Merge tag 'f2fs-for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / reset.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/reset.c
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/kvm_host.h>
14 #include <linux/kvm.h>
15 #include <linux/hw_breakpoint.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19
20 #include <kvm/arm_arch_timer.h>
21
22 #include <asm/cpufeature.h>
23 #include <asm/cputype.h>
24 #include <asm/fpsimd.h>
25 #include <asm/ptrace.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/kvm_coproc.h>
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/virt.h>
32
33 /* Maximum phys_shift supported for any VM on this host */
34 static u32 kvm_ipa_limit;
35
36 /*
37  * ARMv8 Reset Values
38  */
39 #define VCPU_RESET_PSTATE_EL1   (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
40                                  PSR_F_BIT | PSR_D_BIT)
41
42 #define VCPU_RESET_PSTATE_SVC   (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
43                                  PSR_AA32_I_BIT | PSR_AA32_F_BIT)
44
45 /**
46  * kvm_arch_vm_ioctl_check_extension
47  *
48  * We currently assume that the number of HW registers is uniform
49  * across all CPUs (see cpuinfo_sanity_check).
50  */
51 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
52 {
53         int r;
54
55         switch (ext) {
56         case KVM_CAP_ARM_EL1_32BIT:
57                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
58                 break;
59         case KVM_CAP_GUEST_DEBUG_HW_BPS:
60                 r = get_num_brps();
61                 break;
62         case KVM_CAP_GUEST_DEBUG_HW_WPS:
63                 r = get_num_wrps();
64                 break;
65         case KVM_CAP_ARM_PMU_V3:
66                 r = kvm_arm_support_pmu_v3();
67                 break;
68         case KVM_CAP_ARM_INJECT_SERROR_ESR:
69                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
70                 break;
71         case KVM_CAP_SET_GUEST_DEBUG:
72         case KVM_CAP_VCPU_ATTRIBUTES:
73                 r = 1;
74                 break;
75         case KVM_CAP_ARM_VM_IPA_SIZE:
76                 r = kvm_ipa_limit;
77                 break;
78         case KVM_CAP_ARM_SVE:
79                 r = system_supports_sve();
80                 break;
81         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
82         case KVM_CAP_ARM_PTRAUTH_GENERIC:
83                 r = has_vhe() && system_supports_address_auth() &&
84                                  system_supports_generic_auth();
85                 break;
86         default:
87                 r = 0;
88         }
89
90         return r;
91 }
92
93 unsigned int kvm_sve_max_vl;
94
95 int kvm_arm_init_sve(void)
96 {
97         if (system_supports_sve()) {
98                 kvm_sve_max_vl = sve_max_virtualisable_vl;
99
100                 /*
101                  * The get_sve_reg()/set_sve_reg() ioctl interface will need
102                  * to be extended with multiple register slice support in
103                  * order to support vector lengths greater than
104                  * SVE_VL_ARCH_MAX:
105                  */
106                 if (WARN_ON(kvm_sve_max_vl > SVE_VL_ARCH_MAX))
107                         kvm_sve_max_vl = SVE_VL_ARCH_MAX;
108
109                 /*
110                  * Don't even try to make use of vector lengths that
111                  * aren't available on all CPUs, for now:
112                  */
113                 if (kvm_sve_max_vl < sve_max_vl)
114                         pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
115                                 kvm_sve_max_vl);
116         }
117
118         return 0;
119 }
120
121 static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
122 {
123         if (!system_supports_sve())
124                 return -EINVAL;
125
126         /* Verify that KVM startup enforced this when SVE was detected: */
127         if (WARN_ON(!has_vhe()))
128                 return -EINVAL;
129
130         vcpu->arch.sve_max_vl = kvm_sve_max_vl;
131
132         /*
133          * Userspace can still customize the vector lengths by writing
134          * KVM_REG_ARM64_SVE_VLS.  Allocation is deferred until
135          * kvm_arm_vcpu_finalize(), which freezes the configuration.
136          */
137         vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE;
138
139         return 0;
140 }
141
142 /*
143  * Finalize vcpu's maximum SVE vector length, allocating
144  * vcpu->arch.sve_state as necessary.
145  */
146 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
147 {
148         void *buf;
149         unsigned int vl;
150
151         vl = vcpu->arch.sve_max_vl;
152
153         /*
154          * Responsibility for these properties is shared between
155          * kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and
156          * set_sve_vls().  Double-check here just to be sure:
157          */
158         if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl ||
159                     vl > SVE_VL_ARCH_MAX))
160                 return -EIO;
161
162         buf = kzalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)), GFP_KERNEL);
163         if (!buf)
164                 return -ENOMEM;
165
166         vcpu->arch.sve_state = buf;
167         vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED;
168         return 0;
169 }
170
171 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
172 {
173         switch (feature) {
174         case KVM_ARM_VCPU_SVE:
175                 if (!vcpu_has_sve(vcpu))
176                         return -EINVAL;
177
178                 if (kvm_arm_vcpu_sve_finalized(vcpu))
179                         return -EPERM;
180
181                 return kvm_vcpu_finalize_sve(vcpu);
182         }
183
184         return -EINVAL;
185 }
186
187 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
188 {
189         if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
190                 return false;
191
192         return true;
193 }
194
195 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
196 {
197         kfree(vcpu->arch.sve_state);
198 }
199
200 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
201 {
202         if (vcpu_has_sve(vcpu))
203                 memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
204 }
205
206 static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
207 {
208         /* Support ptrauth only if the system supports these capabilities. */
209         if (!has_vhe())
210                 return -EINVAL;
211
212         if (!system_supports_address_auth() ||
213             !system_supports_generic_auth())
214                 return -EINVAL;
215         /*
216          * For now make sure that both address/generic pointer authentication
217          * features are requested by the userspace together.
218          */
219         if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
220             !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features))
221                 return -EINVAL;
222
223         vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH;
224         return 0;
225 }
226
227 /**
228  * kvm_reset_vcpu - sets core registers and sys_regs to reset value
229  * @vcpu: The VCPU pointer
230  *
231  * This function finds the right table above and sets the registers on
232  * the virtual CPU struct to their architecturally defined reset
233  * values, except for registers whose reset is deferred until
234  * kvm_arm_vcpu_finalize().
235  *
236  * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
237  * ioctl or as part of handling a request issued by another VCPU in the PSCI
238  * handling code.  In the first case, the VCPU will not be loaded, and in the
239  * second case the VCPU will be loaded.  Because this function operates purely
240  * on the memory-backed values of system registers, we want to do a full put if
241  * we were loaded (handling a request) and load the values back at the end of
242  * the function.  Otherwise we leave the state alone.  In both cases, we
243  * disable preemption around the vcpu reset as we would otherwise race with
244  * preempt notifiers which also call put/load.
245  */
246 int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
247 {
248         int ret = -EINVAL;
249         bool loaded;
250         u32 pstate;
251
252         /* Reset PMU outside of the non-preemptible section */
253         kvm_pmu_vcpu_reset(vcpu);
254
255         preempt_disable();
256         loaded = (vcpu->cpu != -1);
257         if (loaded)
258                 kvm_arch_vcpu_put(vcpu);
259
260         if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
261                 if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
262                         ret = kvm_vcpu_enable_sve(vcpu);
263                         if (ret)
264                                 goto out;
265                 }
266         } else {
267                 kvm_vcpu_reset_sve(vcpu);
268         }
269
270         if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
271             test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
272                 if (kvm_vcpu_enable_ptrauth(vcpu))
273                         goto out;
274         }
275
276         switch (vcpu->arch.target) {
277         default:
278                 if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) {
279                         if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
280                                 goto out;
281                         pstate = VCPU_RESET_PSTATE_SVC;
282                 } else {
283                         pstate = VCPU_RESET_PSTATE_EL1;
284                 }
285
286                 break;
287         }
288
289         /* Reset core registers */
290         memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
291         vcpu_gp_regs(vcpu)->regs.pstate = pstate;
292
293         /* Reset system registers */
294         kvm_reset_sys_regs(vcpu);
295
296         /*
297          * Additional reset state handling that PSCI may have imposed on us.
298          * Must be done after all the sys_reg reset.
299          */
300         if (vcpu->arch.reset_state.reset) {
301                 unsigned long target_pc = vcpu->arch.reset_state.pc;
302
303                 /* Gracefully handle Thumb2 entry point */
304                 if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
305                         target_pc &= ~1UL;
306                         vcpu_set_thumb(vcpu);
307                 }
308
309                 /* Propagate caller endianness */
310                 if (vcpu->arch.reset_state.be)
311                         kvm_vcpu_set_be(vcpu);
312
313                 *vcpu_pc(vcpu) = target_pc;
314                 vcpu_set_reg(vcpu, 0, vcpu->arch.reset_state.r0);
315
316                 vcpu->arch.reset_state.reset = false;
317         }
318
319         /* Default workaround setup is enabled (if supported) */
320         if (kvm_arm_have_ssbd() == KVM_SSBD_KERNEL)
321                 vcpu->arch.workaround_flags |= VCPU_WORKAROUND_2_FLAG;
322
323         /* Reset timer */
324         ret = kvm_timer_vcpu_reset(vcpu);
325 out:
326         if (loaded)
327                 kvm_arch_vcpu_load(vcpu, smp_processor_id());
328         preempt_enable();
329         return ret;
330 }
331
332 u32 get_kvm_ipa_limit(void)
333 {
334         return kvm_ipa_limit;
335 }
336
337 int kvm_set_ipa_limit(void)
338 {
339         unsigned int ipa_max, pa_max, va_max, parange, tgran_2;
340         u64 mmfr0;
341
342         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
343         parange = cpuid_feature_extract_unsigned_field(mmfr0,
344                                 ID_AA64MMFR0_PARANGE_SHIFT);
345
346         /*
347          * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
348          * Stage-2. If not, things will stop very quickly.
349          */
350         switch (PAGE_SIZE) {
351         default:
352         case SZ_4K:
353                 tgran_2 = ID_AA64MMFR0_TGRAN4_2_SHIFT;
354                 break;
355         case SZ_16K:
356                 tgran_2 = ID_AA64MMFR0_TGRAN16_2_SHIFT;
357                 break;
358         case SZ_64K:
359                 tgran_2 = ID_AA64MMFR0_TGRAN64_2_SHIFT;
360                 break;
361         }
362
363         switch (cpuid_feature_extract_unsigned_field(mmfr0, tgran_2)) {
364         default:
365         case 1:
366                 kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
367                 return -EINVAL;
368         case 0:
369                 kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
370                 break;
371         case 2:
372                 kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
373                 break;
374         }
375
376         pa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
377
378         /* Clamp the IPA limit to the PA size supported by the kernel */
379         ipa_max = (pa_max > PHYS_MASK_SHIFT) ? PHYS_MASK_SHIFT : pa_max;
380         /*
381          * Since our stage2 table is dependent on the stage1 page table code,
382          * we must always honor the following condition:
383          *
384          *  Number of levels in Stage1 >= Number of levels in Stage2.
385          *
386          * So clamp the ipa limit further down to limit the number of levels.
387          * Since we can concatenate upto 16 tables at entry level, we could
388          * go upto 4bits above the maximum VA addressable with the current
389          * number of levels.
390          */
391         va_max = PGDIR_SHIFT + PAGE_SHIFT - 3;
392         va_max += 4;
393
394         if (va_max < ipa_max)
395                 ipa_max = va_max;
396
397         /*
398          * If the final limit is lower than the real physical address
399          * limit of the CPUs, report the reason.
400          */
401         if (ipa_max < pa_max)
402                 pr_info("kvm: Limiting the IPA size due to kernel %s Address limit\n",
403                         (va_max < pa_max) ? "Virtual" : "Physical");
404
405         WARN(ipa_max < KVM_PHYS_SHIFT,
406              "KVM IPA limit (%d bit) is smaller than default size\n", ipa_max);
407         kvm_ipa_limit = ipa_max;
408         kvm_info("IPA Size Limit: %dbits\n", kvm_ipa_limit);
409
410         return 0;
411 }
412
413 /*
414  * Configure the VTCR_EL2 for this VM. The VTCR value is common
415  * across all the physical CPUs on the system. We use system wide
416  * sanitised values to fill in different fields, except for Hardware
417  * Management of Access Flags. HA Flag is set unconditionally on
418  * all CPUs, as it is safe to run with or without the feature and
419  * the bit is RES0 on CPUs that don't support it.
420  */
421 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
422 {
423         u64 vtcr = VTCR_EL2_FLAGS, mmfr0;
424         u32 parange, phys_shift;
425         u8 lvls;
426
427         if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
428                 return -EINVAL;
429
430         phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
431         if (phys_shift) {
432                 if (phys_shift > kvm_ipa_limit ||
433                     phys_shift < 32)
434                         return -EINVAL;
435         } else {
436                 phys_shift = KVM_PHYS_SHIFT;
437         }
438
439         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
440         parange = cpuid_feature_extract_unsigned_field(mmfr0,
441                                 ID_AA64MMFR0_PARANGE_SHIFT);
442         if (parange > ID_AA64MMFR0_PARANGE_MAX)
443                 parange = ID_AA64MMFR0_PARANGE_MAX;
444         vtcr |= parange << VTCR_EL2_PS_SHIFT;
445
446         vtcr |= VTCR_EL2_T0SZ(phys_shift);
447         /*
448          * Use a minimum 2 level page table to prevent splitting
449          * host PMD huge pages at stage2.
450          */
451         lvls = stage2_pgtable_levels(phys_shift);
452         if (lvls < 2)
453                 lvls = 2;
454         vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
455
456         /*
457          * Enable the Hardware Access Flag management, unconditionally
458          * on all CPUs. The features is RES0 on CPUs without the support
459          * and must be ignored by the CPUs.
460          */
461         vtcr |= VTCR_EL2_HA;
462
463         /* Set the vmid bits */
464         vtcr |= (kvm_get_vmid_bits() == 16) ?
465                 VTCR_EL2_VS_16BIT :
466                 VTCR_EL2_VS_8BIT;
467         kvm->arch.vtcr = vtcr;
468         return 0;
469 }