val | i, uindices))
2613                         return -EFAULT;
2614                 uindices++;
2615         }
2616         return 0;
2617 }
2618
2619 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2620 {
2621         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2622                 KVM_REG_ARM64_SYSREG |
2623                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2624                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2625                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2626                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2627                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2628 }
2629
2630 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2631 {
2632         if (!*uind)
2633                 return true;
2634
2635         if (put_user(sys_reg_to_index(reg), *uind))
2636                 return false;
2637
2638         (*uind)++;
2639         return true;
2640 }
2641
2642 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2643                             const struct sys_reg_desc *rd,
2644                             u64 __user **uind,
2645                             unsigned int *total)
2646 {
2647         /*
2648          * Ignore registers we trap but don't save,
2649          * and for which no custom user accessor is provided.
2650          */
2651         if (!(rd->reg || rd->get_user))
2652                 return 0;
2653
2654         if (sysreg_hidden_from_user(vcpu, rd))
2655                 return 0;
2656
2657         if (!copy_reg_to_user(rd, uind))
2658                 return -EFAULT;
2659
2660         (*total)++;
2661         return 0;
2662 }
2663
2664 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2665 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2666 {
2667         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2668         unsigned int total = 0;
2669         size_t num;
2670         int err;
2671
2672         /* We check for duplicates here, to allow arch-specific overrides. */
2673         i1 = get_target_table(vcpu->arch.target, true, &num);
2674         end1 = i1 + num;
2675         i2 = sys_reg_descs;
2676         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2677
2678         BUG_ON(i1 == end1 || i2 == end2);
2679
2680         /* Walk carefully, as both tables may refer to the same register. */
2681         while (i1 || i2) {
2682                 int cmp = cmp_sys_reg(i1, i2);
2683                 /* target-specific overrides generic entry. */
2684                 if (cmp <= 0)
2685                         err = walk_one_sys_reg(vcpu, i1, &uind, &total);
2686                 else
2687                         err = walk_one_sys_reg(vcpu, i2, &uind, &total);
2688
2689                 if (err)
2690                         return err;
2691
2692                 if (cmp <= 0 && ++i1 == end1)
2693                         i1 = NULL;
2694                 if (cmp >= 0 && ++i2 == end2)
2695                         i2 = NULL;
2696         }
2697         return total;
2698 }
2699
2700 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2701 {
2702         return ARRAY_SIZE(invariant_sys_regs)
2703                 + num_demux_regs()
2704                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2705 }
2706
2707 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2708 {
2709         unsigned int i;
2710         int err;
2711
2712         /* Then give them all the invariant registers' indices. */
2713         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2714                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2715                         return -EFAULT;
2716                 uindices++;
2717         }
2718
2719         err = walk_sys_regs(vcpu, uindices);
2720         if (err < 0)
2721                 return err;
2722         uindices += err;
2723
2724         return write_demux_regids(uindices);
2725 }
2726
2727 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2728 {
2729         unsigned int i;
2730
2731         for (i = 1; i < n; i++) {
2732                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2733                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2734                         return 1;
2735                 }
2736         }
2737
2738         return 0;
2739 }
2740
2741 void kvm_sys_reg_table_init(void)
2742 {
2743         unsigned int i;
2744         struct sys_reg_desc clidr;
2745
2746         /* Make sure tables are unique and in order. */
2747         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2748         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2749         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2750         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2751         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2752         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2753
2754         /* We abuse the reset function to overwrite the table itself. */
2755         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2756                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2757
2758         /*
2759          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2760          *
2761          *   If software reads the Cache Type fields from Ctype1
2762          *   upwards, once it has seen a value of 0b000, no caches
2763          *   exist at further-out levels of the hierarchy. So, for
2764          *   example, if Ctype3 is the first Cache Type field with a
2765          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2766          *   ignored.
2767          */
2768         get_clidr_el1(NULL, &clidr); /* Ugly... */
2769         cache_levels = clidr.val;
2770         for (i = 0; i < 7; i++)
2771                 if (((cache_levels >> (i*3)) & 7) == 0)
2772                         break;
2773         /* Clear all higher bits. */
2774         cache_levels &= (1 << (i*3))-1;
2775 }
2776
2777 /**
2778  * kvm_reset_sys_regs - sets system registers to reset value
2779  * @vcpu: The VCPU pointer
2780  *
2781  * This function finds the right table above and sets the registers on the
2782  * virtual CPU struct to their architecturally defined reset values.
2783  */
2784 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2785 {
2786         size_t num;
2787         const struct sys_reg_desc *table;
2788
2789         /* Catch someone adding a register without putting in reset entry. */
2790         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2791
2792         /* Generic chip reset first (so target could override). */
2793         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2794
2795         table = get_target_table(vcpu->arch.target, true, &num);
2796         reset_sys_reg_descs(vcpu, table, num);
2797
2798         for (num = 1; num < NR_SYS_REGS; num++) {
2799                 if (WARN(__vcpu_sys_reg(vcpu, num) == 0x4242424242424242,
2800                          "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2801                         break;
2802         }
2803 }