Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
48 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
49 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
50
51 static bool read_from_write_only(struct kvm_vcpu *vcpu,
52                                  struct sys_reg_params *params,
53                                  const struct sys_reg_desc *r)
54 {
55         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
56         print_sys_reg_instr(params);
57         kvm_inject_undefined(vcpu);
58         return false;
59 }
60
61 static bool write_to_read_only(struct kvm_vcpu *vcpu,
62                                struct sys_reg_params *params,
63                                const struct sys_reg_desc *r)
64 {
65         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
66         print_sys_reg_instr(params);
67         kvm_inject_undefined(vcpu);
68         return false;
69 }
70
71 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
72 {
73         u64 val = 0x8badf00d8badf00d;
74
75         if (vcpu->arch.sysregs_loaded_on_cpu &&
76             __vcpu_read_sys_reg_from_cpu(reg, &val))
77                 return val;
78
79         return __vcpu_sys_reg(vcpu, reg);
80 }
81
82 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
83 {
84         if (vcpu->arch.sysregs_loaded_on_cpu &&
85             __vcpu_write_sys_reg_to_cpu(val, reg))
86                 return;
87
88          __vcpu_sys_reg(vcpu, reg) = val;
89 }
90
91 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
92 static u32 cache_levels;
93
94 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
95 #define CSSELR_MAX 14
96
97 /* Which cache CCSIDR represents depends on CSSELR value. */
98 static u32 get_ccsidr(u32 csselr)
99 {
100         u32 ccsidr;
101
102         /* Make sure noone else changes CSSELR during this! */
103         local_irq_disable();
104         write_sysreg(csselr, csselr_el1);
105         isb();
106         ccsidr = read_sysreg(ccsidr_el1);
107         local_irq_enable();
108
109         return ccsidr;
110 }
111
112 /*
113  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
114  */
115 static bool access_dcsw(struct kvm_vcpu *vcpu,
116                         struct sys_reg_params *p,
117                         const struct sys_reg_desc *r)
118 {
119         if (!p->is_write)
120                 return read_from_write_only(vcpu, p, r);
121
122         /*
123          * Only track S/W ops if we don't have FWB. It still indicates
124          * that the guest is a bit broken (S/W operations should only
125          * be done by firmware, knowing that there is only a single
126          * CPU left in the system, and certainly not from non-secure
127          * software).
128          */
129         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
130                 kvm_set_way_flush(vcpu);
131
132         return true;
133 }
134
135 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
136 {
137         switch (r->aarch32_map) {
138         case AA32_LO:
139                 *mask = GENMASK_ULL(31, 0);
140                 *shift = 0;
141                 break;
142         case AA32_HI:
143                 *mask = GENMASK_ULL(63, 32);
144                 *shift = 32;
145                 break;
146         default:
147                 *mask = GENMASK_ULL(63, 0);
148                 *shift = 0;
149                 break;
150         }
151 }
152
153 /*
154  * Generic accessor for VM registers. Only called as long as HCR_TVM
155  * is set. If the guest enables the MMU, we stop trapping the VM
156  * sys_regs and leave it in complete control of the caches.
157  */
158 static bool access_vm_reg(struct kvm_vcpu *vcpu,
159                           struct sys_reg_params *p,
160                           const struct sys_reg_desc *r)
161 {
162         bool was_enabled = vcpu_has_cache_enabled(vcpu);
163         u64 val, mask, shift;
164
165         BUG_ON(!p->is_write);
166
167         get_access_mask(r, &mask, &shift);
168
169         if (~mask) {
170                 val = vcpu_read_sys_reg(vcpu, r->reg);
171                 val &= ~mask;
172         } else {
173                 val = 0;
174         }
175
176         val |= (p->regval & (mask >> shift)) << shift;
177         vcpu_write_sys_reg(vcpu, val, r->reg);
178
179         kvm_toggle_cache(vcpu, was_enabled);
180         return true;
181 }
182
183 static bool access_actlr(struct kvm_vcpu *vcpu,
184                          struct sys_reg_params *p,
185                          const struct sys_reg_desc *r)
186 {
187         u64 mask, shift;
188
189         if (p->is_write)
190                 return ignore_write(vcpu, p);
191
192         get_access_mask(r, &mask, &shift);
193         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
194
195         return true;
196 }
197
198 /*
199  * Trap handler for the GICv3 SGI generation system register.
200  * Forward the request to the VGIC emulation.
201  * The cp15_64 code makes sure this automatically works
202  * for both AArch64 and AArch32 accesses.
203  */
204 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
205                            struct sys_reg_params *p,
206                            const struct sys_reg_desc *r)
207 {
208         bool g1;
209
210         if (!p->is_write)
211                 return read_from_write_only(vcpu, p, r);
212
213         /*
214          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
215          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
216          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
217          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
218          * group.
219          */
220         if (p->Op0 == 0) {              /* AArch32 */
221                 switch (p->Op1) {
222                 default:                /* Keep GCC quiet */
223                 case 0:                 /* ICC_SGI1R */
224                         g1 = true;
225                         break;
226                 case 1:                 /* ICC_ASGI1R */
227                 case 2:                 /* ICC_SGI0R */
228                         g1 = false;
229                         break;
230                 }
231         } else {                        /* AArch64 */
232                 switch (p->Op2) {
233                 default:                /* Keep GCC quiet */
234                 case 5:                 /* ICC_SGI1R_EL1 */
235                         g1 = true;
236                         break;
237                 case 6:                 /* ICC_ASGI1R_EL1 */
238                 case 7:                 /* ICC_SGI0R_EL1 */
239                         g1 = false;
240                         break;
241                 }
242         }
243
244         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
245
246         return true;
247 }
248
249 static bool access_gic_sre(struct kvm_vcpu *vcpu,
250                            struct sys_reg_params *p,
251                            const struct sys_reg_desc *r)
252 {
253         if (p->is_write)
254                 return ignore_write(vcpu, p);
255
256         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
257         return true;
258 }
259
260 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
261                         struct sys_reg_params *p,
262                         const struct sys_reg_desc *r)
263 {
264         if (p->is_write)
265                 return ignore_write(vcpu, p);
266         else
267                 return read_zero(vcpu, p);
268 }
269
270 /*
271  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
272  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
273  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
274  * treat it separately.
275  */
276 static bool trap_loregion(struct kvm_vcpu *vcpu,
277                           struct sys_reg_params *p,
278                           const struct sys_reg_desc *r)
279 {
280         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
281         u32 sr = reg_to_encoding(r);
282
283         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
284                 kvm_inject_undefined(vcpu);
285                 return false;
286         }
287
288         if (p->is_write && sr == SYS_LORID_EL1)
289                 return write_to_read_only(vcpu, p, r);
290
291         return trap_raz_wi(vcpu, p, r);
292 }
293
294 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
295                            struct sys_reg_params *p,
296                            const struct sys_reg_desc *r)
297 {
298         u64 oslsr;
299
300         if (!p->is_write)
301                 return read_from_write_only(vcpu, p, r);
302
303         /* Forward the OSLK bit to OSLSR */
304         oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
305         if (p->regval & SYS_OSLAR_OSLK)
306                 oslsr |= SYS_OSLSR_OSLK;
307
308         __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
309         return true;
310 }
311
312 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
313                            struct sys_reg_params *p,
314                            const struct sys_reg_desc *r)
315 {
316         if (p->is_write)
317                 return write_to_read_only(vcpu, p, r);
318
319         p->regval = __vcpu_sys_reg(vcpu, r->reg);
320         return true;
321 }
322
323 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
324                          const struct kvm_one_reg *reg, void __user *uaddr)
325 {
326         u64 id = sys_reg_to_index(rd);
327         u64 val;
328         int err;
329
330         err = reg_from_user(&val, uaddr, id);
331         if (err)
332                 return err;
333
334         /*
335          * The only modifiable bit is the OSLK bit. Refuse the write if
336          * userspace attempts to change any other bit in the register.
337          */
338         if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
339                 return -EINVAL;
340
341         __vcpu_sys_reg(vcpu, rd->reg) = val;
342         return 0;
343 }
344
345 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
346                                    struct sys_reg_params *p,
347                                    const struct sys_reg_desc *r)
348 {
349         if (p->is_write) {
350                 return ignore_write(vcpu, p);
351         } else {
352                 p->regval = read_sysreg(dbgauthstatus_el1);
353                 return true;
354         }
355 }
356
357 /*
358  * We want to avoid world-switching all the DBG registers all the
359  * time:
360  *
361  * - If we've touched any debug register, it is likely that we're
362  *   going to touch more of them. It then makes sense to disable the
363  *   traps and start doing the save/restore dance
364  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
365  *   then mandatory to save/restore the registers, as the guest
366  *   depends on them.
367  *
368  * For this, we use a DIRTY bit, indicating the guest has modified the
369  * debug registers, used as follow:
370  *
371  * On guest entry:
372  * - If the dirty bit is set (because we're coming back from trapping),
373  *   disable the traps, save host registers, restore guest registers.
374  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
375  *   set the dirty bit, disable the traps, save host registers,
376  *   restore guest registers.
377  * - Otherwise, enable the traps
378  *
379  * On guest exit:
380  * - If the dirty bit is set, save guest registers, restore host
381  *   registers and clear the dirty bit. This ensure that the host can
382  *   now use the debug registers.
383  */
384 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
385                             struct sys_reg_params *p,
386                             const struct sys_reg_desc *r)
387 {
388         if (p->is_write) {
389                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
390                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
391         } else {
392                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
393         }
394
395         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
396
397         return true;
398 }
399
400 /*
401  * reg_to_dbg/dbg_to_reg
402  *
403  * A 32 bit write to a debug register leave top bits alone
404  * A 32 bit read from a debug register only returns the bottom bits
405  *
406  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
407  * hyp.S code switches between host and guest values in future.
408  */
409 static void reg_to_dbg(struct kvm_vcpu *vcpu,
410                        struct sys_reg_params *p,
411                        const struct sys_reg_desc *rd,
412                        u64 *dbg_reg)
413 {
414         u64 mask, shift, val;
415
416         get_access_mask(rd, &mask, &shift);
417
418         val = *dbg_reg;
419         val &= ~mask;
420         val |= (p->regval & (mask >> shift)) << shift;
421         *dbg_reg = val;
422
423         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
424 }
425
426 static void dbg_to_reg(struct kvm_vcpu *vcpu,
427                        struct sys_reg_params *p,
428                        const struct sys_reg_desc *rd,
429                        u64 *dbg_reg)
430 {
431         u64 mask, shift;
432
433         get_access_mask(rd, &mask, &shift);
434         p->regval = (*dbg_reg & mask) >> shift;
435 }
436
437 static bool trap_bvr(struct kvm_vcpu *vcpu,
438                      struct sys_reg_params *p,
439                      const struct sys_reg_desc *rd)
440 {
441         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
442
443         if (p->is_write)
444                 reg_to_dbg(vcpu, p, rd, dbg_reg);
445         else
446                 dbg_to_reg(vcpu, p, rd, dbg_reg);
447
448         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
449
450         return true;
451 }
452
453 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
454                 const struct kvm_one_reg *reg, void __user *uaddr)
455 {
456         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
457
458         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
459                 return -EFAULT;
460         return 0;
461 }
462
463 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464         const struct kvm_one_reg *reg, void __user *uaddr)
465 {
466         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
467
468         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469                 return -EFAULT;
470         return 0;
471 }
472
473 static void reset_bvr(struct kvm_vcpu *vcpu,
474                       const struct sys_reg_desc *rd)
475 {
476         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
477 }
478
479 static bool trap_bcr(struct kvm_vcpu *vcpu,
480                      struct sys_reg_params *p,
481                      const struct sys_reg_desc *rd)
482 {
483         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
484
485         if (p->is_write)
486                 reg_to_dbg(vcpu, p, rd, dbg_reg);
487         else
488                 dbg_to_reg(vcpu, p, rd, dbg_reg);
489
490         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
491
492         return true;
493 }
494
495 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
496                 const struct kvm_one_reg *reg, void __user *uaddr)
497 {
498         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
499
500         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
501                 return -EFAULT;
502
503         return 0;
504 }
505
506 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507         const struct kvm_one_reg *reg, void __user *uaddr)
508 {
509         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
510
511         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512                 return -EFAULT;
513         return 0;
514 }
515
516 static void reset_bcr(struct kvm_vcpu *vcpu,
517                       const struct sys_reg_desc *rd)
518 {
519         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
520 }
521
522 static bool trap_wvr(struct kvm_vcpu *vcpu,
523                      struct sys_reg_params *p,
524                      const struct sys_reg_desc *rd)
525 {
526         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
527
528         if (p->is_write)
529                 reg_to_dbg(vcpu, p, rd, dbg_reg);
530         else
531                 dbg_to_reg(vcpu, p, rd, dbg_reg);
532
533         trace_trap_reg(__func__, rd->CRm, p->is_write,
534                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
535
536         return true;
537 }
538
539 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
540                 const struct kvm_one_reg *reg, void __user *uaddr)
541 {
542         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
543
544         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
545                 return -EFAULT;
546         return 0;
547 }
548
549 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
550         const struct kvm_one_reg *reg, void __user *uaddr)
551 {
552         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
553
554         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
555                 return -EFAULT;
556         return 0;
557 }
558
559 static void reset_wvr(struct kvm_vcpu *vcpu,
560                       const struct sys_reg_desc *rd)
561 {
562         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
563 }
564
565 static bool trap_wcr(struct kvm_vcpu *vcpu,
566                      struct sys_reg_params *p,
567                      const struct sys_reg_desc *rd)
568 {
569         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
570
571         if (p->is_write)
572                 reg_to_dbg(vcpu, p, rd, dbg_reg);
573         else
574                 dbg_to_reg(vcpu, p, rd, dbg_reg);
575
576         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
577
578         return true;
579 }
580
581 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
582                 const struct kvm_one_reg *reg, void __user *uaddr)
583 {
584         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
585
586         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
587                 return -EFAULT;
588         return 0;
589 }
590
591 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
592         const struct kvm_one_reg *reg, void __user *uaddr)
593 {
594         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
595
596         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
597                 return -EFAULT;
598         return 0;
599 }
600
601 static void reset_wcr(struct kvm_vcpu *vcpu,
602                       const struct sys_reg_desc *rd)
603 {
604         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
605 }
606
607 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608 {
609         u64 amair = read_sysreg(amair_el1);
610         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
611 }
612
613 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
614 {
615         u64 actlr = read_sysreg(actlr_el1);
616         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
617 }
618
619 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
620 {
621         u64 mpidr;
622
623         /*
624          * Map the vcpu_id into the first three affinity level fields of
625          * the MPIDR. We limit the number of VCPUs in level 0 due to a
626          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
627          * of the GICv3 to be able to address each CPU directly when
628          * sending IPIs.
629          */
630         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
631         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
632         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
633         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
634 }
635
636 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
637                                    const struct sys_reg_desc *r)
638 {
639         if (kvm_vcpu_has_pmu(vcpu))
640                 return 0;
641
642         return REG_HIDDEN;
643 }
644
645 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647         u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
648
649         /* No PMU available, any PMU reg may UNDEF... */
650         if (!kvm_arm_support_pmu_v3())
651                 return;
652
653         n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
654         n &= ARMV8_PMU_PMCR_N_MASK;
655         if (n)
656                 mask |= GENMASK(n - 1, 0);
657
658         reset_unknown(vcpu, r);
659         __vcpu_sys_reg(vcpu, r->reg) &= mask;
660 }
661
662 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664         reset_unknown(vcpu, r);
665         __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
666 }
667
668 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
669 {
670         reset_unknown(vcpu, r);
671         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
672 }
673
674 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
675 {
676         reset_unknown(vcpu, r);
677         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
678 }
679
680 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
681 {
682         u64 pmcr, val;
683
684         /* No PMU available, PMCR_EL0 may UNDEF... */
685         if (!kvm_arm_support_pmu_v3())
686                 return;
687
688         pmcr = read_sysreg(pmcr_el0);
689         /*
690          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
691          * except PMCR.E resetting to zero.
692          */
693         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
694                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
695         if (!system_supports_32bit_el0())
696                 val |= ARMV8_PMU_PMCR_LC;
697         __vcpu_sys_reg(vcpu, r->reg) = val;
698 }
699
700 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
701 {
702         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
703         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
704
705         if (!enabled)
706                 kvm_inject_undefined(vcpu);
707
708         return !enabled;
709 }
710
711 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
712 {
713         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
714 }
715
716 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
717 {
718         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
719 }
720
721 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
722 {
723         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
724 }
725
726 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
727 {
728         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
729 }
730
731 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
732                         const struct sys_reg_desc *r)
733 {
734         u64 val;
735
736         if (pmu_access_el0_disabled(vcpu))
737                 return false;
738
739         if (p->is_write) {
740                 /* Only update writeable bits of PMCR */
741                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
742                 val &= ~ARMV8_PMU_PMCR_MASK;
743                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
744                 if (!system_supports_32bit_el0())
745                         val |= ARMV8_PMU_PMCR_LC;
746                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
747                 kvm_pmu_handle_pmcr(vcpu, val);
748                 kvm_vcpu_pmu_restore_guest(vcpu);
749         } else {
750                 /* PMCR.P & PMCR.C are RAZ */
751                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
752                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
753                 p->regval = val;
754         }
755
756         return true;
757 }
758
759 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760                           const struct sys_reg_desc *r)
761 {
762         if (pmu_access_event_counter_el0_disabled(vcpu))
763                 return false;
764
765         if (p->is_write)
766                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
767         else
768                 /* return PMSELR.SEL field */
769                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
770                             & ARMV8_PMU_COUNTER_MASK;
771
772         return true;
773 }
774
775 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
776                           const struct sys_reg_desc *r)
777 {
778         u64 pmceid, mask, shift;
779
780         BUG_ON(p->is_write);
781
782         if (pmu_access_el0_disabled(vcpu))
783                 return false;
784
785         get_access_mask(r, &mask, &shift);
786
787         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
788         pmceid &= mask;
789         pmceid >>= shift;
790
791         p->regval = pmceid;
792
793         return true;
794 }
795
796 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
797 {
798         u64 pmcr, val;
799
800         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
801         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
802         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
803                 kvm_inject_undefined(vcpu);
804                 return false;
805         }
806
807         return true;
808 }
809
810 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
811                               struct sys_reg_params *p,
812                               const struct sys_reg_desc *r)
813 {
814         u64 idx = ~0UL;
815
816         if (r->CRn == 9 && r->CRm == 13) {
817                 if (r->Op2 == 2) {
818                         /* PMXEVCNTR_EL0 */
819                         if (pmu_access_event_counter_el0_disabled(vcpu))
820                                 return false;
821
822                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
823                               & ARMV8_PMU_COUNTER_MASK;
824                 } else if (r->Op2 == 0) {
825                         /* PMCCNTR_EL0 */
826                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
827                                 return false;
828
829                         idx = ARMV8_PMU_CYCLE_IDX;
830                 }
831         } else if (r->CRn == 0 && r->CRm == 9) {
832                 /* PMCCNTR */
833                 if (pmu_access_event_counter_el0_disabled(vcpu))
834                         return false;
835
836                 idx = ARMV8_PMU_CYCLE_IDX;
837         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
838                 /* PMEVCNTRn_EL0 */
839                 if (pmu_access_event_counter_el0_disabled(vcpu))
840                         return false;
841
842                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
843         }
844
845         /* Catch any decoding mistake */
846         WARN_ON(idx == ~0UL);
847
848         if (!pmu_counter_idx_valid(vcpu, idx))
849                 return false;
850
851         if (p->is_write) {
852                 if (pmu_access_el0_disabled(vcpu))
853                         return false;
854
855                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
856         } else {
857                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
858         }
859
860         return true;
861 }
862
863 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
864                                const struct sys_reg_desc *r)
865 {
866         u64 idx, reg;
867
868         if (pmu_access_el0_disabled(vcpu))
869                 return false;
870
871         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
872                 /* PMXEVTYPER_EL0 */
873                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
874                 reg = PMEVTYPER0_EL0 + idx;
875         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
876                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
877                 if (idx == ARMV8_PMU_CYCLE_IDX)
878                         reg = PMCCFILTR_EL0;
879                 else
880                         /* PMEVTYPERn_EL0 */
881                         reg = PMEVTYPER0_EL0 + idx;
882         } else {
883                 BUG();
884         }
885
886         if (!pmu_counter_idx_valid(vcpu, idx))
887                 return false;
888
889         if (p->is_write) {
890                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
891                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
892                 kvm_vcpu_pmu_restore_guest(vcpu);
893         } else {
894                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
895         }
896
897         return true;
898 }
899
900 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
901                            const struct sys_reg_desc *r)
902 {
903         u64 val, mask;
904
905         if (pmu_access_el0_disabled(vcpu))
906                 return false;
907
908         mask = kvm_pmu_valid_counter_mask(vcpu);
909         if (p->is_write) {
910                 val = p->regval & mask;
911                 if (r->Op2 & 0x1) {
912                         /* accessing PMCNTENSET_EL0 */
913                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
914                         kvm_pmu_enable_counter_mask(vcpu, val);
915                         kvm_vcpu_pmu_restore_guest(vcpu);
916                 } else {
917                         /* accessing PMCNTENCLR_EL0 */
918                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
919                         kvm_pmu_disable_counter_mask(vcpu, val);
920                 }
921         } else {
922                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
923         }
924
925         return true;
926 }
927
928 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
929                            const struct sys_reg_desc *r)
930 {
931         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
932
933         if (check_pmu_access_disabled(vcpu, 0))
934                 return false;
935
936         if (p->is_write) {
937                 u64 val = p->regval & mask;
938
939                 if (r->Op2 & 0x1)
940                         /* accessing PMINTENSET_EL1 */
941                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
942                 else
943                         /* accessing PMINTENCLR_EL1 */
944                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
945         } else {
946                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
947         }
948
949         return true;
950 }
951
952 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
953                          const struct sys_reg_desc *r)
954 {
955         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
956
957         if (pmu_access_el0_disabled(vcpu))
958                 return false;
959
960         if (p->is_write) {
961                 if (r->CRm & 0x2)
962                         /* accessing PMOVSSET_EL0 */
963                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
964                 else
965                         /* accessing PMOVSCLR_EL0 */
966                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
967         } else {
968                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
969         }
970
971         return true;
972 }
973
974 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
975                            const struct sys_reg_desc *r)
976 {
977         u64 mask;
978
979         if (!p->is_write)
980                 return read_from_write_only(vcpu, p, r);
981
982         if (pmu_write_swinc_el0_disabled(vcpu))
983                 return false;
984
985         mask = kvm_pmu_valid_counter_mask(vcpu);
986         kvm_pmu_software_increment(vcpu, p->regval & mask);
987         return true;
988 }
989
990 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
991                              const struct sys_reg_desc *r)
992 {
993         if (p->is_write) {
994                 if (!vcpu_mode_priv(vcpu)) {
995                         kvm_inject_undefined(vcpu);
996                         return false;
997                 }
998
999                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1000                                p->regval & ARMV8_PMU_USERENR_MASK;
1001         } else {
1002                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1003                             & ARMV8_PMU_USERENR_MASK;
1004         }
1005
1006         return true;
1007 }
1008
1009 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1010 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1011         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1012           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1013         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1014           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1015         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1016           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1017         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1018           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1019
1020 #define PMU_SYS_REG(r)                                          \
1021         SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
1022
1023 /* Macro to expand the PMEVCNTRn_EL0 register */
1024 #define PMU_PMEVCNTR_EL0(n)                                             \
1025         { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
1026           .reset = reset_pmevcntr,                                      \
1027           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1028
1029 /* Macro to expand the PMEVTYPERn_EL0 register */
1030 #define PMU_PMEVTYPER_EL0(n)                                            \
1031         { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
1032           .reset = reset_pmevtyper,                                     \
1033           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1034
1035 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1036                          const struct sys_reg_desc *r)
1037 {
1038         kvm_inject_undefined(vcpu);
1039
1040         return false;
1041 }
1042
1043 /* Macro to expand the AMU counter and type registers*/
1044 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1045 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1046 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1047 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1048
1049 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1050                         const struct sys_reg_desc *rd)
1051 {
1052         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1053 }
1054
1055 /*
1056  * If we land here on a PtrAuth access, that is because we didn't
1057  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1058  * way this happens is when the guest does not have PtrAuth support
1059  * enabled.
1060  */
1061 #define __PTRAUTH_KEY(k)                                                \
1062         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
1063         .visibility = ptrauth_visibility}
1064
1065 #define PTRAUTH_KEY(k)                                                  \
1066         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1067         __PTRAUTH_KEY(k ## KEYHI_EL1)
1068
1069 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1070                               struct sys_reg_params *p,
1071                               const struct sys_reg_desc *r)
1072 {
1073         enum kvm_arch_timers tmr;
1074         enum kvm_arch_timer_regs treg;
1075         u64 reg = reg_to_encoding(r);
1076
1077         switch (reg) {
1078         case SYS_CNTP_TVAL_EL0:
1079         case SYS_AARCH32_CNTP_TVAL:
1080                 tmr = TIMER_PTIMER;
1081                 treg = TIMER_REG_TVAL;
1082                 break;
1083         case SYS_CNTP_CTL_EL0:
1084         case SYS_AARCH32_CNTP_CTL:
1085                 tmr = TIMER_PTIMER;
1086                 treg = TIMER_REG_CTL;
1087                 break;
1088         case SYS_CNTP_CVAL_EL0:
1089         case SYS_AARCH32_CNTP_CVAL:
1090                 tmr = TIMER_PTIMER;
1091                 treg = TIMER_REG_CVAL;
1092                 break;
1093         default:
1094                 BUG();
1095         }
1096
1097         if (p->is_write)
1098                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1099         else
1100                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1101
1102         return true;
1103 }
1104
1105 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1106 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1107                 struct sys_reg_desc const *r, bool raz)
1108 {
1109         u32 id = reg_to_encoding(r);
1110         u64 val;
1111
1112         if (raz)
1113                 return 0;
1114
1115         val = read_sanitised_ftr_reg(id);
1116
1117         switch (id) {
1118         case SYS_ID_AA64PFR0_EL1:
1119                 if (!vcpu_has_sve(vcpu))
1120                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
1121                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
1122                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
1123                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1124                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
1125                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1126                 if (kvm_vgic_global_state.type == VGIC_V3) {
1127                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC);
1128                         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1);
1129                 }
1130                 break;
1131         case SYS_ID_AA64PFR1_EL1:
1132                 if (!kvm_has_mte(vcpu->kvm))
1133                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
1134
1135                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_SME);
1136                 break;
1137         case SYS_ID_AA64ISAR1_EL1:
1138                 if (!vcpu_has_ptrauth(vcpu))
1139                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) |
1140                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_API) |
1141                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) |
1142                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI));
1143                 break;
1144         case SYS_ID_AA64ISAR2_EL1:
1145                 if (!vcpu_has_ptrauth(vcpu))
1146                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_APA3) |
1147                                  ARM64_FEATURE_MASK(ID_AA64ISAR2_GPA3));
1148                 break;
1149         case SYS_ID_AA64DFR0_EL1:
1150                 /* Limit debug to ARMv8.0 */
1151                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
1152                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
1153                 /* Limit guests to PMUv3 for ARMv8.4 */
1154                 val = cpuid_feature_cap_perfmon_field(val,
1155                                                       ID_AA64DFR0_PMUVER_SHIFT,
1156                                                       kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1157                 /* Hide SPE from guests */
1158                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
1159                 break;
1160         case SYS_ID_DFR0_EL1:
1161                 /* Limit guests to PMUv3 for ARMv8.4 */
1162                 val = cpuid_feature_cap_perfmon_field(val,
1163                                                       ID_DFR0_PERFMON_SHIFT,
1164                                                       kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1165                 break;
1166         }
1167
1168         return val;
1169 }
1170
1171 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1172                                   const struct sys_reg_desc *r)
1173 {
1174         u32 id = reg_to_encoding(r);
1175
1176         switch (id) {
1177         case SYS_ID_AA64ZFR0_EL1:
1178                 if (!vcpu_has_sve(vcpu))
1179                         return REG_RAZ;
1180                 break;
1181         }
1182
1183         return 0;
1184 }
1185
1186 /* cpufeature ID register access trap handlers */
1187
1188 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1189                             struct sys_reg_params *p,
1190                             const struct sys_reg_desc *r,
1191                             bool raz)
1192 {
1193         if (p->is_write)
1194                 return write_to_read_only(vcpu, p, r);
1195
1196         p->regval = read_id_reg(vcpu, r, raz);
1197         return true;
1198 }
1199
1200 static bool access_id_reg(struct kvm_vcpu *vcpu,
1201                           struct sys_reg_params *p,
1202                           const struct sys_reg_desc *r)
1203 {
1204         bool raz = sysreg_visible_as_raz(vcpu, r);
1205
1206         return __access_id_reg(vcpu, p, r, raz);
1207 }
1208
1209 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1210                               struct sys_reg_params *p,
1211                               const struct sys_reg_desc *r)
1212 {
1213         return __access_id_reg(vcpu, p, r, true);
1214 }
1215
1216 /* Visibility overrides for SVE-specific control registers */
1217 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1218                                    const struct sys_reg_desc *rd)
1219 {
1220         if (vcpu_has_sve(vcpu))
1221                 return 0;
1222
1223         return REG_HIDDEN;
1224 }
1225
1226 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1227                                const struct sys_reg_desc *rd,
1228                                const struct kvm_one_reg *reg, void __user *uaddr)
1229 {
1230         const u64 id = sys_reg_to_index(rd);
1231         u8 csv2, csv3;
1232         int err;
1233         u64 val;
1234
1235         err = reg_from_user(&val, uaddr, id);
1236         if (err)
1237                 return err;
1238
1239         /*
1240          * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1241          * it doesn't promise more than what is actually provided (the
1242          * guest could otherwise be covered in ectoplasmic residue).
1243          */
1244         csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1245         if (csv2 > 1 ||
1246             (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1247                 return -EINVAL;
1248
1249         /* Same thing for CSV3 */
1250         csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1251         if (csv3 > 1 ||
1252             (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1253                 return -EINVAL;
1254
1255         /* We can only differ with CSV[23], and anything else is an error */
1256         val ^= read_id_reg(vcpu, rd, false);
1257         val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1258                  (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1259         if (val)
1260                 return -EINVAL;
1261
1262         vcpu->kvm->arch.pfr0_csv2 = csv2;
1263         vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1264
1265         return 0;
1266 }
1267
1268 /*
1269  * cpufeature ID register user accessors
1270  *
1271  * For now, these registers are immutable for userspace, so no values
1272  * are stored, and for set_id_reg() we don't allow the effective value
1273  * to be changed.
1274  */
1275 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1276                         const struct sys_reg_desc *rd, void __user *uaddr,
1277                         bool raz)
1278 {
1279         const u64 id = sys_reg_to_index(rd);
1280         const u64 val = read_id_reg(vcpu, rd, raz);
1281
1282         return reg_to_user(uaddr, &val, id);
1283 }
1284
1285 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1286                         const struct sys_reg_desc *rd, void __user *uaddr,
1287                         bool raz)
1288 {
1289         const u64 id = sys_reg_to_index(rd);
1290         int err;
1291         u64 val;
1292
1293         err = reg_from_user(&val, uaddr, id);
1294         if (err)
1295                 return err;
1296
1297         /* This is what we mean by invariant: you can't change it. */
1298         if (val != read_id_reg(vcpu, rd, raz))
1299                 return -EINVAL;
1300
1301         return 0;
1302 }
1303
1304 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1305                       const struct kvm_one_reg *reg, void __user *uaddr)
1306 {
1307         bool raz = sysreg_visible_as_raz(vcpu, rd);
1308
1309         return __get_id_reg(vcpu, rd, uaddr, raz);
1310 }
1311
1312 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1313                       const struct kvm_one_reg *reg, void __user *uaddr)
1314 {
1315         bool raz = sysreg_visible_as_raz(vcpu, rd);
1316
1317         return __set_id_reg(vcpu, rd, uaddr, raz);
1318 }
1319
1320 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1321                           const struct kvm_one_reg *reg, void __user *uaddr)
1322 {
1323         return __set_id_reg(vcpu, rd, uaddr, true);
1324 }
1325
1326 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1327                        const struct kvm_one_reg *reg, void __user *uaddr)
1328 {
1329         const u64 id = sys_reg_to_index(rd);
1330         const u64 val = 0;
1331
1332         return reg_to_user(uaddr, &val, id);
1333 }
1334
1335 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1336                       const struct kvm_one_reg *reg, void __user *uaddr)
1337 {
1338         int err;
1339         u64 val;
1340
1341         /* Perform the access even if we are going to ignore the value */
1342         err = reg_from_user(&val, uaddr, sys_reg_to_index(rd));
1343         if (err)
1344                 return err;
1345
1346         return 0;
1347 }
1348
1349 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1350                        const struct sys_reg_desc *r)
1351 {
1352         if (p->is_write)
1353                 return write_to_read_only(vcpu, p, r);
1354
1355         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1356         return true;
1357 }
1358
1359 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1360                          const struct sys_reg_desc *r)
1361 {
1362         if (p->is_write)
1363                 return write_to_read_only(vcpu, p, r);
1364
1365         p->regval = read_sysreg(clidr_el1);
1366         return true;
1367 }
1368
1369 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1370                           const struct sys_reg_desc *r)
1371 {
1372         int reg = r->reg;
1373
1374         if (p->is_write)
1375                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1376         else
1377                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1378         return true;
1379 }
1380
1381 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1382                           const struct sys_reg_desc *r)
1383 {
1384         u32 csselr;
1385
1386         if (p->is_write)
1387                 return write_to_read_only(vcpu, p, r);
1388
1389         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1390         p->regval = get_ccsidr(csselr);
1391
1392         /*
1393          * Guests should not be doing cache operations by set/way at all, and
1394          * for this reason, we trap them and attempt to infer the intent, so
1395          * that we can flush the entire guest's address space at the appropriate
1396          * time.
1397          * To prevent this trapping from causing performance problems, let's
1398          * expose the geometry of all data and unified caches (which are
1399          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1400          * [If guests should attempt to infer aliasing properties from the
1401          * geometry (which is not permitted by the architecture), they would
1402          * only do so for virtually indexed caches.]
1403          */
1404         if (!(csselr & 1)) // data or unified cache
1405                 p->regval &= ~GENMASK(27, 3);
1406         return true;
1407 }
1408
1409 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1410                                    const struct sys_reg_desc *rd)
1411 {
1412         if (kvm_has_mte(vcpu->kvm))
1413                 return 0;
1414
1415         return REG_HIDDEN;
1416 }
1417
1418 #define MTE_REG(name) {                         \
1419         SYS_DESC(SYS_##name),                   \
1420         .access = undef_access,                 \
1421         .reset = reset_unknown,                 \
1422         .reg = name,                            \
1423         .visibility = mte_visibility,           \
1424 }
1425
1426 /* sys_reg_desc initialiser for known cpufeature ID registers */
1427 #define ID_SANITISED(name) {                    \
1428         SYS_DESC(SYS_##name),                   \
1429         .access = access_id_reg,                \
1430         .get_user = get_id_reg,                 \
1431         .set_user = set_id_reg,                 \
1432         .visibility = id_visibility,            \
1433 }
1434
1435 /*
1436  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1437  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1438  * (1 <= crm < 8, 0 <= Op2 < 8).
1439  */
1440 #define ID_UNALLOCATED(crm, op2) {                      \
1441         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1442         .access = access_raz_id_reg,                    \
1443         .get_user = get_raz_reg,                        \
1444         .set_user = set_raz_id_reg,                     \
1445 }
1446
1447 /*
1448  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1449  * For now, these are exposed just like unallocated ID regs: they appear
1450  * RAZ for the guest.
1451  */
1452 #define ID_HIDDEN(name) {                       \
1453         SYS_DESC(SYS_##name),                   \
1454         .access = access_raz_id_reg,            \
1455         .get_user = get_raz_reg,                \
1456         .set_user = set_raz_id_reg,             \
1457 }
1458
1459 /*
1460  * Architected system registers.
1461  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1462  *
1463  * Debug handling: We do trap most, if not all debug related system
1464  * registers. The implementation is good enough to ensure that a guest
1465  * can use these with minimal performance degradation. The drawback is
1466  * that we don't implement any of the external debug architecture.
1467  * This should be revisited if we ever encounter a more demanding
1468  * guest...
1469  */
1470 static const struct sys_reg_desc sys_reg_descs[] = {
1471         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1472         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1473         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1474
1475         DBG_BCR_BVR_WCR_WVR_EL1(0),
1476         DBG_BCR_BVR_WCR_WVR_EL1(1),
1477         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1478         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1479         DBG_BCR_BVR_WCR_WVR_EL1(2),
1480         DBG_BCR_BVR_WCR_WVR_EL1(3),
1481         DBG_BCR_BVR_WCR_WVR_EL1(4),
1482         DBG_BCR_BVR_WCR_WVR_EL1(5),
1483         DBG_BCR_BVR_WCR_WVR_EL1(6),
1484         DBG_BCR_BVR_WCR_WVR_EL1(7),
1485         DBG_BCR_BVR_WCR_WVR_EL1(8),
1486         DBG_BCR_BVR_WCR_WVR_EL1(9),
1487         DBG_BCR_BVR_WCR_WVR_EL1(10),
1488         DBG_BCR_BVR_WCR_WVR_EL1(11),
1489         DBG_BCR_BVR_WCR_WVR_EL1(12),
1490         DBG_BCR_BVR_WCR_WVR_EL1(13),
1491         DBG_BCR_BVR_WCR_WVR_EL1(14),
1492         DBG_BCR_BVR_WCR_WVR_EL1(15),
1493
1494         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1495         { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1496         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1497                 SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1498         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1499         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1500         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1501         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1502         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1503
1504         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1505         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1506         // DBGDTR[TR]X_EL0 share the same encoding
1507         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1508
1509         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1510
1511         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1512
1513         /*
1514          * ID regs: all ID_SANITISED() entries here must have corresponding
1515          * entries in arm64_ftr_regs[].
1516          */
1517
1518         /* AArch64 mappings of the AArch32 ID registers */
1519         /* CRm=1 */
1520         ID_SANITISED(ID_PFR0_EL1),
1521         ID_SANITISED(ID_PFR1_EL1),
1522         ID_SANITISED(ID_DFR0_EL1),
1523         ID_HIDDEN(ID_AFR0_EL1),
1524         ID_SANITISED(ID_MMFR0_EL1),
1525         ID_SANITISED(ID_MMFR1_EL1),
1526         ID_SANITISED(ID_MMFR2_EL1),
1527         ID_SANITISED(ID_MMFR3_EL1),
1528
1529         /* CRm=2 */
1530         ID_SANITISED(ID_ISAR0_EL1),
1531         ID_SANITISED(ID_ISAR1_EL1),
1532         ID_SANITISED(ID_ISAR2_EL1),
1533         ID_SANITISED(ID_ISAR3_EL1),
1534         ID_SANITISED(ID_ISAR4_EL1),
1535         ID_SANITISED(ID_ISAR5_EL1),
1536         ID_SANITISED(ID_MMFR4_EL1),
1537         ID_SANITISED(ID_ISAR6_EL1),
1538
1539         /* CRm=3 */
1540         ID_SANITISED(MVFR0_EL1),
1541         ID_SANITISED(MVFR1_EL1),
1542         ID_SANITISED(MVFR2_EL1),
1543         ID_UNALLOCATED(3,3),
1544         ID_SANITISED(ID_PFR2_EL1),
1545         ID_HIDDEN(ID_DFR1_EL1),
1546         ID_SANITISED(ID_MMFR5_EL1),
1547         ID_UNALLOCATED(3,7),
1548
1549         /* AArch64 ID registers */
1550         /* CRm=4 */
1551         { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1552           .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1553         ID_SANITISED(ID_AA64PFR1_EL1),
1554         ID_UNALLOCATED(4,2),
1555         ID_UNALLOCATED(4,3),
1556         ID_SANITISED(ID_AA64ZFR0_EL1),
1557         ID_HIDDEN(ID_AA64SMFR0_EL1),
1558         ID_UNALLOCATED(4,6),
1559         ID_UNALLOCATED(4,7),
1560
1561         /* CRm=5 */
1562         ID_SANITISED(ID_AA64DFR0_EL1),
1563         ID_SANITISED(ID_AA64DFR1_EL1),
1564         ID_UNALLOCATED(5,2),
1565         ID_UNALLOCATED(5,3),
1566         ID_HIDDEN(ID_AA64AFR0_EL1),
1567         ID_HIDDEN(ID_AA64AFR1_EL1),
1568         ID_UNALLOCATED(5,6),
1569         ID_UNALLOCATED(5,7),
1570
1571         /* CRm=6 */
1572         ID_SANITISED(ID_AA64ISAR0_EL1),
1573         ID_SANITISED(ID_AA64ISAR1_EL1),
1574         ID_SANITISED(ID_AA64ISAR2_EL1),
1575         ID_UNALLOCATED(6,3),
1576         ID_UNALLOCATED(6,4),
1577         ID_UNALLOCATED(6,5),
1578         ID_UNALLOCATED(6,6),
1579         ID_UNALLOCATED(6,7),
1580
1581         /* CRm=7 */
1582         ID_SANITISED(ID_AA64MMFR0_EL1),
1583         ID_SANITISED(ID_AA64MMFR1_EL1),
1584         ID_SANITISED(ID_AA64MMFR2_EL1),
1585         ID_UNALLOCATED(7,3),
1586         ID_UNALLOCATED(7,4),
1587         ID_UNALLOCATED(7,5),
1588         ID_UNALLOCATED(7,6),
1589         ID_UNALLOCATED(7,7),
1590
1591         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1592         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1593         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1594
1595         MTE_REG(RGSR_EL1),
1596         MTE_REG(GCR_EL1),
1597
1598         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1599         { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1600         { SYS_DESC(SYS_SMPRI_EL1), undef_access },
1601         { SYS_DESC(SYS_SMCR_EL1), undef_access },
1602         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1603         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1604         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1605
1606         PTRAUTH_KEY(APIA),
1607         PTRAUTH_KEY(APIB),
1608         PTRAUTH_KEY(APDA),
1609         PTRAUTH_KEY(APDB),
1610         PTRAUTH_KEY(APGA),
1611
1612         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1613         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1614         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1615
1616         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1617         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1618         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1619         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1620         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1621         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1622         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1623         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1624
1625         MTE_REG(TFSR_EL1),
1626         MTE_REG(TFSRE0_EL1),
1627
1628         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1629         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1630
1631         { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1632         { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1633         { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1634         { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1635         { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1636         { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1637         { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1638         { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1639         { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1640         { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1641         { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1642         /* PMBIDR_EL1 is not trapped */
1643
1644         { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1645           .access = access_pminten, .reg = PMINTENSET_EL1 },
1646         { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1647           .access = access_pminten, .reg = PMINTENSET_EL1 },
1648         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1649
1650         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1651         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1652
1653         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1654         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1655         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1656         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1657         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1658
1659         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1660         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1661
1662         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1663         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1664         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1665         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1666         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1667         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1668         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1669         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1670         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1671         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1672         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1673         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1674
1675         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1676         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1677
1678         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1679
1680         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1681
1682         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1683         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1684         { SYS_DESC(SYS_SMIDR_EL1), undef_access },
1685         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1686         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1687         { SYS_DESC(SYS_SVCR), undef_access },
1688
1689         { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1690           .reset = reset_pmcr, .reg = PMCR_EL0 },
1691         { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1692           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1693         { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1694           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1695         { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1696           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1697         /*
1698          * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1699          * previously (and pointlessly) advertised in the past...
1700          */
1701         { PMU_SYS_REG(SYS_PMSWINC_EL0),
1702           .get_user = get_raz_reg, .set_user = set_wi_reg,
1703           .access = access_pmswinc, .reset = NULL },
1704         { PMU_SYS_REG(SYS_PMSELR_EL0),
1705           .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1706         { PMU_SYS_REG(SYS_PMCEID0_EL0),
1707           .access = access_pmceid, .reset = NULL },
1708         { PMU_SYS_REG(SYS_PMCEID1_EL0),
1709           .access = access_pmceid, .reset = NULL },
1710         { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1711           .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1712         { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1713           .access = access_pmu_evtyper, .reset = NULL },
1714         { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1715           .access = access_pmu_evcntr, .reset = NULL },
1716         /*
1717          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1718          * in 32bit mode. Here we choose to reset it as zero for consistency.
1719          */
1720         { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1721           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1722         { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1723           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1724
1725         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1726         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1727         { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
1728
1729         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1730
1731         { SYS_DESC(SYS_AMCR_EL0), undef_access },
1732         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1733         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1734         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1735         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1736         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1737         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1738         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1739         AMU_AMEVCNTR0_EL0(0),
1740         AMU_AMEVCNTR0_EL0(1),
1741         AMU_AMEVCNTR0_EL0(2),
1742         AMU_AMEVCNTR0_EL0(3),
1743         AMU_AMEVCNTR0_EL0(4),
1744         AMU_AMEVCNTR0_EL0(5),
1745         AMU_AMEVCNTR0_EL0(6),
1746         AMU_AMEVCNTR0_EL0(7),
1747         AMU_AMEVCNTR0_EL0(8),
1748         AMU_AMEVCNTR0_EL0(9),
1749         AMU_AMEVCNTR0_EL0(10),
1750         AMU_AMEVCNTR0_EL0(11),
1751         AMU_AMEVCNTR0_EL0(12),
1752         AMU_AMEVCNTR0_EL0(13),
1753         AMU_AMEVCNTR0_EL0(14),
1754         AMU_AMEVCNTR0_EL0(15),
1755         AMU_AMEVTYPER0_EL0(0),
1756         AMU_AMEVTYPER0_EL0(1),
1757         AMU_AMEVTYPER0_EL0(2),
1758         AMU_AMEVTYPER0_EL0(3),
1759         AMU_AMEVTYPER0_EL0(4),
1760         AMU_AMEVTYPER0_EL0(5),
1761         AMU_AMEVTYPER0_EL0(6),
1762         AMU_AMEVTYPER0_EL0(7),
1763         AMU_AMEVTYPER0_EL0(8),
1764         AMU_AMEVTYPER0_EL0(9),
1765         AMU_AMEVTYPER0_EL0(10),
1766         AMU_AMEVTYPER0_EL0(11),
1767         AMU_AMEVTYPER0_EL0(12),
1768         AMU_AMEVTYPER0_EL0(13),
1769         AMU_AMEVTYPER0_EL0(14),
1770         AMU_AMEVTYPER0_EL0(15),
1771         AMU_AMEVCNTR1_EL0(0),
1772         AMU_AMEVCNTR1_EL0(1),
1773         AMU_AMEVCNTR1_EL0(2),
1774         AMU_AMEVCNTR1_EL0(3),
1775         AMU_AMEVCNTR1_EL0(4),
1776         AMU_AMEVCNTR1_EL0(5),
1777         AMU_AMEVCNTR1_EL0(6),
1778         AMU_AMEVCNTR1_EL0(7),
1779         AMU_AMEVCNTR1_EL0(8),
1780         AMU_AMEVCNTR1_EL0(9),
1781         AMU_AMEVCNTR1_EL0(10),
1782         AMU_AMEVCNTR1_EL0(11),
1783         AMU_AMEVCNTR1_EL0(12),
1784         AMU_AMEVCNTR1_EL0(13),
1785         AMU_AMEVCNTR1_EL0(14),
1786         AMU_AMEVCNTR1_EL0(15),
1787         AMU_AMEVTYPER1_EL0(0),
1788         AMU_AMEVTYPER1_EL0(1),
1789         AMU_AMEVTYPER1_EL0(2),
1790         AMU_AMEVTYPER1_EL0(3),
1791         AMU_AMEVTYPER1_EL0(4),
1792         AMU_AMEVTYPER1_EL0(5),
1793         AMU_AMEVTYPER1_EL0(6),
1794         AMU_AMEVTYPER1_EL0(7),
1795         AMU_AMEVTYPER1_EL0(8),
1796         AMU_AMEVTYPER1_EL0(9),
1797         AMU_AMEVTYPER1_EL0(10),
1798         AMU_AMEVTYPER1_EL0(11),
1799         AMU_AMEVTYPER1_EL0(12),
1800         AMU_AMEVTYPER1_EL0(13),
1801         AMU_AMEVTYPER1_EL0(14),
1802         AMU_AMEVTYPER1_EL0(15),
1803
1804         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1805         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1806         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1807
1808         /* PMEVCNTRn_EL0 */
1809         PMU_PMEVCNTR_EL0(0),
1810         PMU_PMEVCNTR_EL0(1),
1811         PMU_PMEVCNTR_EL0(2),
1812         PMU_PMEVCNTR_EL0(3),
1813         PMU_PMEVCNTR_EL0(4),
1814         PMU_PMEVCNTR_EL0(5),
1815         PMU_PMEVCNTR_EL0(6),
1816         PMU_PMEVCNTR_EL0(7),
1817         PMU_PMEVCNTR_EL0(8),
1818         PMU_PMEVCNTR_EL0(9),
1819         PMU_PMEVCNTR_EL0(10),
1820         PMU_PMEVCNTR_EL0(11),
1821         PMU_PMEVCNTR_EL0(12),
1822         PMU_PMEVCNTR_EL0(13),
1823         PMU_PMEVCNTR_EL0(14),
1824         PMU_PMEVCNTR_EL0(15),
1825         PMU_PMEVCNTR_EL0(16),
1826         PMU_PMEVCNTR_EL0(17),
1827         PMU_PMEVCNTR_EL0(18),
1828         PMU_PMEVCNTR_EL0(19),
1829         PMU_PMEVCNTR_EL0(20),
1830         PMU_PMEVCNTR_EL0(21),
1831         PMU_PMEVCNTR_EL0(22),
1832         PMU_PMEVCNTR_EL0(23),
1833         PMU_PMEVCNTR_EL0(24),
1834         PMU_PMEVCNTR_EL0(25),
1835         PMU_PMEVCNTR_EL0(26),
1836         PMU_PMEVCNTR_EL0(27),
1837         PMU_PMEVCNTR_EL0(28),
1838         PMU_PMEVCNTR_EL0(29),
1839         PMU_PMEVCNTR_EL0(30),
1840         /* PMEVTYPERn_EL0 */
1841         PMU_PMEVTYPER_EL0(0),
1842         PMU_PMEVTYPER_EL0(1),
1843         PMU_PMEVTYPER_EL0(2),
1844         PMU_PMEVTYPER_EL0(3),
1845         PMU_PMEVTYPER_EL0(4),
1846         PMU_PMEVTYPER_EL0(5),
1847         PMU_PMEVTYPER_EL0(6),
1848         PMU_PMEVTYPER_EL0(7),
1849         PMU_PMEVTYPER_EL0(8),
1850         PMU_PMEVTYPER_EL0(9),
1851         PMU_PMEVTYPER_EL0(10),
1852         PMU_PMEVTYPER_EL0(11),
1853         PMU_PMEVTYPER_EL0(12),
1854         PMU_PMEVTYPER_EL0(13),
1855         PMU_PMEVTYPER_EL0(14),
1856         PMU_PMEVTYPER_EL0(15),
1857         PMU_PMEVTYPER_EL0(16),
1858         PMU_PMEVTYPER_EL0(17),
1859         PMU_PMEVTYPER_EL0(18),
1860         PMU_PMEVTYPER_EL0(19),
1861         PMU_PMEVTYPER_EL0(20),
1862         PMU_PMEVTYPER_EL0(21),
1863         PMU_PMEVTYPER_EL0(22),
1864         PMU_PMEVTYPER_EL0(23),
1865         PMU_PMEVTYPER_EL0(24),
1866         PMU_PMEVTYPER_EL0(25),
1867         PMU_PMEVTYPER_EL0(26),
1868         PMU_PMEVTYPER_EL0(27),
1869         PMU_PMEVTYPER_EL0(28),
1870         PMU_PMEVTYPER_EL0(29),
1871         PMU_PMEVTYPER_EL0(30),
1872         /*
1873          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1874          * in 32bit mode. Here we choose to reset it as zero for consistency.
1875          */
1876         { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1877           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1878
1879         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1880         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1881         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1882 };
1883
1884 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1885                         struct sys_reg_params *p,
1886                         const struct sys_reg_desc *r)
1887 {
1888         if (p->is_write) {
1889                 return ignore_write(vcpu, p);
1890         } else {
1891                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1892                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1893                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1894
1895                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1896                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1897                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1898                              | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1899                 return true;
1900         }
1901 }
1902
1903 /*
1904  * AArch32 debug register mappings
1905  *
1906  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1907  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1908  *
1909  * None of the other registers share their location, so treat them as
1910  * if they were 64bit.
1911  */
1912 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
1913         /* DBGBVRn */                                                         \
1914         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1915         /* DBGBCRn */                                                         \
1916         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
1917         /* DBGWVRn */                                                         \
1918         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
1919         /* DBGWCRn */                                                         \
1920         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1921
1922 #define DBGBXVR(n)                                                            \
1923         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1924
1925 /*
1926  * Trapped cp14 registers. We generally ignore most of the external
1927  * debug, on the principle that they don't really make sense to a
1928  * guest. Revisit this one day, would this principle change.
1929  */
1930 static const struct sys_reg_desc cp14_regs[] = {
1931         /* DBGDIDR */
1932         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1933         /* DBGDTRRXext */
1934         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1935
1936         DBG_BCR_BVR_WCR_WVR(0),
1937         /* DBGDSCRint */
1938         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1939         DBG_BCR_BVR_WCR_WVR(1),
1940         /* DBGDCCINT */
1941         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1942         /* DBGDSCRext */
1943         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1944         DBG_BCR_BVR_WCR_WVR(2),
1945         /* DBGDTR[RT]Xint */
1946         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1947         /* DBGDTR[RT]Xext */
1948         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1949         DBG_BCR_BVR_WCR_WVR(3),
1950         DBG_BCR_BVR_WCR_WVR(4),
1951         DBG_BCR_BVR_WCR_WVR(5),
1952         /* DBGWFAR */
1953         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1954         /* DBGOSECCR */
1955         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1956         DBG_BCR_BVR_WCR_WVR(6),
1957         /* DBGVCR */
1958         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1959         DBG_BCR_BVR_WCR_WVR(7),
1960         DBG_BCR_BVR_WCR_WVR(8),
1961         DBG_BCR_BVR_WCR_WVR(9),
1962         DBG_BCR_BVR_WCR_WVR(10),
1963         DBG_BCR_BVR_WCR_WVR(11),
1964         DBG_BCR_BVR_WCR_WVR(12),
1965         DBG_BCR_BVR_WCR_WVR(13),
1966         DBG_BCR_BVR_WCR_WVR(14),
1967         DBG_BCR_BVR_WCR_WVR(15),
1968
1969         /* DBGDRAR (32bit) */
1970         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1971
1972         DBGBXVR(0),
1973         /* DBGOSLAR */
1974         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
1975         DBGBXVR(1),
1976         /* DBGOSLSR */
1977         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
1978         DBGBXVR(2),
1979         DBGBXVR(3),
1980         /* DBGOSDLR */
1981         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1982         DBGBXVR(4),
1983         /* DBGPRCR */
1984         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1985         DBGBXVR(5),
1986         DBGBXVR(6),
1987         DBGBXVR(7),
1988         DBGBXVR(8),
1989         DBGBXVR(9),
1990         DBGBXVR(10),
1991         DBGBXVR(11),
1992         DBGBXVR(12),
1993         DBGBXVR(13),
1994         DBGBXVR(14),
1995         DBGBXVR(15),
1996
1997         /* DBGDSAR (32bit) */
1998         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1999
2000         /* DBGDEVID2 */
2001         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2002         /* DBGDEVID1 */
2003         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2004         /* DBGDEVID */
2005         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2006         /* DBGCLAIMSET */
2007         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2008         /* DBGCLAIMCLR */
2009         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2010         /* DBGAUTHSTATUS */
2011         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2012 };
2013
2014 /* Trapped cp14 64bit registers */
2015 static const struct sys_reg_desc cp14_64_regs[] = {
2016         /* DBGDRAR (64bit) */
2017         { Op1( 0), CRm( 1), .access = trap_raz_wi },
2018
2019         /* DBGDSAR (64bit) */
2020         { Op1( 0), CRm( 2), .access = trap_raz_wi },
2021 };
2022
2023 /* Macro to expand the PMEVCNTRn register */
2024 #define PMU_PMEVCNTR(n)                                                 \
2025         /* PMEVCNTRn */                                                 \
2026         { Op1(0), CRn(0b1110),                                          \
2027           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
2028           access_pmu_evcntr }
2029
2030 /* Macro to expand the PMEVTYPERn register */
2031 #define PMU_PMEVTYPER(n)                                                \
2032         /* PMEVTYPERn */                                                \
2033         { Op1(0), CRn(0b1110),                                          \
2034           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
2035           access_pmu_evtyper }
2036
2037 /*
2038  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2039  * depending on the way they are accessed (as a 32bit or a 64bit
2040  * register).
2041  */
2042 static const struct sys_reg_desc cp15_regs[] = {
2043         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2044         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2045         /* ACTLR */
2046         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2047         /* ACTLR2 */
2048         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2049         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2050         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2051         /* TTBCR */
2052         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2053         /* TTBCR2 */
2054         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2055         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2056         /* DFSR */
2057         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2058         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2059         /* ADFSR */
2060         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2061         /* AIFSR */
2062         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2063         /* DFAR */
2064         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2065         /* IFAR */
2066         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2067
2068         /*
2069          * DC{C,I,CI}SW operations:
2070          */
2071         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2072         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2073         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2074
2075         /* PMU */
2076         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2077         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2078         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2079         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2080         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2081         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2082         { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2083         { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2084         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2085         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2086         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2087         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2088         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2089         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2090         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2091         { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
2092         { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
2093         /* PMMIR */
2094         { Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
2095
2096         /* PRRR/MAIR0 */
2097         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2098         /* NMRR/MAIR1 */
2099         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2100         /* AMAIR0 */
2101         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2102         /* AMAIR1 */
2103         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2104
2105         /* ICC_SRE */
2106         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2107
2108         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2109
2110         /* Arch Tmers */
2111         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2112         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2113
2114         /* PMEVCNTRn */
2115         PMU_PMEVCNTR(0),
2116         PMU_PMEVCNTR(1),
2117         PMU_PMEVCNTR(2),
2118         PMU_PMEVCNTR(3),
2119         PMU_PMEVCNTR(4),
2120         PMU_PMEVCNTR(5),
2121         PMU_PMEVCNTR(6),
2122         PMU_PMEVCNTR(7),
2123         PMU_PMEVCNTR(8),
2124         PMU_PMEVCNTR(9),
2125         PMU_PMEVCNTR(10),
2126         PMU_PMEVCNTR(11),
2127         PMU_PMEVCNTR(12),
2128         PMU_PMEVCNTR(13),
2129         PMU_PMEVCNTR(14),
2130         PMU_PMEVCNTR(15),
2131         PMU_PMEVCNTR(16),
2132         PMU_PMEVCNTR(17),
2133         PMU_PMEVCNTR(18),
2134         PMU_PMEVCNTR(19),
2135         PMU_PMEVCNTR(20),
2136         PMU_PMEVCNTR(21),
2137         PMU_PMEVCNTR(22),
2138         PMU_PMEVCNTR(23),
2139         PMU_PMEVCNTR(24),
2140         PMU_PMEVCNTR(25),
2141         PMU_PMEVCNTR(26),
2142         PMU_PMEVCNTR(27),
2143         PMU_PMEVCNTR(28),
2144         PMU_PMEVCNTR(29),
2145         PMU_PMEVCNTR(30),
2146         /* PMEVTYPERn */
2147         PMU_PMEVTYPER(0),
2148         PMU_PMEVTYPER(1),
2149         PMU_PMEVTYPER(2),
2150         PMU_PMEVTYPER(3),
2151         PMU_PMEVTYPER(4),
2152         PMU_PMEVTYPER(5),
2153         PMU_PMEVTYPER(6),
2154         PMU_PMEVTYPER(7),
2155         PMU_PMEVTYPER(8),
2156         PMU_PMEVTYPER(9),
2157         PMU_PMEVTYPER(10),
2158         PMU_PMEVTYPER(11),
2159         PMU_PMEVTYPER(12),
2160         PMU_PMEVTYPER(13),
2161         PMU_PMEVTYPER(14),
2162         PMU_PMEVTYPER(15),
2163         PMU_PMEVTYPER(16),
2164         PMU_PMEVTYPER(17),
2165         PMU_PMEVTYPER(18),
2166         PMU_PMEVTYPER(19),
2167         PMU_PMEVTYPER(20),
2168         PMU_PMEVTYPER(21),
2169         PMU_PMEVTYPER(22),
2170         PMU_PMEVTYPER(23),
2171         PMU_PMEVTYPER(24),
2172         PMU_PMEVTYPER(25),
2173         PMU_PMEVTYPER(26),
2174         PMU_PMEVTYPER(27),
2175         PMU_PMEVTYPER(28),
2176         PMU_PMEVTYPER(29),
2177         PMU_PMEVTYPER(30),
2178         /* PMCCFILTR */
2179         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2180
2181         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2182         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2183         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2184 };
2185
2186 static const struct sys_reg_desc cp15_64_regs[] = {
2187         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2188         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2189         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2190         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2191         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2192         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2193         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2194 };
2195
2196 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2197                               bool is_32)
2198 {
2199         unsigned int i;
2200
2201         for (i = 0; i < n; i++) {
2202                 if (!is_32 && table[i].reg && !table[i].reset) {
2203                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2204                                 table, i);
2205                         return 1;
2206                 }
2207
2208                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2209                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2210                         return 1;
2211                 }
2212         }
2213
2214         return 0;
2215 }
2216
2217 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2218 {
2219         kvm_inject_undefined(vcpu);
2220         return 1;
2221 }
2222
2223 static void perform_access(struct kvm_vcpu *vcpu,
2224                            struct sys_reg_params *params,
2225                            const struct sys_reg_desc *r)
2226 {
2227         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2228
2229         /* Check for regs disabled by runtime config */
2230         if (sysreg_hidden(vcpu, r)) {
2231                 kvm_inject_undefined(vcpu);
2232                 return;
2233         }
2234
2235         /*
2236          * Not having an accessor means that we have configured a trap
2237          * that we don't know how to handle. This certainly qualifies
2238          * as a gross bug that should be fixed right away.
2239          */
2240         BUG_ON(!r->access);
2241
2242         /* Skip instruction if instructed so */
2243         if (likely(r->access(vcpu, params, r)))
2244                 kvm_incr_pc(vcpu);
2245 }
2246
2247 /*
2248  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2249  *                call the corresponding trap handler.
2250  *
2251  * @params: pointer to the descriptor of the access
2252  * @table: array of trap descriptors
2253  * @num: size of the trap descriptor array
2254  *
2255  * Return 0 if the access has been handled, and -1 if not.
2256  */
2257 static int emulate_cp(struct kvm_vcpu *vcpu,
2258                       struct sys_reg_params *params,
2259                       const struct sys_reg_desc *table,
2260                       size_t num)
2261 {
2262         const struct sys_reg_desc *r;
2263
2264         if (!table)
2265                 return -1;      /* Not handled */
2266
2267         r = find_reg(params, table, num);
2268
2269         if (r) {
2270                 perform_access(vcpu, params, r);
2271                 return 0;
2272         }
2273
2274         /* Not handled */
2275         return -1;
2276 }
2277
2278 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2279                                 struct sys_reg_params *params)
2280 {
2281         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2282         int cp = -1;
2283
2284         switch (esr_ec) {
2285         case ESR_ELx_EC_CP15_32:
2286         case ESR_ELx_EC_CP15_64:
2287                 cp = 15;
2288                 break;
2289         case ESR_ELx_EC_CP14_MR:
2290         case ESR_ELx_EC_CP14_64:
2291                 cp = 14;
2292                 break;
2293         default:
2294                 WARN_ON(1);
2295         }
2296
2297         print_sys_reg_msg(params,
2298                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2299                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2300         kvm_inject_undefined(vcpu);
2301 }
2302
2303 /**
2304  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2305  * @vcpu: The VCPU pointer
2306  * @run:  The kvm_run struct
2307  */
2308 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2309                             const struct sys_reg_desc *global,
2310                             size_t nr_global)
2311 {
2312         struct sys_reg_params params;
2313         u64 esr = kvm_vcpu_get_esr(vcpu);
2314         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2315         int Rt2 = (esr >> 10) & 0x1f;
2316
2317         params.CRm = (esr >> 1) & 0xf;
2318         params.is_write = ((esr & 1) == 0);
2319
2320         params.Op0 = 0;
2321         params.Op1 = (esr >> 16) & 0xf;
2322         params.Op2 = 0;
2323         params.CRn = 0;
2324
2325         /*
2326          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2327          * backends between AArch32 and AArch64, we get away with it.
2328          */
2329         if (params.is_write) {
2330                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2331                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2332         }
2333
2334         /*
2335          * If the table contains a handler, handle the
2336          * potential register operation in the case of a read and return
2337          * with success.
2338          */
2339         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2340                 /* Split up the value between registers for the read side */
2341                 if (!params.is_write) {
2342                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2343                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2344                 }
2345
2346                 return 1;
2347         }
2348
2349         unhandled_cp_access(vcpu, &params);
2350         return 1;
2351 }
2352
2353 /**
2354  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2355  * @vcpu: The VCPU pointer
2356  * @run:  The kvm_run struct
2357  */
2358 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2359                             const struct sys_reg_desc *global,
2360                             size_t nr_global)
2361 {
2362         struct sys_reg_params params;
2363         u64 esr = kvm_vcpu_get_esr(vcpu);
2364         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2365
2366         params.CRm = (esr >> 1) & 0xf;
2367         params.regval = vcpu_get_reg(vcpu, Rt);
2368         params.is_write = ((esr & 1) == 0);
2369         params.CRn = (esr >> 10) & 0xf;
2370         params.Op0 = 0;
2371         params.Op1 = (esr >> 14) & 0x7;
2372         params.Op2 = (esr >> 17) & 0x7;
2373
2374         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2375                 if (!params.is_write)
2376                         vcpu_set_reg(vcpu, Rt, params.regval);
2377                 return 1;
2378         }
2379
2380         unhandled_cp_access(vcpu, &params);
2381         return 1;
2382 }
2383
2384 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2385 {
2386         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2387 }
2388
2389 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2390 {
2391         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2392 }
2393
2394 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2395 {
2396         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2397 }
2398
2399 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2400 {
2401         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2402 }
2403
2404 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2405 {
2406         // See ARM DDI 0487E.a, section D12.3.2
2407         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2408 }
2409
2410 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2411                            struct sys_reg_params *params)
2412 {
2413         const struct sys_reg_desc *r;
2414
2415         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2416
2417         if (likely(r)) {
2418                 perform_access(vcpu, params, r);
2419         } else if (is_imp_def_sys_reg(params)) {
2420                 kvm_inject_undefined(vcpu);
2421         } else {
2422                 print_sys_reg_msg(params,
2423                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2424                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2425                 kvm_inject_undefined(vcpu);
2426         }
2427         return 1;
2428 }
2429
2430 /**
2431  * kvm_reset_sys_regs - sets system registers to reset value
2432  * @vcpu: The VCPU pointer
2433  *
2434  * This function finds the right table above and sets the registers on the
2435  * virtual CPU struct to their architecturally defined reset values.
2436  */
2437 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2438 {
2439         unsigned long i;
2440
2441         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2442                 if (sys_reg_descs[i].reset)
2443                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2444 }
2445
2446 /**
2447  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2448  * @vcpu: The VCPU pointer
2449  */
2450 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2451 {
2452         struct sys_reg_params params;
2453         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2454         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2455         int ret;
2456
2457         trace_kvm_handle_sys_reg(esr);
2458
2459         params = esr_sys64_to_params(esr);
2460         params.regval = vcpu_get_reg(vcpu, Rt);
2461
2462         ret = emulate_sys_reg(vcpu, &params);
2463
2464         if (!params.is_write)
2465                 vcpu_set_reg(vcpu, Rt, params.regval);
2466         return ret;
2467 }
2468
2469 /******************************************************************************
2470  * Userspace API
2471  *****************************************************************************/
2472
2473 static bool index_to_params(u64 id, struct sys_reg_params *params)
2474 {
2475         switch (id & KVM_REG_SIZE_MASK) {
2476         case KVM_REG_SIZE_U64:
2477                 /* Any unused index bits means it's not valid. */
2478                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2479                               | KVM_REG_ARM_COPROC_MASK
2480                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2481                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2482                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2483                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2484                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2485                         return false;
2486                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2487                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2488                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2489                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2490                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2491                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2492                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2493                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2494                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2495                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2496                 return true;
2497         default:
2498                 return false;
2499         }
2500 }
2501
2502 const struct sys_reg_desc *find_reg_by_id(u64 id,
2503                                           struct sys_reg_params *params,
2504                                           const struct sys_reg_desc table[],
2505                                           unsigned int num)
2506 {
2507         if (!index_to_params(id, params))
2508                 return NULL;
2509
2510         return find_reg(params, table, num);
2511 }
2512
2513 /* Decode an index value, and find the sys_reg_desc entry. */
2514 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2515                                                     u64 id)
2516 {
2517         const struct sys_reg_desc *r;
2518         struct sys_reg_params params;
2519
2520         /* We only do sys_reg for now. */
2521         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2522                 return NULL;
2523
2524         if (!index_to_params(id, &params))
2525                 return NULL;
2526
2527         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2528
2529         /* Not saved in the sys_reg array and not otherwise accessible? */
2530         if (r && !(r->reg || r->get_user))
2531                 r = NULL;
2532
2533         return r;
2534 }
2535
2536 /*
2537  * These are the invariant sys_reg registers: we let the guest see the
2538  * host versions of these, so they're part of the guest state.
2539  *
2540  * A future CPU may provide a mechanism to present different values to
2541  * the guest, or a future kvm may trap them.
2542  */
2543
2544 #define FUNCTION_INVARIANT(reg)                                         \
2545         static void get_##reg(struct kvm_vcpu *v,                       \
2546                               const struct sys_reg_desc *r)             \
2547         {                                                               \
2548                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2549         }
2550
2551 FUNCTION_INVARIANT(midr_el1)
2552 FUNCTION_INVARIANT(revidr_el1)
2553 FUNCTION_INVARIANT(clidr_el1)
2554 FUNCTION_INVARIANT(aidr_el1)
2555
2556 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2557 {
2558         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2559 }
2560
2561 /* ->val is filled in by kvm_sys_reg_table_init() */
2562 static struct sys_reg_desc invariant_sys_regs[] = {
2563         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2564         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2565         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2566         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2567         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2568 };
2569
2570 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2571 {
2572         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2573                 return -EFAULT;
2574         return 0;
2575 }
2576
2577 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2578 {
2579         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2580                 return -EFAULT;
2581         return 0;
2582 }
2583
2584 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2585 {
2586         struct sys_reg_params params;
2587         const struct sys_reg_desc *r;
2588
2589         r = find_reg_by_id(id, &params, invariant_sys_regs,
2590                            ARRAY_SIZE(invariant_sys_regs));
2591         if (!r)
2592                 return -ENOENT;
2593
2594         return reg_to_user(uaddr, &r->val, id);
2595 }
2596
2597 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2598 {
2599         struct sys_reg_params params;
2600         const struct sys_reg_desc *r;
2601         int err;
2602         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2603
2604         r = find_reg_by_id(id, &params, invariant_sys_regs,
2605                            ARRAY_SIZE(invariant_sys_regs));
2606         if (!r)
2607                 return -ENOENT;
2608
2609         err = reg_from_user(&val, uaddr, id);
2610         if (err)
2611                 return err;
2612
2613         /* This is what we mean by invariant: you can't change it. */
2614         if (r->val != val)
2615                 return -EINVAL;
2616
2617         return 0;
2618 }
2619
2620 static bool is_valid_cache(u32 val)
2621 {
2622         u32 level, ctype;
2623
2624         if (val >= CSSELR_MAX)
2625                 return false;
2626
2627         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2628         level = (val >> 1);
2629         ctype = (cache_levels >> (level * 3)) & 7;
2630
2631         switch (ctype) {
2632         case 0: /* No cache */
2633                 return false;
2634         case 1: /* Instruction cache only */
2635                 return (val & 1);
2636         case 2: /* Data cache only */
2637         case 4: /* Unified cache */
2638                 return !(val & 1);
2639         case 3: /* Separate instruction and data caches */
2640                 return true;
2641         default: /* Reserved: we can't know instruction or data. */
2642                 return false;
2643         }
2644 }
2645
2646 static int demux_c15_get(u64 id, void __user *uaddr)
2647 {
2648         u32 val;
2649         u32 __user *uval = uaddr;
2650
2651         /* Fail if we have unknown bits set. */
2652         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2653                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2654                 return -ENOENT;
2655
2656         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2657         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2658                 if (KVM_REG_SIZE(id) != 4)
2659                         return -ENOENT;
2660                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2661                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2662                 if (!is_valid_cache(val))
2663                         return -ENOENT;
2664
2665                 return put_user(get_ccsidr(val), uval);
2666         default:
2667                 return -ENOENT;
2668         }
2669 }
2670
2671 static int demux_c15_set(u64 id, void __user *uaddr)
2672 {
2673         u32 val, newval;
2674         u32 __user *uval = uaddr;
2675
2676         /* Fail if we have unknown bits set. */
2677         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2678                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2679                 return -ENOENT;
2680
2681         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2682         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2683                 if (KVM_REG_SIZE(id) != 4)
2684                         return -ENOENT;
2685                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2686                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2687                 if (!is_valid_cache(val))
2688                         return -ENOENT;
2689
2690                 if (get_user(newval, uval))
2691                         return -EFAULT;
2692
2693                 /* This is also invariant: you can't change it. */
2694                 if (newval != get_ccsidr(val))
2695                         return -EINVAL;
2696                 return 0;
2697         default:
2698                 return -ENOENT;
2699         }
2700 }
2701
2702 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2703 {
2704         const struct sys_reg_desc *r;
2705         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2706
2707         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2708                 return demux_c15_get(reg->id, uaddr);
2709
2710         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2711                 return -ENOENT;
2712
2713         r = index_to_sys_reg_desc(vcpu, reg->id);
2714         if (!r)
2715                 return get_invariant_sys_reg(reg->id, uaddr);
2716
2717         /* Check for regs disabled by runtime config */
2718         if (sysreg_hidden(vcpu, r))
2719                 return -ENOENT;
2720
2721         if (r->get_user)
2722                 return (r->get_user)(vcpu, r, reg, uaddr);
2723
2724         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2725 }
2726
2727 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2728 {
2729         const struct sys_reg_desc *r;
2730         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2731
2732         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2733                 return demux_c15_set(reg->id, uaddr);
2734
2735         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2736                 return -ENOENT;
2737
2738         r = index_to_sys_reg_desc(vcpu, reg->id);
2739         if (!r)
2740                 return set_invariant_sys_reg(reg->id, uaddr);
2741
2742         /* Check for regs disabled by runtime config */
2743         if (sysreg_hidden(vcpu, r))
2744                 return -ENOENT;
2745
2746         if (r->set_user)
2747                 return (r->set_user)(vcpu, r, reg, uaddr);
2748
2749         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2750 }
2751
2752 static unsigned int num_demux_regs(void)
2753 {
2754         unsigned int i, count = 0;
2755
2756         for (i = 0; i < CSSELR_MAX; i++)
2757                 if (is_valid_cache(i))
2758                         count++;
2759
2760         return count;
2761 }
2762
2763 static int write_demux_regids(u64 __user *uindices)
2764 {
2765         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2766         unsigned int i;
2767
2768         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2769         for (i = 0; i < CSSELR_MAX; i++) {
2770                 if (!is_valid_cache(i))
2771                         continue;
2772                 if (put_user(val | i, uindices))
2773                         return -EFAULT;
2774                 uindices++;
2775         }
2776         return 0;
2777 }
2778
2779 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2780 {
2781         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2782                 KVM_REG_ARM64_SYSREG |
2783                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2784                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2785                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2786                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2787                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2788 }
2789
2790 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2791 {
2792         if (!*uind)
2793                 return true;
2794
2795         if (put_user(sys_reg_to_index(reg), *uind))
2796                 return false;
2797
2798         (*uind)++;
2799         return true;
2800 }
2801
2802 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2803                             const struct sys_reg_desc *rd,
2804                             u64 __user **uind,
2805                             unsigned int *total)
2806 {
2807         /*
2808          * Ignore registers we trap but don't save,
2809          * and for which no custom user accessor is provided.
2810          */
2811         if (!(rd->reg || rd->get_user))
2812                 return 0;
2813
2814         if (sysreg_hidden(vcpu, rd))
2815                 return 0;
2816
2817         if (!copy_reg_to_user(rd, uind))
2818                 return -EFAULT;
2819
2820         (*total)++;
2821         return 0;
2822 }
2823
2824 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2825 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2826 {
2827         const struct sys_reg_desc *i2, *end2;
2828         unsigned int total = 0;
2829         int err;
2830
2831         i2 = sys_reg_descs;
2832         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2833
2834         while (i2 != end2) {
2835                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2836                 if (err)
2837                         return err;
2838         }
2839         return total;
2840 }
2841
2842 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2843 {
2844         return ARRAY_SIZE(invariant_sys_regs)
2845                 + num_demux_regs()
2846                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2847 }
2848
2849 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2850 {
2851         unsigned int i;
2852         int err;
2853
2854         /* Then give them all the invariant registers' indices. */
2855         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2856                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2857                         return -EFAULT;
2858                 uindices++;
2859         }
2860
2861         err = walk_sys_regs(vcpu, uindices);
2862         if (err < 0)
2863                 return err;
2864         uindices += err;
2865
2866         return write_demux_regids(uindices);
2867 }
2868
2869 void kvm_sys_reg_table_init(void)
2870 {
2871         unsigned int i;
2872         struct sys_reg_desc clidr;
2873
2874         /* Make sure tables are unique and in order. */
2875         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2876         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2877         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2878         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2879         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2880         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2881
2882         /* We abuse the reset function to overwrite the table itself. */
2883         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2884                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2885
2886         /*
2887          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2888          *
2889          *   If software reads the Cache Type fields from Ctype1
2890          *   upwards, once it has seen a value of 0b000, no caches
2891          *   exist at further-out levels of the hierarchy. So, for
2892          *   example, if Ctype3 is the first Cache Type field with a
2893          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2894          *   ignored.
2895          */
2896         get_clidr_el1(NULL, &clidr); /* Ugly... */
2897         cache_levels = clidr.val;
2898         for (i = 0; i < 7; i++)
2899                 if (((cache_levels >> (i*3)) & 7) == 0)
2900                         break;
2901         /* Clear all higher bits. */
2902         cache_levels &= (1 << (i*3))-1;
2903 }