Merge tag 'regulator-fix-v5.19-rc0' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / reset.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/reset.c
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/kvm_host.h>
14 #include <linux/kvm.h>
15 #include <linux/hw_breakpoint.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19
20 #include <kvm/arm_arch_timer.h>
21
22 #include <asm/cpufeature.h>
23 #include <asm/cputype.h>
24 #include <asm/fpsimd.h>
25 #include <asm/ptrace.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_mmu.h>
30 #include <asm/virt.h>
31
32 /* Maximum phys_shift supported for any VM on this host */
33 static u32 kvm_ipa_limit;
34
35 /*
36  * ARMv8 Reset Values
37  */
38 #define VCPU_RESET_PSTATE_EL1   (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
39                                  PSR_F_BIT | PSR_D_BIT)
40
41 #define VCPU_RESET_PSTATE_SVC   (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
42                                  PSR_AA32_I_BIT | PSR_AA32_F_BIT)
43
44 unsigned int kvm_sve_max_vl;
45
46 int kvm_arm_init_sve(void)
47 {
48         if (system_supports_sve()) {
49                 kvm_sve_max_vl = sve_max_virtualisable_vl();
50
51                 /*
52                  * The get_sve_reg()/set_sve_reg() ioctl interface will need
53                  * to be extended with multiple register slice support in
54                  * order to support vector lengths greater than
55                  * VL_ARCH_MAX:
56                  */
57                 if (WARN_ON(kvm_sve_max_vl > VL_ARCH_MAX))
58                         kvm_sve_max_vl = VL_ARCH_MAX;
59
60                 /*
61                  * Don't even try to make use of vector lengths that
62                  * aren't available on all CPUs, for now:
63                  */
64                 if (kvm_sve_max_vl < sve_max_vl())
65                         pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
66                                 kvm_sve_max_vl);
67         }
68
69         return 0;
70 }
71
72 static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
73 {
74         if (!system_supports_sve())
75                 return -EINVAL;
76
77         vcpu->arch.sve_max_vl = kvm_sve_max_vl;
78
79         /*
80          * Userspace can still customize the vector lengths by writing
81          * KVM_REG_ARM64_SVE_VLS.  Allocation is deferred until
82          * kvm_arm_vcpu_finalize(), which freezes the configuration.
83          */
84         vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE;
85
86         return 0;
87 }
88
89 /*
90  * Finalize vcpu's maximum SVE vector length, allocating
91  * vcpu->arch.sve_state as necessary.
92  */
93 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
94 {
95         void *buf;
96         unsigned int vl;
97         size_t reg_sz;
98         int ret;
99
100         vl = vcpu->arch.sve_max_vl;
101
102         /*
103          * Responsibility for these properties is shared between
104          * kvm_arm_init_sve(), kvm_vcpu_enable_sve() and
105          * set_sve_vls().  Double-check here just to be sure:
106          */
107         if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl() ||
108                     vl > VL_ARCH_MAX))
109                 return -EIO;
110
111         reg_sz = vcpu_sve_state_size(vcpu);
112         buf = kzalloc(reg_sz, GFP_KERNEL_ACCOUNT);
113         if (!buf)
114                 return -ENOMEM;
115
116         ret = kvm_share_hyp(buf, buf + reg_sz);
117         if (ret) {
118                 kfree(buf);
119                 return ret;
120         }
121         
122         vcpu->arch.sve_state = buf;
123         vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED;
124         return 0;
125 }
126
127 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
128 {
129         switch (feature) {
130         case KVM_ARM_VCPU_SVE:
131                 if (!vcpu_has_sve(vcpu))
132                         return -EINVAL;
133
134                 if (kvm_arm_vcpu_sve_finalized(vcpu))
135                         return -EPERM;
136
137                 return kvm_vcpu_finalize_sve(vcpu);
138         }
139
140         return -EINVAL;
141 }
142
143 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
144 {
145         if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
146                 return false;
147
148         return true;
149 }
150
151 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
152 {
153         void *sve_state = vcpu->arch.sve_state;
154
155         kvm_vcpu_unshare_task_fp(vcpu);
156         kvm_unshare_hyp(vcpu, vcpu + 1);
157         if (sve_state)
158                 kvm_unshare_hyp(sve_state, sve_state + vcpu_sve_state_size(vcpu));
159         kfree(sve_state);
160 }
161
162 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
163 {
164         if (vcpu_has_sve(vcpu))
165                 memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
166 }
167
168 static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
169 {
170         /*
171          * For now make sure that both address/generic pointer authentication
172          * features are requested by the userspace together and the system
173          * supports these capabilities.
174          */
175         if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
176             !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) ||
177             !system_has_full_ptr_auth())
178                 return -EINVAL;
179
180         vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH;
181         return 0;
182 }
183
184 /**
185  * kvm_set_vm_width() - set the register width for the guest
186  * @vcpu: Pointer to the vcpu being configured
187  *
188  * Set both KVM_ARCH_FLAG_EL1_32BIT and KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED
189  * in the VM flags based on the vcpu's requested register width, the HW
190  * capabilities and other options (such as MTE).
191  * When REG_WIDTH_CONFIGURED is already set, the vcpu settings must be
192  * consistent with the value of the FLAG_EL1_32BIT bit in the flags.
193  *
194  * Return: 0 on success, negative error code on failure.
195  */
196 static int kvm_set_vm_width(struct kvm_vcpu *vcpu)
197 {
198         struct kvm *kvm = vcpu->kvm;
199         bool is32bit;
200
201         is32bit = vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
202
203         lockdep_assert_held(&kvm->lock);
204
205         if (test_bit(KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED, &kvm->arch.flags)) {
206                 /*
207                  * The guest's register width is already configured.
208                  * Make sure that the vcpu is consistent with it.
209                  */
210                 if (is32bit == test_bit(KVM_ARCH_FLAG_EL1_32BIT, &kvm->arch.flags))
211                         return 0;
212
213                 return -EINVAL;
214         }
215
216         if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1) && is32bit)
217                 return -EINVAL;
218
219         /* MTE is incompatible with AArch32 */
220         if (kvm_has_mte(kvm) && is32bit)
221                 return -EINVAL;
222
223         if (is32bit)
224                 set_bit(KVM_ARCH_FLAG_EL1_32BIT, &kvm->arch.flags);
225
226         set_bit(KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED, &kvm->arch.flags);
227
228         return 0;
229 }
230
231 /**
232  * kvm_reset_vcpu - sets core registers and sys_regs to reset value
233  * @vcpu: The VCPU pointer
234  *
235  * This function sets the registers on the virtual CPU struct to their
236  * architecturally defined reset values, except for registers whose reset is
237  * deferred until kvm_arm_vcpu_finalize().
238  *
239  * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
240  * ioctl or as part of handling a request issued by another VCPU in the PSCI
241  * handling code.  In the first case, the VCPU will not be loaded, and in the
242  * second case the VCPU will be loaded.  Because this function operates purely
243  * on the memory-backed values of system registers, we want to do a full put if
244  * we were loaded (handling a request) and load the values back at the end of
245  * the function.  Otherwise we leave the state alone.  In both cases, we
246  * disable preemption around the vcpu reset as we would otherwise race with
247  * preempt notifiers which also call put/load.
248  */
249 int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
250 {
251         struct vcpu_reset_state reset_state;
252         int ret;
253         bool loaded;
254         u32 pstate;
255
256         mutex_lock(&vcpu->kvm->lock);
257         ret = kvm_set_vm_width(vcpu);
258         if (!ret) {
259                 reset_state = vcpu->arch.reset_state;
260                 WRITE_ONCE(vcpu->arch.reset_state.reset, false);
261         }
262         mutex_unlock(&vcpu->kvm->lock);
263
264         if (ret)
265                 return ret;
266
267         /* Reset PMU outside of the non-preemptible section */
268         kvm_pmu_vcpu_reset(vcpu);
269
270         preempt_disable();
271         loaded = (vcpu->cpu != -1);
272         if (loaded)
273                 kvm_arch_vcpu_put(vcpu);
274
275         if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
276                 if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
277                         ret = kvm_vcpu_enable_sve(vcpu);
278                         if (ret)
279                                 goto out;
280                 }
281         } else {
282                 kvm_vcpu_reset_sve(vcpu);
283         }
284
285         if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
286             test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
287                 if (kvm_vcpu_enable_ptrauth(vcpu)) {
288                         ret = -EINVAL;
289                         goto out;
290                 }
291         }
292
293         switch (vcpu->arch.target) {
294         default:
295                 if (vcpu_el1_is_32bit(vcpu)) {
296                         pstate = VCPU_RESET_PSTATE_SVC;
297                 } else {
298                         pstate = VCPU_RESET_PSTATE_EL1;
299                 }
300
301                 if (kvm_vcpu_has_pmu(vcpu) && !kvm_arm_support_pmu_v3()) {
302                         ret = -EINVAL;
303                         goto out;
304                 }
305                 break;
306         }
307
308         /* Reset core registers */
309         memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
310         memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs));
311         vcpu->arch.ctxt.spsr_abt = 0;
312         vcpu->arch.ctxt.spsr_und = 0;
313         vcpu->arch.ctxt.spsr_irq = 0;
314         vcpu->arch.ctxt.spsr_fiq = 0;
315         vcpu_gp_regs(vcpu)->pstate = pstate;
316
317         /* Reset system registers */
318         kvm_reset_sys_regs(vcpu);
319
320         /*
321          * Additional reset state handling that PSCI may have imposed on us.
322          * Must be done after all the sys_reg reset.
323          */
324         if (reset_state.reset) {
325                 unsigned long target_pc = reset_state.pc;
326
327                 /* Gracefully handle Thumb2 entry point */
328                 if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
329                         target_pc &= ~1UL;
330                         vcpu_set_thumb(vcpu);
331                 }
332
333                 /* Propagate caller endianness */
334                 if (reset_state.be)
335                         kvm_vcpu_set_be(vcpu);
336
337                 *vcpu_pc(vcpu) = target_pc;
338                 vcpu_set_reg(vcpu, 0, reset_state.r0);
339         }
340
341         /* Reset timer */
342         ret = kvm_timer_vcpu_reset(vcpu);
343 out:
344         if (loaded)
345                 kvm_arch_vcpu_load(vcpu, smp_processor_id());
346         preempt_enable();
347         return ret;
348 }
349
350 u32 get_kvm_ipa_limit(void)
351 {
352         return kvm_ipa_limit;
353 }
354
355 int kvm_set_ipa_limit(void)
356 {
357         unsigned int parange;
358         u64 mmfr0;
359
360         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
361         parange = cpuid_feature_extract_unsigned_field(mmfr0,
362                                 ID_AA64MMFR0_PARANGE_SHIFT);
363         /*
364          * IPA size beyond 48 bits could not be supported
365          * on either 4K or 16K page size. Hence let's cap
366          * it to 48 bits, in case it's reported as larger
367          * on the system.
368          */
369         if (PAGE_SIZE != SZ_64K)
370                 parange = min(parange, (unsigned int)ID_AA64MMFR0_PARANGE_48);
371
372         /*
373          * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
374          * Stage-2. If not, things will stop very quickly.
375          */
376         switch (cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_TGRAN_2_SHIFT)) {
377         case ID_AA64MMFR0_TGRAN_2_SUPPORTED_NONE:
378                 kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
379                 return -EINVAL;
380         case ID_AA64MMFR0_TGRAN_2_SUPPORTED_DEFAULT:
381                 kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
382                 break;
383         case ID_AA64MMFR0_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_TGRAN_2_SUPPORTED_MAX:
384                 kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
385                 break;
386         default:
387                 kvm_err("Unsupported value for TGRAN_2, giving up\n");
388                 return -EINVAL;
389         }
390
391         kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange);
392         kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit,
393                  ((kvm_ipa_limit < KVM_PHYS_SHIFT) ?
394                   " (Reduced IPA size, limited VM/VMM compatibility)" : ""));
395
396         return 0;
397 }
398
399 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
400 {
401         u64 mmfr0, mmfr1;
402         u32 phys_shift;
403
404         if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
405                 return -EINVAL;
406
407         phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
408         if (phys_shift) {
409                 if (phys_shift > kvm_ipa_limit ||
410                     phys_shift < ARM64_MIN_PARANGE_BITS)
411                         return -EINVAL;
412         } else {
413                 phys_shift = KVM_PHYS_SHIFT;
414                 if (phys_shift > kvm_ipa_limit) {
415                         pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
416                                      current->comm);
417                         return -EINVAL;
418                 }
419         }
420
421         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
422         mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
423         kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
424
425         return 0;
426 }