3313dedfa5053413bae960bd44eee01439cb63df
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_hyp.h>
25 #include <asm/kvm_mmu.h>
26 #include <asm/perf_event.h>
27 #include <asm/sysreg.h>
28
29 #include <trace/events/kvm.h>
30
31 #include "sys_regs.h"
32
33 #include "trace.h"
34
35 /*
36  * All of this file is extremely similar to the ARM coproc.c, but the
37  * types are different. My gut feeling is that it should be pretty
38  * easy to merge, but that would be an ABI breakage -- again. VFP
39  * would also need to be abstracted.
40  *
41  * For AArch32, we only take care of what is being trapped. Anything
42  * that has to do with init and userspace access has to go via the
43  * 64bit interface.
44  */
45
46 static bool read_from_write_only(struct kvm_vcpu *vcpu,
47                                  struct sys_reg_params *params,
48                                  const struct sys_reg_desc *r)
49 {
50         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
51         print_sys_reg_instr(params);
52         kvm_inject_undefined(vcpu);
53         return false;
54 }
55
56 static bool write_to_read_only(struct kvm_vcpu *vcpu,
57                                struct sys_reg_params *params,
58                                const struct sys_reg_desc *r)
59 {
60         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
61         print_sys_reg_instr(params);
62         kvm_inject_undefined(vcpu);
63         return false;
64 }
65
66 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
67 {
68         u64 val = 0x8badf00d8badf00d;
69
70         if (vcpu->arch.sysregs_loaded_on_cpu &&
71             __vcpu_read_sys_reg_from_cpu(reg, &val))
72                 return val;
73
74         return __vcpu_sys_reg(vcpu, reg);
75 }
76
77 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
78 {
79         if (vcpu->arch.sysregs_loaded_on_cpu &&
80             __vcpu_write_sys_reg_to_cpu(val, reg))
81                 return;
82
83          __vcpu_sys_reg(vcpu, reg) = val;
84 }
85
86 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
87 static u32 cache_levels;
88
89 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
90 #define CSSELR_MAX 14
91
92 /* Which cache CCSIDR represents depends on CSSELR value. */
93 static u32 get_ccsidr(u32 csselr)
94 {
95         u32 ccsidr;
96
97         /* Make sure noone else changes CSSELR during this! */
98         local_irq_disable();
99         write_sysreg(csselr, csselr_el1);
100         isb();
101         ccsidr = read_sysreg(ccsidr_el1);
102         local_irq_enable();
103
104         return ccsidr;
105 }
106
107 /*
108  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
109  */
110 static bool access_dcsw(struct kvm_vcpu *vcpu,
111                         struct sys_reg_params *p,
112                         const struct sys_reg_desc *r)
113 {
114         if (!p->is_write)
115                 return read_from_write_only(vcpu, p, r);
116
117         /*
118          * Only track S/W ops if we don't have FWB. It still indicates
119          * that the guest is a bit broken (S/W operations should only
120          * be done by firmware, knowing that there is only a single
121          * CPU left in the system, and certainly not from non-secure
122          * software).
123          */
124         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
125                 kvm_set_way_flush(vcpu);
126
127         return true;
128 }
129
130 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
131 {
132         switch (r->aarch32_map) {
133         case AA32_LO:
134                 *mask = GENMASK_ULL(31, 0);
135                 *shift = 0;
136                 break;
137         case AA32_HI:
138                 *mask = GENMASK_ULL(63, 32);
139                 *shift = 32;
140                 break;
141         default:
142                 *mask = GENMASK_ULL(63, 0);
143                 *shift = 0;
144                 break;
145         }
146 }
147
148 /*
149  * Generic accessor for VM registers. Only called as long as HCR_TVM
150  * is set. If the guest enables the MMU, we stop trapping the VM
151  * sys_regs and leave it in complete control of the caches.
152  */
153 static bool access_vm_reg(struct kvm_vcpu *vcpu,
154                           struct sys_reg_params *p,
155                           const struct sys_reg_desc *r)
156 {
157         bool was_enabled = vcpu_has_cache_enabled(vcpu);
158         u64 val, mask, shift;
159
160         BUG_ON(!p->is_write);
161
162         get_access_mask(r, &mask, &shift);
163
164         if (~mask) {
165                 val = vcpu_read_sys_reg(vcpu, r->reg);
166                 val &= ~mask;
167         } else {
168                 val = 0;
169         }
170
171         val |= (p->regval & (mask >> shift)) << shift;
172         vcpu_write_sys_reg(vcpu, val, r->reg);
173
174         kvm_toggle_cache(vcpu, was_enabled);
175         return true;
176 }
177
178 static bool access_actlr(struct kvm_vcpu *vcpu,
179                          struct sys_reg_params *p,
180                          const struct sys_reg_desc *r)
181 {
182         u64 mask, shift;
183
184         if (p->is_write)
185                 return ignore_write(vcpu, p);
186
187         get_access_mask(r, &mask, &shift);
188         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
189
190         return true;
191 }
192
193 /*
194  * Trap handler for the GICv3 SGI generation system register.
195  * Forward the request to the VGIC emulation.
196  * The cp15_64 code makes sure this automatically works
197  * for both AArch64 and AArch32 accesses.
198  */
199 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
200                            struct sys_reg_params *p,
201                            const struct sys_reg_desc *r)
202 {
203         bool g1;
204
205         if (!p->is_write)
206                 return read_from_write_only(vcpu, p, r);
207
208         /*
209          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
210          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
211          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
212          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
213          * group.
214          */
215         if (p->Op0 == 0) {              /* AArch32 */
216                 switch (p->Op1) {
217                 default:                /* Keep GCC quiet */
218                 case 0:                 /* ICC_SGI1R */
219                         g1 = true;
220                         break;
221                 case 1:                 /* ICC_ASGI1R */
222                 case 2:                 /* ICC_SGI0R */
223                         g1 = false;
224                         break;
225                 }
226         } else {                        /* AArch64 */
227                 switch (p->Op2) {
228                 default:                /* Keep GCC quiet */
229                 case 5:                 /* ICC_SGI1R_EL1 */
230                         g1 = true;
231                         break;
232                 case 6:                 /* ICC_ASGI1R_EL1 */
233                 case 7:                 /* ICC_SGI0R_EL1 */
234                         g1 = false;
235                         break;
236                 }
237         }
238
239         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
240
241         return true;
242 }
243
244 static bool access_gic_sre(struct kvm_vcpu *vcpu,
245                            struct sys_reg_params *p,
246                            const struct sys_reg_desc *r)
247 {
248         if (p->is_write)
249                 return ignore_write(vcpu, p);
250
251         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
252         return true;
253 }
254
255 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
256                         struct sys_reg_params *p,
257                         const struct sys_reg_desc *r)
258 {
259         if (p->is_write)
260                 return ignore_write(vcpu, p);
261         else
262                 return read_zero(vcpu, p);
263 }
264
265 /*
266  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
267  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
268  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
269  * treat it separately.
270  */
271 static bool trap_loregion(struct kvm_vcpu *vcpu,
272                           struct sys_reg_params *p,
273                           const struct sys_reg_desc *r)
274 {
275         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
276         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
277                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
278
279         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
280                 kvm_inject_undefined(vcpu);
281                 return false;
282         }
283
284         if (p->is_write && sr == SYS_LORID_EL1)
285                 return write_to_read_only(vcpu, p, r);
286
287         return trap_raz_wi(vcpu, p, r);
288 }
289
290 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
291                            struct sys_reg_params *p,
292                            const struct sys_reg_desc *r)
293 {
294         if (p->is_write) {
295                 return ignore_write(vcpu, p);
296         } else {
297                 p->regval = (1 << 3);
298                 return true;
299         }
300 }
301
302 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
303                                    struct sys_reg_params *p,
304                                    const struct sys_reg_desc *r)
305 {
306         if (p->is_write) {
307                 return ignore_write(vcpu, p);
308         } else {
309                 p->regval = read_sysreg(dbgauthstatus_el1);
310                 return true;
311         }
312 }
313
314 /*
315  * We want to avoid world-switching all the DBG registers all the
316  * time:
317  * 
318  * - If we've touched any debug register, it is likely that we're
319  *   going to touch more of them. It then makes sense to disable the
320  *   traps and start doing the save/restore dance
321  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
322  *   then mandatory to save/restore the registers, as the guest
323  *   depends on them.
324  * 
325  * For this, we use a DIRTY bit, indicating the guest has modified the
326  * debug registers, used as follow:
327  *
328  * On guest entry:
329  * - If the dirty bit is set (because we're coming back from trapping),
330  *   disable the traps, save host registers, restore guest registers.
331  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
332  *   set the dirty bit, disable the traps, save host registers,
333  *   restore guest registers.
334  * - Otherwise, enable the traps
335  *
336  * On guest exit:
337  * - If the dirty bit is set, save guest registers, restore host
338  *   registers and clear the dirty bit. This ensure that the host can
339  *   now use the debug registers.
340  */
341 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
342                             struct sys_reg_params *p,
343                             const struct sys_reg_desc *r)
344 {
345         if (p->is_write) {
346                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
347                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
348         } else {
349                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
350         }
351
352         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
353
354         return true;
355 }
356
357 /*
358  * reg_to_dbg/dbg_to_reg
359  *
360  * A 32 bit write to a debug register leave top bits alone
361  * A 32 bit read from a debug register only returns the bottom bits
362  *
363  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
364  * hyp.S code switches between host and guest values in future.
365  */
366 static void reg_to_dbg(struct kvm_vcpu *vcpu,
367                        struct sys_reg_params *p,
368                        const struct sys_reg_desc *rd,
369                        u64 *dbg_reg)
370 {
371         u64 mask, shift, val;
372
373         get_access_mask(rd, &mask, &shift);
374
375         val = *dbg_reg;
376         val &= ~mask;
377         val |= (p->regval & (mask >> shift)) << shift;
378         *dbg_reg = val;
379
380         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
381 }
382
383 static void dbg_to_reg(struct kvm_vcpu *vcpu,
384                        struct sys_reg_params *p,
385                        const struct sys_reg_desc *rd,
386                        u64 *dbg_reg)
387 {
388         u64 mask, shift;
389
390         get_access_mask(rd, &mask, &shift);
391         p->regval = (*dbg_reg & mask) >> shift;
392 }
393
394 static bool trap_bvr(struct kvm_vcpu *vcpu,
395                      struct sys_reg_params *p,
396                      const struct sys_reg_desc *rd)
397 {
398         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
399
400         if (p->is_write)
401                 reg_to_dbg(vcpu, p, rd, dbg_reg);
402         else
403                 dbg_to_reg(vcpu, p, rd, dbg_reg);
404
405         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
406
407         return true;
408 }
409
410 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411                 const struct kvm_one_reg *reg, void __user *uaddr)
412 {
413         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
414
415         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
416                 return -EFAULT;
417         return 0;
418 }
419
420 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
421         const struct kvm_one_reg *reg, void __user *uaddr)
422 {
423         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
424
425         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
426                 return -EFAULT;
427         return 0;
428 }
429
430 static void reset_bvr(struct kvm_vcpu *vcpu,
431                       const struct sys_reg_desc *rd)
432 {
433         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
434 }
435
436 static bool trap_bcr(struct kvm_vcpu *vcpu,
437                      struct sys_reg_params *p,
438                      const struct sys_reg_desc *rd)
439 {
440         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
441
442         if (p->is_write)
443                 reg_to_dbg(vcpu, p, rd, dbg_reg);
444         else
445                 dbg_to_reg(vcpu, p, rd, dbg_reg);
446
447         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
448
449         return true;
450 }
451
452 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
453                 const struct kvm_one_reg *reg, void __user *uaddr)
454 {
455         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
456
457         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
458                 return -EFAULT;
459
460         return 0;
461 }
462
463 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464         const struct kvm_one_reg *reg, void __user *uaddr)
465 {
466         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
467
468         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469                 return -EFAULT;
470         return 0;
471 }
472
473 static void reset_bcr(struct kvm_vcpu *vcpu,
474                       const struct sys_reg_desc *rd)
475 {
476         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
477 }
478
479 static bool trap_wvr(struct kvm_vcpu *vcpu,
480                      struct sys_reg_params *p,
481                      const struct sys_reg_desc *rd)
482 {
483         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
484
485         if (p->is_write)
486                 reg_to_dbg(vcpu, p, rd, dbg_reg);
487         else
488                 dbg_to_reg(vcpu, p, rd, dbg_reg);
489
490         trace_trap_reg(__func__, rd->reg, p->is_write,
491                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
492
493         return true;
494 }
495
496 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
497                 const struct kvm_one_reg *reg, void __user *uaddr)
498 {
499         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
500
501         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
502                 return -EFAULT;
503         return 0;
504 }
505
506 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507         const struct kvm_one_reg *reg, void __user *uaddr)
508 {
509         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
510
511         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512                 return -EFAULT;
513         return 0;
514 }
515
516 static void reset_wvr(struct kvm_vcpu *vcpu,
517                       const struct sys_reg_desc *rd)
518 {
519         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
520 }
521
522 static bool trap_wcr(struct kvm_vcpu *vcpu,
523                      struct sys_reg_params *p,
524                      const struct sys_reg_desc *rd)
525 {
526         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
527
528         if (p->is_write)
529                 reg_to_dbg(vcpu, p, rd, dbg_reg);
530         else
531                 dbg_to_reg(vcpu, p, rd, dbg_reg);
532
533         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
534
535         return true;
536 }
537
538 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
539                 const struct kvm_one_reg *reg, void __user *uaddr)
540 {
541         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
542
543         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
544                 return -EFAULT;
545         return 0;
546 }
547
548 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
549         const struct kvm_one_reg *reg, void __user *uaddr)
550 {
551         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
552
553         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
554                 return -EFAULT;
555         return 0;
556 }
557
558 static void reset_wcr(struct kvm_vcpu *vcpu,
559                       const struct sys_reg_desc *rd)
560 {
561         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
562 }
563
564 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
565 {
566         u64 amair = read_sysreg(amair_el1);
567         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
568 }
569
570 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
571 {
572         u64 actlr = read_sysreg(actlr_el1);
573         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
574 }
575
576 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
577 {
578         u64 mpidr;
579
580         /*
581          * Map the vcpu_id into the first three affinity level fields of
582          * the MPIDR. We limit the number of VCPUs in level 0 due to a
583          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
584          * of the GICv3 to be able to address each CPU directly when
585          * sending IPIs.
586          */
587         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
588         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
589         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
590         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
591 }
592
593 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
594 {
595         u64 pmcr, val;
596
597         pmcr = read_sysreg(pmcr_el0);
598         /*
599          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
600          * except PMCR.E resetting to zero.
601          */
602         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
603                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
604         if (!system_supports_32bit_el0())
605                 val |= ARMV8_PMU_PMCR_LC;
606         __vcpu_sys_reg(vcpu, r->reg) = val;
607 }
608
609 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
610 {
611         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
612         bool enabled = kvm_vcpu_has_pmu(vcpu);
613
614         enabled &= (reg & flags) || vcpu_mode_priv(vcpu);
615         if (!enabled)
616                 kvm_inject_undefined(vcpu);
617
618         return !enabled;
619 }
620
621 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
622 {
623         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
624 }
625
626 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
627 {
628         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
629 }
630
631 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
632 {
633         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
634 }
635
636 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
637 {
638         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
639 }
640
641 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
642                         const struct sys_reg_desc *r)
643 {
644         u64 val;
645
646         if (pmu_access_el0_disabled(vcpu))
647                 return false;
648
649         if (p->is_write) {
650                 /* Only update writeable bits of PMCR */
651                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
652                 val &= ~ARMV8_PMU_PMCR_MASK;
653                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
654                 if (!system_supports_32bit_el0())
655                         val |= ARMV8_PMU_PMCR_LC;
656                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
657                 kvm_pmu_handle_pmcr(vcpu, val);
658                 kvm_vcpu_pmu_restore_guest(vcpu);
659         } else {
660                 /* PMCR.P & PMCR.C are RAZ */
661                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
662                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
663                 p->regval = val;
664         }
665
666         return true;
667 }
668
669 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
670                           const struct sys_reg_desc *r)
671 {
672         if (pmu_access_event_counter_el0_disabled(vcpu))
673                 return false;
674
675         if (p->is_write)
676                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
677         else
678                 /* return PMSELR.SEL field */
679                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
680                             & ARMV8_PMU_COUNTER_MASK;
681
682         return true;
683 }
684
685 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
686                           const struct sys_reg_desc *r)
687 {
688         u64 pmceid;
689
690         BUG_ON(p->is_write);
691
692         if (pmu_access_el0_disabled(vcpu))
693                 return false;
694
695         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
696
697         p->regval = pmceid;
698
699         return true;
700 }
701
702 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
703 {
704         u64 pmcr, val;
705
706         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
707         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
708         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
709                 kvm_inject_undefined(vcpu);
710                 return false;
711         }
712
713         return true;
714 }
715
716 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
717                               struct sys_reg_params *p,
718                               const struct sys_reg_desc *r)
719 {
720         u64 idx = ~0UL;
721
722         if (r->CRn == 9 && r->CRm == 13) {
723                 if (r->Op2 == 2) {
724                         /* PMXEVCNTR_EL0 */
725                         if (pmu_access_event_counter_el0_disabled(vcpu))
726                                 return false;
727
728                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
729                               & ARMV8_PMU_COUNTER_MASK;
730                 } else if (r->Op2 == 0) {
731                         /* PMCCNTR_EL0 */
732                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
733                                 return false;
734
735                         idx = ARMV8_PMU_CYCLE_IDX;
736                 }
737         } else if (r->CRn == 0 && r->CRm == 9) {
738                 /* PMCCNTR */
739                 if (pmu_access_event_counter_el0_disabled(vcpu))
740                         return false;
741
742                 idx = ARMV8_PMU_CYCLE_IDX;
743         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
744                 /* PMEVCNTRn_EL0 */
745                 if (pmu_access_event_counter_el0_disabled(vcpu))
746                         return false;
747
748                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
749         }
750
751         /* Catch any decoding mistake */
752         WARN_ON(idx == ~0UL);
753
754         if (!pmu_counter_idx_valid(vcpu, idx))
755                 return false;
756
757         if (p->is_write) {
758                 if (pmu_access_el0_disabled(vcpu))
759                         return false;
760
761                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
762         } else {
763                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
764         }
765
766         return true;
767 }
768
769 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
770                                const struct sys_reg_desc *r)
771 {
772         u64 idx, reg;
773
774         if (pmu_access_el0_disabled(vcpu))
775                 return false;
776
777         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
778                 /* PMXEVTYPER_EL0 */
779                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
780                 reg = PMEVTYPER0_EL0 + idx;
781         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
782                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
783                 if (idx == ARMV8_PMU_CYCLE_IDX)
784                         reg = PMCCFILTR_EL0;
785                 else
786                         /* PMEVTYPERn_EL0 */
787                         reg = PMEVTYPER0_EL0 + idx;
788         } else {
789                 BUG();
790         }
791
792         if (!pmu_counter_idx_valid(vcpu, idx))
793                 return false;
794
795         if (p->is_write) {
796                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
797                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
798                 kvm_vcpu_pmu_restore_guest(vcpu);
799         } else {
800                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
801         }
802
803         return true;
804 }
805
806 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
807                            const struct sys_reg_desc *r)
808 {
809         u64 val, mask;
810
811         if (pmu_access_el0_disabled(vcpu))
812                 return false;
813
814         mask = kvm_pmu_valid_counter_mask(vcpu);
815         if (p->is_write) {
816                 val = p->regval & mask;
817                 if (r->Op2 & 0x1) {
818                         /* accessing PMCNTENSET_EL0 */
819                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
820                         kvm_pmu_enable_counter_mask(vcpu, val);
821                         kvm_vcpu_pmu_restore_guest(vcpu);
822                 } else {
823                         /* accessing PMCNTENCLR_EL0 */
824                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
825                         kvm_pmu_disable_counter_mask(vcpu, val);
826                 }
827         } else {
828                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
829         }
830
831         return true;
832 }
833
834 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
835                            const struct sys_reg_desc *r)
836 {
837         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
838
839         if (check_pmu_access_disabled(vcpu, 0))
840                 return false;
841
842         if (p->is_write) {
843                 u64 val = p->regval & mask;
844
845                 if (r->Op2 & 0x1)
846                         /* accessing PMINTENSET_EL1 */
847                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
848                 else
849                         /* accessing PMINTENCLR_EL1 */
850                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
851         } else {
852                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
853         }
854
855         return true;
856 }
857
858 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
859                          const struct sys_reg_desc *r)
860 {
861         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
862
863         if (pmu_access_el0_disabled(vcpu))
864                 return false;
865
866         if (p->is_write) {
867                 if (r->CRm & 0x2)
868                         /* accessing PMOVSSET_EL0 */
869                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
870                 else
871                         /* accessing PMOVSCLR_EL0 */
872                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
873         } else {
874                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
875         }
876
877         return true;
878 }
879
880 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
881                            const struct sys_reg_desc *r)
882 {
883         u64 mask;
884
885         if (!p->is_write)
886                 return read_from_write_only(vcpu, p, r);
887
888         if (pmu_write_swinc_el0_disabled(vcpu))
889                 return false;
890
891         mask = kvm_pmu_valid_counter_mask(vcpu);
892         kvm_pmu_software_increment(vcpu, p->regval & mask);
893         return true;
894 }
895
896 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
897                              const struct sys_reg_desc *r)
898 {
899         if (!kvm_vcpu_has_pmu(vcpu)) {
900                 kvm_inject_undefined(vcpu);
901                 return false;
902         }
903
904         if (p->is_write) {
905                 if (!vcpu_mode_priv(vcpu)) {
906                         kvm_inject_undefined(vcpu);
907                         return false;
908                 }
909
910                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
911                                p->regval & ARMV8_PMU_USERENR_MASK;
912         } else {
913                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
914                             & ARMV8_PMU_USERENR_MASK;
915         }
916
917         return true;
918 }
919
920 #define reg_to_encoding(x)                                              \
921         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
922                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
923
924 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
925 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
926         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
927           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
928         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
929           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
930         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
931           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
932         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
933           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
934
935 /* Macro to expand the PMEVCNTRn_EL0 register */
936 #define PMU_PMEVCNTR_EL0(n)                                             \
937         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
938           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
939
940 /* Macro to expand the PMEVTYPERn_EL0 register */
941 #define PMU_PMEVTYPER_EL0(n)                                            \
942         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
943           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
944
945 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
946                          const struct sys_reg_desc *r)
947 {
948         kvm_inject_undefined(vcpu);
949
950         return false;
951 }
952
953 /* Macro to expand the AMU counter and type registers*/
954 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
955 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
956 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
957 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
958
959 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
960                         const struct sys_reg_desc *rd)
961 {
962         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
963 }
964
965 /*
966  * If we land here on a PtrAuth access, that is because we didn't
967  * fixup the access on exit by allowing the PtrAuth sysregs. The only
968  * way this happens is when the guest does not have PtrAuth support
969  * enabled.
970  */
971 #define __PTRAUTH_KEY(k)                                                \
972         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
973         .visibility = ptrauth_visibility}
974
975 #define PTRAUTH_KEY(k)                                                  \
976         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
977         __PTRAUTH_KEY(k ## KEYHI_EL1)
978
979 static bool access_arch_timer(struct kvm_vcpu *vcpu,
980                               struct sys_reg_params *p,
981                               const struct sys_reg_desc *r)
982 {
983         enum kvm_arch_timers tmr;
984         enum kvm_arch_timer_regs treg;
985         u64 reg = reg_to_encoding(r);
986
987         switch (reg) {
988         case SYS_CNTP_TVAL_EL0:
989         case SYS_AARCH32_CNTP_TVAL:
990                 tmr = TIMER_PTIMER;
991                 treg = TIMER_REG_TVAL;
992                 break;
993         case SYS_CNTP_CTL_EL0:
994         case SYS_AARCH32_CNTP_CTL:
995                 tmr = TIMER_PTIMER;
996                 treg = TIMER_REG_CTL;
997                 break;
998         case SYS_CNTP_CVAL_EL0:
999         case SYS_AARCH32_CNTP_CVAL:
1000                 tmr = TIMER_PTIMER;
1001                 treg = TIMER_REG_CVAL;
1002                 break;
1003         default:
1004                 BUG();
1005         }
1006
1007         if (p->is_write)
1008                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1009         else
1010                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1011
1012         return true;
1013 }
1014
1015 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1016 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1017                 struct sys_reg_desc const *r, bool raz)
1018 {
1019         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1020                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1021         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1022
1023         if (id == SYS_ID_AA64PFR0_EL1) {
1024                 if (!vcpu_has_sve(vcpu))
1025                         val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1026                 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1027                 val &= ~(0xfUL << ID_AA64PFR0_CSV2_SHIFT);
1028                 val |= ((u64)vcpu->kvm->arch.pfr0_csv2 << ID_AA64PFR0_CSV2_SHIFT);
1029                 val &= ~(0xfUL << ID_AA64PFR0_CSV3_SHIFT);
1030                 val |= ((u64)vcpu->kvm->arch.pfr0_csv3 << ID_AA64PFR0_CSV3_SHIFT);
1031         } else if (id == SYS_ID_AA64PFR1_EL1) {
1032                 val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1033         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1034                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1035                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1036                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1037                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1038         } else if (id == SYS_ID_AA64DFR0_EL1) {
1039                 u64 cap = 0;
1040
1041                 /* Limit guests to PMUv3 for ARMv8.1 */
1042                 if (kvm_vcpu_has_pmu(vcpu))
1043                         cap = ID_AA64DFR0_PMUVER_8_1;
1044
1045                 val = cpuid_feature_cap_perfmon_field(val,
1046                                                 ID_AA64DFR0_PMUVER_SHIFT,
1047                                                 cap);
1048         } else if (id == SYS_ID_DFR0_EL1) {
1049                 /* Limit guests to PMUv3 for ARMv8.1 */
1050                 val = cpuid_feature_cap_perfmon_field(val,
1051                                                 ID_DFR0_PERFMON_SHIFT,
1052                                                 ID_DFR0_PERFMON_8_1);
1053         }
1054
1055         return val;
1056 }
1057
1058 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1059                                   const struct sys_reg_desc *r)
1060 {
1061         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1062                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1063
1064         switch (id) {
1065         case SYS_ID_AA64ZFR0_EL1:
1066                 if (!vcpu_has_sve(vcpu))
1067                         return REG_RAZ;
1068                 break;
1069         }
1070
1071         return 0;
1072 }
1073
1074 /* cpufeature ID register access trap handlers */
1075
1076 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1077                             struct sys_reg_params *p,
1078                             const struct sys_reg_desc *r,
1079                             bool raz)
1080 {
1081         if (p->is_write)
1082                 return write_to_read_only(vcpu, p, r);
1083
1084         p->regval = read_id_reg(vcpu, r, raz);
1085         return true;
1086 }
1087
1088 static bool access_id_reg(struct kvm_vcpu *vcpu,
1089                           struct sys_reg_params *p,
1090                           const struct sys_reg_desc *r)
1091 {
1092         bool raz = sysreg_visible_as_raz(vcpu, r);
1093
1094         return __access_id_reg(vcpu, p, r, raz);
1095 }
1096
1097 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1098                               struct sys_reg_params *p,
1099                               const struct sys_reg_desc *r)
1100 {
1101         return __access_id_reg(vcpu, p, r, true);
1102 }
1103
1104 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1105 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1106 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1107
1108 /* Visibility overrides for SVE-specific control registers */
1109 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1110                                    const struct sys_reg_desc *rd)
1111 {
1112         if (vcpu_has_sve(vcpu))
1113                 return 0;
1114
1115         return REG_HIDDEN;
1116 }
1117
1118 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1119                                const struct sys_reg_desc *rd,
1120                                const struct kvm_one_reg *reg, void __user *uaddr)
1121 {
1122         const u64 id = sys_reg_to_index(rd);
1123         u8 csv2, csv3;
1124         int err;
1125         u64 val;
1126
1127         err = reg_from_user(&val, uaddr, id);
1128         if (err)
1129                 return err;
1130
1131         /*
1132          * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1133          * it doesn't promise more than what is actually provided (the
1134          * guest could otherwise be covered in ectoplasmic residue).
1135          */
1136         csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1137         if (csv2 > 1 ||
1138             (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1139                 return -EINVAL;
1140
1141         /* Same thing for CSV3 */
1142         csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1143         if (csv3 > 1 ||
1144             (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1145                 return -EINVAL;
1146
1147         /* We can only differ with CSV[23], and anything else is an error */
1148         val ^= read_id_reg(vcpu, rd, false);
1149         val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1150                  (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1151         if (val)
1152                 return -EINVAL;
1153
1154         vcpu->kvm->arch.pfr0_csv2 = csv2;
1155         vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1156
1157         return 0;
1158 }
1159
1160 /*
1161  * cpufeature ID register user accessors
1162  *
1163  * For now, these registers are immutable for userspace, so no values
1164  * are stored, and for set_id_reg() we don't allow the effective value
1165  * to be changed.
1166  */
1167 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1168                         const struct sys_reg_desc *rd, void __user *uaddr,
1169                         bool raz)
1170 {
1171         const u64 id = sys_reg_to_index(rd);
1172         const u64 val = read_id_reg(vcpu, rd, raz);
1173
1174         return reg_to_user(uaddr, &val, id);
1175 }
1176
1177 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1178                         const struct sys_reg_desc *rd, void __user *uaddr,
1179                         bool raz)
1180 {
1181         const u64 id = sys_reg_to_index(rd);
1182         int err;
1183         u64 val;
1184
1185         err = reg_from_user(&val, uaddr, id);
1186         if (err)
1187                 return err;
1188
1189         /* This is what we mean by invariant: you can't change it. */
1190         if (val != read_id_reg(vcpu, rd, raz))
1191                 return -EINVAL;
1192
1193         return 0;
1194 }
1195
1196 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1197                       const struct kvm_one_reg *reg, void __user *uaddr)
1198 {
1199         bool raz = sysreg_visible_as_raz(vcpu, rd);
1200
1201         return __get_id_reg(vcpu, rd, uaddr, raz);
1202 }
1203
1204 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1205                       const struct kvm_one_reg *reg, void __user *uaddr)
1206 {
1207         bool raz = sysreg_visible_as_raz(vcpu, rd);
1208
1209         return __set_id_reg(vcpu, rd, uaddr, raz);
1210 }
1211
1212 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1213                           const struct kvm_one_reg *reg, void __user *uaddr)
1214 {
1215         return __get_id_reg(vcpu, rd, uaddr, true);
1216 }
1217
1218 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1219                           const struct kvm_one_reg *reg, void __user *uaddr)
1220 {
1221         return __set_id_reg(vcpu, rd, uaddr, true);
1222 }
1223
1224 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1225                        const struct sys_reg_desc *r)
1226 {
1227         if (p->is_write)
1228                 return write_to_read_only(vcpu, p, r);
1229
1230         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1231         return true;
1232 }
1233
1234 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1235                          const struct sys_reg_desc *r)
1236 {
1237         if (p->is_write)
1238                 return write_to_read_only(vcpu, p, r);
1239
1240         p->regval = read_sysreg(clidr_el1);
1241         return true;
1242 }
1243
1244 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1245                           const struct sys_reg_desc *r)
1246 {
1247         int reg = r->reg;
1248
1249         if (p->is_write)
1250                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1251         else
1252                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1253         return true;
1254 }
1255
1256 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1257                           const struct sys_reg_desc *r)
1258 {
1259         u32 csselr;
1260
1261         if (p->is_write)
1262                 return write_to_read_only(vcpu, p, r);
1263
1264         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1265         p->regval = get_ccsidr(csselr);
1266
1267         /*
1268          * Guests should not be doing cache operations by set/way at all, and
1269          * for this reason, we trap them and attempt to infer the intent, so
1270          * that we can flush the entire guest's address space at the appropriate
1271          * time.
1272          * To prevent this trapping from causing performance problems, let's
1273          * expose the geometry of all data and unified caches (which are
1274          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1275          * [If guests should attempt to infer aliasing properties from the
1276          * geometry (which is not permitted by the architecture), they would
1277          * only do so for virtually indexed caches.]
1278          */
1279         if (!(csselr & 1)) // data or unified cache
1280                 p->regval &= ~GENMASK(27, 3);
1281         return true;
1282 }
1283
1284 /* sys_reg_desc initialiser for known cpufeature ID registers */
1285 #define ID_SANITISED(name) {                    \
1286         SYS_DESC(SYS_##name),                   \
1287         .access = access_id_reg,                \
1288         .get_user = get_id_reg,                 \
1289         .set_user = set_id_reg,                 \
1290         .visibility = id_visibility,            \
1291 }
1292
1293 /*
1294  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1295  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1296  * (1 <= crm < 8, 0 <= Op2 < 8).
1297  */
1298 #define ID_UNALLOCATED(crm, op2) {                      \
1299         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1300         .access = access_raz_id_reg,                    \
1301         .get_user = get_raz_id_reg,                     \
1302         .set_user = set_raz_id_reg,                     \
1303 }
1304
1305 /*
1306  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1307  * For now, these are exposed just like unallocated ID regs: they appear
1308  * RAZ for the guest.
1309  */
1310 #define ID_HIDDEN(name) {                       \
1311         SYS_DESC(SYS_##name),                   \
1312         .access = access_raz_id_reg,            \
1313         .get_user = get_raz_id_reg,             \
1314         .set_user = set_raz_id_reg,             \
1315 }
1316
1317 /*
1318  * Architected system registers.
1319  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1320  *
1321  * Debug handling: We do trap most, if not all debug related system
1322  * registers. The implementation is good enough to ensure that a guest
1323  * can use these with minimal performance degradation. The drawback is
1324  * that we don't implement any of the external debug, none of the
1325  * OSlock protocol. This should be revisited if we ever encounter a
1326  * more demanding guest...
1327  */
1328 static const struct sys_reg_desc sys_reg_descs[] = {
1329         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1330         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1331         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1332
1333         DBG_BCR_BVR_WCR_WVR_EL1(0),
1334         DBG_BCR_BVR_WCR_WVR_EL1(1),
1335         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1336         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1337         DBG_BCR_BVR_WCR_WVR_EL1(2),
1338         DBG_BCR_BVR_WCR_WVR_EL1(3),
1339         DBG_BCR_BVR_WCR_WVR_EL1(4),
1340         DBG_BCR_BVR_WCR_WVR_EL1(5),
1341         DBG_BCR_BVR_WCR_WVR_EL1(6),
1342         DBG_BCR_BVR_WCR_WVR_EL1(7),
1343         DBG_BCR_BVR_WCR_WVR_EL1(8),
1344         DBG_BCR_BVR_WCR_WVR_EL1(9),
1345         DBG_BCR_BVR_WCR_WVR_EL1(10),
1346         DBG_BCR_BVR_WCR_WVR_EL1(11),
1347         DBG_BCR_BVR_WCR_WVR_EL1(12),
1348         DBG_BCR_BVR_WCR_WVR_EL1(13),
1349         DBG_BCR_BVR_WCR_WVR_EL1(14),
1350         DBG_BCR_BVR_WCR_WVR_EL1(15),
1351
1352         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1353         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1354         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1355         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1356         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1357         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1358         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1359         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1360
1361         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1362         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1363         // DBGDTR[TR]X_EL0 share the same encoding
1364         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1365
1366         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1367
1368         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1369
1370         /*
1371          * ID regs: all ID_SANITISED() entries here must have corresponding
1372          * entries in arm64_ftr_regs[].
1373          */
1374
1375         /* AArch64 mappings of the AArch32 ID registers */
1376         /* CRm=1 */
1377         ID_SANITISED(ID_PFR0_EL1),
1378         ID_SANITISED(ID_PFR1_EL1),
1379         ID_SANITISED(ID_DFR0_EL1),
1380         ID_HIDDEN(ID_AFR0_EL1),
1381         ID_SANITISED(ID_MMFR0_EL1),
1382         ID_SANITISED(ID_MMFR1_EL1),
1383         ID_SANITISED(ID_MMFR2_EL1),
1384         ID_SANITISED(ID_MMFR3_EL1),
1385
1386         /* CRm=2 */
1387         ID_SANITISED(ID_ISAR0_EL1),
1388         ID_SANITISED(ID_ISAR1_EL1),
1389         ID_SANITISED(ID_ISAR2_EL1),
1390         ID_SANITISED(ID_ISAR3_EL1),
1391         ID_SANITISED(ID_ISAR4_EL1),
1392         ID_SANITISED(ID_ISAR5_EL1),
1393         ID_SANITISED(ID_MMFR4_EL1),
1394         ID_SANITISED(ID_ISAR6_EL1),
1395
1396         /* CRm=3 */
1397         ID_SANITISED(MVFR0_EL1),
1398         ID_SANITISED(MVFR1_EL1),
1399         ID_SANITISED(MVFR2_EL1),
1400         ID_UNALLOCATED(3,3),
1401         ID_SANITISED(ID_PFR2_EL1),
1402         ID_HIDDEN(ID_DFR1_EL1),
1403         ID_SANITISED(ID_MMFR5_EL1),
1404         ID_UNALLOCATED(3,7),
1405
1406         /* AArch64 ID registers */
1407         /* CRm=4 */
1408         { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1409           .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1410         ID_SANITISED(ID_AA64PFR1_EL1),
1411         ID_UNALLOCATED(4,2),
1412         ID_UNALLOCATED(4,3),
1413         ID_SANITISED(ID_AA64ZFR0_EL1),
1414         ID_UNALLOCATED(4,5),
1415         ID_UNALLOCATED(4,6),
1416         ID_UNALLOCATED(4,7),
1417
1418         /* CRm=5 */
1419         ID_SANITISED(ID_AA64DFR0_EL1),
1420         ID_SANITISED(ID_AA64DFR1_EL1),
1421         ID_UNALLOCATED(5,2),
1422         ID_UNALLOCATED(5,3),
1423         ID_HIDDEN(ID_AA64AFR0_EL1),
1424         ID_HIDDEN(ID_AA64AFR1_EL1),
1425         ID_UNALLOCATED(5,6),
1426         ID_UNALLOCATED(5,7),
1427
1428         /* CRm=6 */
1429         ID_SANITISED(ID_AA64ISAR0_EL1),
1430         ID_SANITISED(ID_AA64ISAR1_EL1),
1431         ID_UNALLOCATED(6,2),
1432         ID_UNALLOCATED(6,3),
1433         ID_UNALLOCATED(6,4),
1434         ID_UNALLOCATED(6,5),
1435         ID_UNALLOCATED(6,6),
1436         ID_UNALLOCATED(6,7),
1437
1438         /* CRm=7 */
1439         ID_SANITISED(ID_AA64MMFR0_EL1),
1440         ID_SANITISED(ID_AA64MMFR1_EL1),
1441         ID_SANITISED(ID_AA64MMFR2_EL1),
1442         ID_UNALLOCATED(7,3),
1443         ID_UNALLOCATED(7,4),
1444         ID_UNALLOCATED(7,5),
1445         ID_UNALLOCATED(7,6),
1446         ID_UNALLOCATED(7,7),
1447
1448         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1449         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1450         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1451
1452         { SYS_DESC(SYS_RGSR_EL1), undef_access },
1453         { SYS_DESC(SYS_GCR_EL1), undef_access },
1454
1455         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1456         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1457         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1458         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1459
1460         PTRAUTH_KEY(APIA),
1461         PTRAUTH_KEY(APIB),
1462         PTRAUTH_KEY(APDA),
1463         PTRAUTH_KEY(APDB),
1464         PTRAUTH_KEY(APGA),
1465
1466         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1467         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1468         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1469
1470         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1471         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1472         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1473         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1474         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1475         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1476         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1477         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1478
1479         { SYS_DESC(SYS_TFSR_EL1), undef_access },
1480         { SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1481
1482         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1483         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1484
1485         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1486         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1487
1488         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1489         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1490
1491         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1492         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1493         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1494         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1495         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1496
1497         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1498         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1499
1500         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1501         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1502         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1503         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1504         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1505         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1506         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1507         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1508         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1509         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1510         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1511         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1512
1513         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1514         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1515
1516         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1517
1518         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1519
1520         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1521         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1522         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1523         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1524
1525         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1526         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1527         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1528         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1529         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1530         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1531         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1532         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1533         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1534         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1535         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1536         /*
1537          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1538          * in 32bit mode. Here we choose to reset it as zero for consistency.
1539          */
1540         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1541         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1542
1543         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1544         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1545
1546         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1547
1548         { SYS_DESC(SYS_AMCR_EL0), undef_access },
1549         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1550         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1551         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1552         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1553         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1554         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1555         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1556         AMU_AMEVCNTR0_EL0(0),
1557         AMU_AMEVCNTR0_EL0(1),
1558         AMU_AMEVCNTR0_EL0(2),
1559         AMU_AMEVCNTR0_EL0(3),
1560         AMU_AMEVCNTR0_EL0(4),
1561         AMU_AMEVCNTR0_EL0(5),
1562         AMU_AMEVCNTR0_EL0(6),
1563         AMU_AMEVCNTR0_EL0(7),
1564         AMU_AMEVCNTR0_EL0(8),
1565         AMU_AMEVCNTR0_EL0(9),
1566         AMU_AMEVCNTR0_EL0(10),
1567         AMU_AMEVCNTR0_EL0(11),
1568         AMU_AMEVCNTR0_EL0(12),
1569         AMU_AMEVCNTR0_EL0(13),
1570         AMU_AMEVCNTR0_EL0(14),
1571         AMU_AMEVCNTR0_EL0(15),
1572         AMU_AMEVTYPER0_EL0(0),
1573         AMU_AMEVTYPER0_EL0(1),
1574         AMU_AMEVTYPER0_EL0(2),
1575         AMU_AMEVTYPER0_EL0(3),
1576         AMU_AMEVTYPER0_EL0(4),
1577         AMU_AMEVTYPER0_EL0(5),
1578         AMU_AMEVTYPER0_EL0(6),
1579         AMU_AMEVTYPER0_EL0(7),
1580         AMU_AMEVTYPER0_EL0(8),
1581         AMU_AMEVTYPER0_EL0(9),
1582         AMU_AMEVTYPER0_EL0(10),
1583         AMU_AMEVTYPER0_EL0(11),
1584         AMU_AMEVTYPER0_EL0(12),
1585         AMU_AMEVTYPER0_EL0(13),
1586         AMU_AMEVTYPER0_EL0(14),
1587         AMU_AMEVTYPER0_EL0(15),
1588         AMU_AMEVCNTR1_EL0(0),
1589         AMU_AMEVCNTR1_EL0(1),
1590         AMU_AMEVCNTR1_EL0(2),
1591         AMU_AMEVCNTR1_EL0(3),
1592         AMU_AMEVCNTR1_EL0(4),
1593         AMU_AMEVCNTR1_EL0(5),
1594         AMU_AMEVCNTR1_EL0(6),
1595         AMU_AMEVCNTR1_EL0(7),
1596         AMU_AMEVCNTR1_EL0(8),
1597         AMU_AMEVCNTR1_EL0(9),
1598         AMU_AMEVCNTR1_EL0(10),
1599         AMU_AMEVCNTR1_EL0(11),
1600         AMU_AMEVCNTR1_EL0(12),
1601         AMU_AMEVCNTR1_EL0(13),
1602         AMU_AMEVCNTR1_EL0(14),
1603         AMU_AMEVCNTR1_EL0(15),
1604         AMU_AMEVTYPER1_EL0(0),
1605         AMU_AMEVTYPER1_EL0(1),
1606         AMU_AMEVTYPER1_EL0(2),
1607         AMU_AMEVTYPER1_EL0(3),
1608         AMU_AMEVTYPER1_EL0(4),
1609         AMU_AMEVTYPER1_EL0(5),
1610         AMU_AMEVTYPER1_EL0(6),
1611         AMU_AMEVTYPER1_EL0(7),
1612         AMU_AMEVTYPER1_EL0(8),
1613         AMU_AMEVTYPER1_EL0(9),
1614         AMU_AMEVTYPER1_EL0(10),
1615         AMU_AMEVTYPER1_EL0(11),
1616         AMU_AMEVTYPER1_EL0(12),
1617         AMU_AMEVTYPER1_EL0(13),
1618         AMU_AMEVTYPER1_EL0(14),
1619         AMU_AMEVTYPER1_EL0(15),
1620
1621         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1622         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1623         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1624
1625         /* PMEVCNTRn_EL0 */
1626         PMU_PMEVCNTR_EL0(0),
1627         PMU_PMEVCNTR_EL0(1),
1628         PMU_PMEVCNTR_EL0(2),
1629         PMU_PMEVCNTR_EL0(3),
1630         PMU_PMEVCNTR_EL0(4),
1631         PMU_PMEVCNTR_EL0(5),
1632         PMU_PMEVCNTR_EL0(6),
1633         PMU_PMEVCNTR_EL0(7),
1634         PMU_PMEVCNTR_EL0(8),
1635         PMU_PMEVCNTR_EL0(9),
1636         PMU_PMEVCNTR_EL0(10),
1637         PMU_PMEVCNTR_EL0(11),
1638         PMU_PMEVCNTR_EL0(12),
1639         PMU_PMEVCNTR_EL0(13),
1640         PMU_PMEVCNTR_EL0(14),
1641         PMU_PMEVCNTR_EL0(15),
1642         PMU_PMEVCNTR_EL0(16),
1643         PMU_PMEVCNTR_EL0(17),
1644         PMU_PMEVCNTR_EL0(18),
1645         PMU_PMEVCNTR_EL0(19),
1646         PMU_PMEVCNTR_EL0(20),
1647         PMU_PMEVCNTR_EL0(21),
1648         PMU_PMEVCNTR_EL0(22),
1649         PMU_PMEVCNTR_EL0(23),
1650         PMU_PMEVCNTR_EL0(24),
1651         PMU_PMEVCNTR_EL0(25),
1652         PMU_PMEVCNTR_EL0(26),
1653         PMU_PMEVCNTR_EL0(27),
1654         PMU_PMEVCNTR_EL0(28),
1655         PMU_PMEVCNTR_EL0(29),
1656         PMU_PMEVCNTR_EL0(30),
1657         /* PMEVTYPERn_EL0 */
1658         PMU_PMEVTYPER_EL0(0),
1659         PMU_PMEVTYPER_EL0(1),
1660         PMU_PMEVTYPER_EL0(2),
1661         PMU_PMEVTYPER_EL0(3),
1662         PMU_PMEVTYPER_EL0(4),
1663         PMU_PMEVTYPER_EL0(5),
1664         PMU_PMEVTYPER_EL0(6),
1665         PMU_PMEVTYPER_EL0(7),
1666         PMU_PMEVTYPER_EL0(8),
1667         PMU_PMEVTYPER_EL0(9),
1668         PMU_PMEVTYPER_EL0(10),
1669         PMU_PMEVTYPER_EL0(11),
1670         PMU_PMEVTYPER_EL0(12),
1671         PMU_PMEVTYPER_EL0(13),
1672         PMU_PMEVTYPER_EL0(14),
1673         PMU_PMEVTYPER_EL0(15),
1674         PMU_PMEVTYPER_EL0(16),
1675         PMU_PMEVTYPER_EL0(17),
1676         PMU_PMEVTYPER_EL0(18),
1677         PMU_PMEVTYPER_EL0(19),
1678         PMU_PMEVTYPER_EL0(20),
1679         PMU_PMEVTYPER_EL0(21),
1680         PMU_PMEVTYPER_EL0(22),
1681         PMU_PMEVTYPER_EL0(23),
1682         PMU_PMEVTYPER_EL0(24),
1683         PMU_PMEVTYPER_EL0(25),
1684         PMU_PMEVTYPER_EL0(26),
1685         PMU_PMEVTYPER_EL0(27),
1686         PMU_PMEVTYPER_EL0(28),
1687         PMU_PMEVTYPER_EL0(29),
1688         PMU_PMEVTYPER_EL0(30),
1689         /*
1690          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1691          * in 32bit mode. Here we choose to reset it as zero for consistency.
1692          */
1693         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1694
1695         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1696         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1697         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1698 };
1699
1700 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1701                         struct sys_reg_params *p,
1702                         const struct sys_reg_desc *r)
1703 {
1704         if (p->is_write) {
1705                 return ignore_write(vcpu, p);
1706         } else {
1707                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1708                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1709                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1710
1711                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1712                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1713                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1714                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1715                 return true;
1716         }
1717 }
1718
1719 /*
1720  * AArch32 debug register mappings
1721  *
1722  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1723  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1724  *
1725  * None of the other registers share their location, so treat them as
1726  * if they were 64bit.
1727  */
1728 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
1729         /* DBGBVRn */                                                         \
1730         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1731         /* DBGBCRn */                                                         \
1732         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
1733         /* DBGWVRn */                                                         \
1734         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
1735         /* DBGWCRn */                                                         \
1736         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1737
1738 #define DBGBXVR(n)                                                            \
1739         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1740
1741 /*
1742  * Trapped cp14 registers. We generally ignore most of the external
1743  * debug, on the principle that they don't really make sense to a
1744  * guest. Revisit this one day, would this principle change.
1745  */
1746 static const struct sys_reg_desc cp14_regs[] = {
1747         /* DBGIDR */
1748         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1749         /* DBGDTRRXext */
1750         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1751
1752         DBG_BCR_BVR_WCR_WVR(0),
1753         /* DBGDSCRint */
1754         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1755         DBG_BCR_BVR_WCR_WVR(1),
1756         /* DBGDCCINT */
1757         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1758         /* DBGDSCRext */
1759         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1760         DBG_BCR_BVR_WCR_WVR(2),
1761         /* DBGDTR[RT]Xint */
1762         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1763         /* DBGDTR[RT]Xext */
1764         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1765         DBG_BCR_BVR_WCR_WVR(3),
1766         DBG_BCR_BVR_WCR_WVR(4),
1767         DBG_BCR_BVR_WCR_WVR(5),
1768         /* DBGWFAR */
1769         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1770         /* DBGOSECCR */
1771         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1772         DBG_BCR_BVR_WCR_WVR(6),
1773         /* DBGVCR */
1774         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1775         DBG_BCR_BVR_WCR_WVR(7),
1776         DBG_BCR_BVR_WCR_WVR(8),
1777         DBG_BCR_BVR_WCR_WVR(9),
1778         DBG_BCR_BVR_WCR_WVR(10),
1779         DBG_BCR_BVR_WCR_WVR(11),
1780         DBG_BCR_BVR_WCR_WVR(12),
1781         DBG_BCR_BVR_WCR_WVR(13),
1782         DBG_BCR_BVR_WCR_WVR(14),
1783         DBG_BCR_BVR_WCR_WVR(15),
1784
1785         /* DBGDRAR (32bit) */
1786         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1787
1788         DBGBXVR(0),
1789         /* DBGOSLAR */
1790         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1791         DBGBXVR(1),
1792         /* DBGOSLSR */
1793         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1794         DBGBXVR(2),
1795         DBGBXVR(3),
1796         /* DBGOSDLR */
1797         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1798         DBGBXVR(4),
1799         /* DBGPRCR */
1800         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1801         DBGBXVR(5),
1802         DBGBXVR(6),
1803         DBGBXVR(7),
1804         DBGBXVR(8),
1805         DBGBXVR(9),
1806         DBGBXVR(10),
1807         DBGBXVR(11),
1808         DBGBXVR(12),
1809         DBGBXVR(13),
1810         DBGBXVR(14),
1811         DBGBXVR(15),
1812
1813         /* DBGDSAR (32bit) */
1814         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1815
1816         /* DBGDEVID2 */
1817         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1818         /* DBGDEVID1 */
1819         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1820         /* DBGDEVID */
1821         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1822         /* DBGCLAIMSET */
1823         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1824         /* DBGCLAIMCLR */
1825         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1826         /* DBGAUTHSTATUS */
1827         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1828 };
1829
1830 /* Trapped cp14 64bit registers */
1831 static const struct sys_reg_desc cp14_64_regs[] = {
1832         /* DBGDRAR (64bit) */
1833         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1834
1835         /* DBGDSAR (64bit) */
1836         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1837 };
1838
1839 /* Macro to expand the PMEVCNTRn register */
1840 #define PMU_PMEVCNTR(n)                                                 \
1841         /* PMEVCNTRn */                                                 \
1842         { Op1(0), CRn(0b1110),                                          \
1843           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1844           access_pmu_evcntr }
1845
1846 /* Macro to expand the PMEVTYPERn register */
1847 #define PMU_PMEVTYPER(n)                                                \
1848         /* PMEVTYPERn */                                                \
1849         { Op1(0), CRn(0b1110),                                          \
1850           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1851           access_pmu_evtyper }
1852
1853 /*
1854  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1855  * depending on the way they are accessed (as a 32bit or a 64bit
1856  * register).
1857  */
1858 static const struct sys_reg_desc cp15_regs[] = {
1859         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1860         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1861         /* ACTLR */
1862         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1863         /* ACTLR2 */
1864         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1865         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1866         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1867         /* TTBCR */
1868         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1869         /* TTBCR2 */
1870         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1871         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1872         /* DFSR */
1873         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1874         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1875         /* ADFSR */
1876         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1877         /* AIFSR */
1878         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
1879         /* DFAR */
1880         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
1881         /* IFAR */
1882         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
1883
1884         /*
1885          * DC{C,I,CI}SW operations:
1886          */
1887         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1888         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1889         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1890
1891         /* PMU */
1892         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1893         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1894         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1895         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1896         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1897         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1898         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1899         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1900         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1901         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1902         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1903         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1904         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1905         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1906         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1907
1908         /* PRRR/MAIR0 */
1909         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
1910         /* NMRR/MAIR1 */
1911         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
1912         /* AMAIR0 */
1913         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
1914         /* AMAIR1 */
1915         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
1916
1917         /* ICC_SRE */
1918         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1919
1920         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
1921
1922         /* Arch Tmers */
1923         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1924         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1925
1926         /* PMEVCNTRn */
1927         PMU_PMEVCNTR(0),
1928         PMU_PMEVCNTR(1),
1929         PMU_PMEVCNTR(2),
1930         PMU_PMEVCNTR(3),
1931         PMU_PMEVCNTR(4),
1932         PMU_PMEVCNTR(5),
1933         PMU_PMEVCNTR(6),
1934         PMU_PMEVCNTR(7),
1935         PMU_PMEVCNTR(8),
1936         PMU_PMEVCNTR(9),
1937         PMU_PMEVCNTR(10),
1938         PMU_PMEVCNTR(11),
1939         PMU_PMEVCNTR(12),
1940         PMU_PMEVCNTR(13),
1941         PMU_PMEVCNTR(14),
1942         PMU_PMEVCNTR(15),
1943         PMU_PMEVCNTR(16),
1944         PMU_PMEVCNTR(17),
1945         PMU_PMEVCNTR(18),
1946         PMU_PMEVCNTR(19),
1947         PMU_PMEVCNTR(20),
1948         PMU_PMEVCNTR(21),
1949         PMU_PMEVCNTR(22),
1950         PMU_PMEVCNTR(23),
1951         PMU_PMEVCNTR(24),
1952         PMU_PMEVCNTR(25),
1953         PMU_PMEVCNTR(26),
1954         PMU_PMEVCNTR(27),
1955         PMU_PMEVCNTR(28),
1956         PMU_PMEVCNTR(29),
1957         PMU_PMEVCNTR(30),
1958         /* PMEVTYPERn */
1959         PMU_PMEVTYPER(0),
1960         PMU_PMEVTYPER(1),
1961         PMU_PMEVTYPER(2),
1962         PMU_PMEVTYPER(3),
1963         PMU_PMEVTYPER(4),
1964         PMU_PMEVTYPER(5),
1965         PMU_PMEVTYPER(6),
1966         PMU_PMEVTYPER(7),
1967         PMU_PMEVTYPER(8),
1968         PMU_PMEVTYPER(9),
1969         PMU_PMEVTYPER(10),
1970         PMU_PMEVTYPER(11),
1971         PMU_PMEVTYPER(12),
1972         PMU_PMEVTYPER(13),
1973         PMU_PMEVTYPER(14),
1974         PMU_PMEVTYPER(15),
1975         PMU_PMEVTYPER(16),
1976         PMU_PMEVTYPER(17),
1977         PMU_PMEVTYPER(18),
1978         PMU_PMEVTYPER(19),
1979         PMU_PMEVTYPER(20),
1980         PMU_PMEVTYPER(21),
1981         PMU_PMEVTYPER(22),
1982         PMU_PMEVTYPER(23),
1983         PMU_PMEVTYPER(24),
1984         PMU_PMEVTYPER(25),
1985         PMU_PMEVTYPER(26),
1986         PMU_PMEVTYPER(27),
1987         PMU_PMEVTYPER(28),
1988         PMU_PMEVTYPER(29),
1989         PMU_PMEVTYPER(30),
1990         /* PMCCFILTR */
1991         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1992
1993         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1994         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1995         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
1996 };
1997
1998 static const struct sys_reg_desc cp15_64_regs[] = {
1999         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2000         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2001         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2002         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2003         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2004         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2005         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2006 };
2007
2008 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2009                               bool is_32)
2010 {
2011         unsigned int i;
2012
2013         for (i = 0; i < n; i++) {
2014                 if (!is_32 && table[i].reg && !table[i].reset) {
2015                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2016                                 table, i);
2017                         return 1;
2018                 }
2019
2020                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2021                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2022                         return 1;
2023                 }
2024         }
2025
2026         return 0;
2027 }
2028
2029 static int match_sys_reg(const void *key, const void *elt)
2030 {
2031         const unsigned long pval = (unsigned long)key;
2032         const struct sys_reg_desc *r = elt;
2033
2034         return pval - reg_to_encoding(r);
2035 }
2036
2037 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2038                                          const struct sys_reg_desc table[],
2039                                          unsigned int num)
2040 {
2041         unsigned long pval = reg_to_encoding(params);
2042
2043         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2044 }
2045
2046 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2047 {
2048         kvm_inject_undefined(vcpu);
2049         return 1;
2050 }
2051
2052 static void perform_access(struct kvm_vcpu *vcpu,
2053                            struct sys_reg_params *params,
2054                            const struct sys_reg_desc *r)
2055 {
2056         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2057
2058         /* Check for regs disabled by runtime config */
2059         if (sysreg_hidden(vcpu, r)) {
2060                 kvm_inject_undefined(vcpu);
2061                 return;
2062         }
2063
2064         /*
2065          * Not having an accessor means that we have configured a trap
2066          * that we don't know how to handle. This certainly qualifies
2067          * as a gross bug that should be fixed right away.
2068          */
2069         BUG_ON(!r->access);
2070
2071         /* Skip instruction if instructed so */
2072         if (likely(r->access(vcpu, params, r)))
2073                 kvm_incr_pc(vcpu);
2074 }
2075
2076 /*
2077  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2078  *                call the corresponding trap handler.
2079  *
2080  * @params: pointer to the descriptor of the access
2081  * @table: array of trap descriptors
2082  * @num: size of the trap descriptor array
2083  *
2084  * Return 0 if the access has been handled, and -1 if not.
2085  */
2086 static int emulate_cp(struct kvm_vcpu *vcpu,
2087                       struct sys_reg_params *params,
2088                       const struct sys_reg_desc *table,
2089                       size_t num)
2090 {
2091         const struct sys_reg_desc *r;
2092
2093         if (!table)
2094                 return -1;      /* Not handled */
2095
2096         r = find_reg(params, table, num);
2097
2098         if (r) {
2099                 perform_access(vcpu, params, r);
2100                 return 0;
2101         }
2102
2103         /* Not handled */
2104         return -1;
2105 }
2106
2107 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2108                                 struct sys_reg_params *params)
2109 {
2110         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2111         int cp = -1;
2112
2113         switch (esr_ec) {
2114         case ESR_ELx_EC_CP15_32:
2115         case ESR_ELx_EC_CP15_64:
2116                 cp = 15;
2117                 break;
2118         case ESR_ELx_EC_CP14_MR:
2119         case ESR_ELx_EC_CP14_64:
2120                 cp = 14;
2121                 break;
2122         default:
2123                 WARN_ON(1);
2124         }
2125
2126         print_sys_reg_msg(params,
2127                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2128                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2129         kvm_inject_undefined(vcpu);
2130 }
2131
2132 /**
2133  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2134  * @vcpu: The VCPU pointer
2135  * @run:  The kvm_run struct
2136  */
2137 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2138                             const struct sys_reg_desc *global,
2139                             size_t nr_global)
2140 {
2141         struct sys_reg_params params;
2142         u32 esr = kvm_vcpu_get_esr(vcpu);
2143         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2144         int Rt2 = (esr >> 10) & 0x1f;
2145
2146         params.CRm = (esr >> 1) & 0xf;
2147         params.is_write = ((esr & 1) == 0);
2148
2149         params.Op0 = 0;
2150         params.Op1 = (esr >> 16) & 0xf;
2151         params.Op2 = 0;
2152         params.CRn = 0;
2153
2154         /*
2155          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2156          * backends between AArch32 and AArch64, we get away with it.
2157          */
2158         if (params.is_write) {
2159                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2160                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2161         }
2162
2163         /*
2164          * If the table contains a handler, handle the
2165          * potential register operation in the case of a read and return
2166          * with success.
2167          */
2168         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2169                 /* Split up the value between registers for the read side */
2170                 if (!params.is_write) {
2171                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2172                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2173                 }
2174
2175                 return 1;
2176         }
2177
2178         unhandled_cp_access(vcpu, &params);
2179         return 1;
2180 }
2181
2182 /**
2183  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2184  * @vcpu: The VCPU pointer
2185  * @run:  The kvm_run struct
2186  */
2187 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2188                             const struct sys_reg_desc *global,
2189                             size_t nr_global)
2190 {
2191         struct sys_reg_params params;
2192         u32 esr = kvm_vcpu_get_esr(vcpu);
2193         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2194
2195         params.CRm = (esr >> 1) & 0xf;
2196         params.regval = vcpu_get_reg(vcpu, Rt);
2197         params.is_write = ((esr & 1) == 0);
2198         params.CRn = (esr >> 10) & 0xf;
2199         params.Op0 = 0;
2200         params.Op1 = (esr >> 14) & 0x7;
2201         params.Op2 = (esr >> 17) & 0x7;
2202
2203         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2204                 if (!params.is_write)
2205                         vcpu_set_reg(vcpu, Rt, params.regval);
2206                 return 1;
2207         }
2208
2209         unhandled_cp_access(vcpu, &params);
2210         return 1;
2211 }
2212
2213 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2214 {
2215         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2216 }
2217
2218 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2219 {
2220         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2221 }
2222
2223 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2224 {
2225         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2226 }
2227
2228 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2229 {
2230         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2231 }
2232
2233 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2234 {
2235         // See ARM DDI 0487E.a, section D12.3.2
2236         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2237 }
2238
2239 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2240                            struct sys_reg_params *params)
2241 {
2242         const struct sys_reg_desc *r;
2243
2244         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2245
2246         if (likely(r)) {
2247                 perform_access(vcpu, params, r);
2248         } else if (is_imp_def_sys_reg(params)) {
2249                 kvm_inject_undefined(vcpu);
2250         } else {
2251                 print_sys_reg_msg(params,
2252                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2253                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2254                 kvm_inject_undefined(vcpu);
2255         }
2256         return 1;
2257 }
2258
2259 /**
2260  * kvm_reset_sys_regs - sets system registers to reset value
2261  * @vcpu: The VCPU pointer
2262  *
2263  * This function finds the right table above and sets the registers on the
2264  * virtual CPU struct to their architecturally defined reset values.
2265  */
2266 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2267 {
2268         unsigned long i;
2269
2270         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2271                 if (sys_reg_descs[i].reset)
2272                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2273 }
2274
2275 /**
2276  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2277  * @vcpu: The VCPU pointer
2278  */
2279 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2280 {
2281         struct sys_reg_params params;
2282         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2283         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2284         int ret;
2285
2286         trace_kvm_handle_sys_reg(esr);
2287
2288         params.Op0 = (esr >> 20) & 3;
2289         params.Op1 = (esr >> 14) & 0x7;
2290         params.CRn = (esr >> 10) & 0xf;
2291         params.CRm = (esr >> 1) & 0xf;
2292         params.Op2 = (esr >> 17) & 0x7;
2293         params.regval = vcpu_get_reg(vcpu, Rt);
2294         params.is_write = !(esr & 1);
2295
2296         ret = emulate_sys_reg(vcpu, &params);
2297
2298         if (!params.is_write)
2299                 vcpu_set_reg(vcpu, Rt, params.regval);
2300         return ret;
2301 }
2302
2303 /******************************************************************************
2304  * Userspace API
2305  *****************************************************************************/
2306
2307 static bool index_to_params(u64 id, struct sys_reg_params *params)
2308 {
2309         switch (id & KVM_REG_SIZE_MASK) {
2310         case KVM_REG_SIZE_U64:
2311                 /* Any unused index bits means it's not valid. */
2312                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2313                               | KVM_REG_ARM_COPROC_MASK
2314                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2315                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2316                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2317                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2318                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2319                         return false;
2320                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2321                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2322                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2323                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2324                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2325                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2326                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2327                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2328                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2329                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2330                 return true;
2331         default:
2332                 return false;
2333         }
2334 }
2335
2336 const struct sys_reg_desc *find_reg_by_id(u64 id,
2337                                           struct sys_reg_params *params,
2338                                           const struct sys_reg_desc table[],
2339                                           unsigned int num)
2340 {
2341         if (!index_to_params(id, params))
2342                 return NULL;
2343
2344         return find_reg(params, table, num);
2345 }
2346
2347 /* Decode an index value, and find the sys_reg_desc entry. */
2348 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2349                                                     u64 id)
2350 {
2351         const struct sys_reg_desc *r;
2352         struct sys_reg_params params;
2353
2354         /* We only do sys_reg for now. */
2355         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2356                 return NULL;
2357
2358         if (!index_to_params(id, &params))
2359                 return NULL;
2360
2361         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2362
2363         /* Not saved in the sys_reg array and not otherwise accessible? */
2364         if (r && !(r->reg || r->get_user))
2365                 r = NULL;
2366
2367         return r;
2368 }
2369
2370 /*
2371  * These are the invariant sys_reg registers: we let the guest see the
2372  * host versions of these, so they're part of the guest state.
2373  *
2374  * A future CPU may provide a mechanism to present different values to
2375  * the guest, or a future kvm may trap them.
2376  */
2377
2378 #define FUNCTION_INVARIANT(reg)                                         \
2379         static void get_##reg(struct kvm_vcpu *v,                       \
2380                               const struct sys_reg_desc *r)             \
2381         {                                                               \
2382                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2383         }
2384
2385 FUNCTION_INVARIANT(midr_el1)
2386 FUNCTION_INVARIANT(revidr_el1)
2387 FUNCTION_INVARIANT(clidr_el1)
2388 FUNCTION_INVARIANT(aidr_el1)
2389
2390 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2391 {
2392         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2393 }
2394
2395 /* ->val is filled in by kvm_sys_reg_table_init() */
2396 static struct sys_reg_desc invariant_sys_regs[] = {
2397         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2398         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2399         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2400         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2401         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2402 };
2403
2404 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2405 {
2406         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2407                 return -EFAULT;
2408         return 0;
2409 }
2410
2411 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2412 {
2413         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2414                 return -EFAULT;
2415         return 0;
2416 }
2417
2418 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2419 {
2420         struct sys_reg_params params;
2421         const struct sys_reg_desc *r;
2422
2423         r = find_reg_by_id(id, &params, invariant_sys_regs,
2424                            ARRAY_SIZE(invariant_sys_regs));
2425         if (!r)
2426                 return -ENOENT;
2427
2428         return reg_to_user(uaddr, &r->val, id);
2429 }
2430
2431 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2432 {
2433         struct sys_reg_params params;
2434         const struct sys_reg_desc *r;
2435         int err;
2436         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2437
2438         r = find_reg_by_id(id, &params, invariant_sys_regs,
2439                            ARRAY_SIZE(invariant_sys_regs));
2440         if (!r)
2441                 return -ENOENT;
2442
2443         err = reg_from_user(&val, uaddr, id);
2444         if (err)
2445                 return err;
2446
2447         /* This is what we mean by invariant: you can't change it. */
2448         if (r->val != val)
2449                 return -EINVAL;
2450
2451         return 0;
2452 }
2453
2454 static bool is_valid_cache(u32 val)
2455 {
2456         u32 level, ctype;
2457
2458         if (val >= CSSELR_MAX)
2459                 return false;
2460
2461         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2462         level = (val >> 1);
2463         ctype = (cache_levels >> (level * 3)) & 7;
2464
2465         switch (ctype) {
2466         case 0: /* No cache */
2467                 return false;
2468         case 1: /* Instruction cache only */
2469                 return (val & 1);
2470         case 2: /* Data cache only */
2471         case 4: /* Unified cache */
2472                 return !(val & 1);
2473         case 3: /* Separate instruction and data caches */
2474                 return true;
2475         default: /* Reserved: we can't know instruction or data. */
2476                 return false;
2477         }
2478 }
2479
2480 static int demux_c15_get(u64 id, void __user *uaddr)
2481 {
2482         u32 val;
2483         u32 __user *uval = uaddr;
2484
2485         /* Fail if we have unknown bits set. */
2486         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2487                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2488                 return -ENOENT;
2489
2490         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2491         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2492                 if (KVM_REG_SIZE(id) != 4)
2493                         return -ENOENT;
2494                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2495                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2496                 if (!is_valid_cache(val))
2497                         return -ENOENT;
2498
2499                 return put_user(get_ccsidr(val), uval);
2500         default:
2501                 return -ENOENT;
2502         }
2503 }
2504
2505 static int demux_c15_set(u64 id, void __user *uaddr)
2506 {
2507         u32 val, newval;
2508         u32 __user *uval = uaddr;
2509
2510         /* Fail if we have unknown bits set. */
2511         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2512                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2513                 return -ENOENT;
2514
2515         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2516         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2517                 if (KVM_REG_SIZE(id) != 4)
2518                         return -ENOENT;
2519                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2520                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2521                 if (!is_valid_cache(val))
2522                         return -ENOENT;
2523
2524                 if (get_user(newval, uval))
2525                         return -EFAULT;
2526
2527                 /* This is also invariant: you can't change it. */
2528                 if (newval != get_ccsidr(val))
2529                         return -EINVAL;
2530                 return 0;
2531         default:
2532                 return -ENOENT;
2533         }
2534 }
2535
2536 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2537 {
2538         const struct sys_reg_desc *r;
2539         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2540
2541         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2542                 return demux_c15_get(reg->id, uaddr);
2543
2544         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2545                 return -ENOENT;
2546
2547         r = index_to_sys_reg_desc(vcpu, reg->id);
2548         if (!r)
2549                 return get_invariant_sys_reg(reg->id, uaddr);
2550
2551         /* Check for regs disabled by runtime config */
2552         if (sysreg_hidden(vcpu, r))
2553                 return -ENOENT;
2554
2555         if (r->get_user)
2556                 return (r->get_user)(vcpu, r, reg, uaddr);
2557
2558         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2559 }
2560
2561 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2562 {
2563         const struct sys_reg_desc *r;
2564         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2565
2566         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2567                 return demux_c15_set(reg->id, uaddr);
2568
2569         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2570                 return -ENOENT;
2571
2572         r = index_to_sys_reg_desc(vcpu, reg->id);
2573         if (!r)
2574                 return set_invariant_sys_reg(reg->id, uaddr);
2575
2576         /* Check for regs disabled by runtime config */
2577         if (sysreg_hidden(vcpu, r))
2578                 return -ENOENT;
2579
2580         if (r->set_user)
2581                 return (r->set_user)(vcpu, r, reg, uaddr);
2582
2583         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2584 }
2585
2586 static unsigned int num_demux_regs(void)
2587 {
2588         unsigned int i, count = 0;
2589
2590         for (i = 0; i < CSSELR_MAX; i++)
2591                 if (is_valid_cache(i))
2592                         count++;
2593
2594         return count;
2595 }
2596
2597 static int write_demux_regids(u64 __user *uindices)
2598 {
2599         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2600         unsigned int i;
2601
2602         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2603         for (i = 0; i < CSSELR_MAX; i++) {
2604                 if (!is_valid_cache(i))
2605                         continue;
2606                 if (put_user(val | i, uindices))
2607                         return -EFAULT;
2608                 uindices++;
2609         }
2610         return 0;
2611 }
2612
2613 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2614 {
2615         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2616                 KVM_REG_ARM64_SYSREG |
2617                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2618                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2619                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2620                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2621                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2622 }
2623
2624 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2625 {
2626         if (!*uind)
2627                 return true;
2628
2629         if (put_user(sys_reg_to_index(reg), *uind))
2630                 return false;
2631
2632         (*uind)++;
2633         return true;
2634 }
2635
2636 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2637                             const struct sys_reg_desc *rd,
2638                             u64 __user **uind,
2639                             unsigned int *total)
2640 {
2641         /*
2642          * Ignore registers we trap but don't save,
2643          * and for which no custom user accessor is provided.
2644          */
2645         if (!(rd->reg || rd->get_user))
2646                 return 0;
2647
2648         if (sysreg_hidden(vcpu, rd))
2649                 return 0;
2650
2651         if (!copy_reg_to_user(rd, uind))
2652                 return -EFAULT;
2653
2654         (*total)++;
2655         return 0;
2656 }
2657
2658 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2659 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2660 {
2661         const struct sys_reg_desc *i2, *end2;
2662         unsigned int total = 0;
2663         int err;
2664
2665         i2 = sys_reg_descs;
2666         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2667
2668         while (i2 != end2) {
2669                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2670                 if (err)
2671                         return err;
2672         }
2673         return total;
2674 }
2675
2676 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2677 {
2678         return ARRAY_SIZE(invariant_sys_regs)
2679                 + num_demux_regs()
2680                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2681 }
2682
2683 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2684 {
2685         unsigned int i;
2686         int err;
2687
2688         /* Then give them all the invariant registers' indices. */
2689         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2690                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2691                         return -EFAULT;
2692                 uindices++;
2693         }
2694
2695         err = walk_sys_regs(vcpu, uindices);
2696         if (err < 0)
2697                 return err;
2698         uindices += err;
2699
2700         return write_demux_regids(uindices);
2701 }
2702
2703 void kvm_sys_reg_table_init(void)
2704 {
2705         unsigned int i;
2706         struct sys_reg_desc clidr;
2707
2708         /* Make sure tables are unique and in order. */
2709         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2710         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2711         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2712         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2713         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2714         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2715
2716         /* We abuse the reset function to overwrite the table itself. */
2717         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2718                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2719
2720         /*
2721          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2722          *
2723          *   If software reads the Cache Type fields from Ctype1
2724          *   upwards, once it has seen a value of 0b000, no caches
2725          *   exist at further-out levels of the hierarchy. So, for
2726          *   example, if Ctype3 is the first Cache Type field with a
2727          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2728          *   ignored.
2729          */
2730         get_clidr_el1(NULL, &clidr); /* Ugly... */
2731         cache_levels = clidr.val;
2732         for (i = 0; i < 7; i++)
2733                 if (((cache_levels >> (i*3)) & 7) == 0)
2734                         break;
2735         /* Clear all higher bits. */
2736         cache_levels &= (1 << (i*3))-1;
2737 }