Merge tag 'v5.9' into next
[linux-2.6-microblaze.git] / arch / arm64 / kvm / reset.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/reset.c
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/kvm_host.h>
14 #include <linux/kvm.h>
15 #include <linux/hw_breakpoint.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19
20 #include <kvm/arm_arch_timer.h>
21
22 #include <asm/cpufeature.h>
23 #include <asm/cputype.h>
24 #include <asm/fpsimd.h>
25 #include <asm/ptrace.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/kvm_coproc.h>
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/virt.h>
32
33 /* Maximum phys_shift supported for any VM on this host */
34 static u32 kvm_ipa_limit;
35
36 /*
37  * ARMv8 Reset Values
38  */
39 #define VCPU_RESET_PSTATE_EL1   (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
40                                  PSR_F_BIT | PSR_D_BIT)
41
42 #define VCPU_RESET_PSTATE_SVC   (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
43                                  PSR_AA32_I_BIT | PSR_AA32_F_BIT)
44
45 static bool system_has_full_ptr_auth(void)
46 {
47         return system_supports_address_auth() && system_supports_generic_auth();
48 }
49
50 /**
51  * kvm_arch_vm_ioctl_check_extension
52  *
53  * We currently assume that the number of HW registers is uniform
54  * across all CPUs (see cpuinfo_sanity_check).
55  */
56 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
57 {
58         int r;
59
60         switch (ext) {
61         case KVM_CAP_ARM_EL1_32BIT:
62                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
63                 break;
64         case KVM_CAP_GUEST_DEBUG_HW_BPS:
65                 r = get_num_brps();
66                 break;
67         case KVM_CAP_GUEST_DEBUG_HW_WPS:
68                 r = get_num_wrps();
69                 break;
70         case KVM_CAP_ARM_PMU_V3:
71                 r = kvm_arm_support_pmu_v3();
72                 break;
73         case KVM_CAP_ARM_INJECT_SERROR_ESR:
74                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
75                 break;
76         case KVM_CAP_SET_GUEST_DEBUG:
77         case KVM_CAP_VCPU_ATTRIBUTES:
78                 r = 1;
79                 break;
80         case KVM_CAP_ARM_VM_IPA_SIZE:
81                 r = kvm_ipa_limit;
82                 break;
83         case KVM_CAP_ARM_SVE:
84                 r = system_supports_sve();
85                 break;
86         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
87         case KVM_CAP_ARM_PTRAUTH_GENERIC:
88                 r = system_has_full_ptr_auth();
89                 break;
90         default:
91                 r = 0;
92         }
93
94         return r;
95 }
96
97 unsigned int kvm_sve_max_vl;
98
99 int kvm_arm_init_sve(void)
100 {
101         if (system_supports_sve()) {
102                 kvm_sve_max_vl = sve_max_virtualisable_vl;
103
104                 /*
105                  * The get_sve_reg()/set_sve_reg() ioctl interface will need
106                  * to be extended with multiple register slice support in
107                  * order to support vector lengths greater than
108                  * SVE_VL_ARCH_MAX:
109                  */
110                 if (WARN_ON(kvm_sve_max_vl > SVE_VL_ARCH_MAX))
111                         kvm_sve_max_vl = SVE_VL_ARCH_MAX;
112
113                 /*
114                  * Don't even try to make use of vector lengths that
115                  * aren't available on all CPUs, for now:
116                  */
117                 if (kvm_sve_max_vl < sve_max_vl)
118                         pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
119                                 kvm_sve_max_vl);
120         }
121
122         return 0;
123 }
124
125 static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
126 {
127         if (!system_supports_sve())
128                 return -EINVAL;
129
130         /* Verify that KVM startup enforced this when SVE was detected: */
131         if (WARN_ON(!has_vhe()))
132                 return -EINVAL;
133
134         vcpu->arch.sve_max_vl = kvm_sve_max_vl;
135
136         /*
137          * Userspace can still customize the vector lengths by writing
138          * KVM_REG_ARM64_SVE_VLS.  Allocation is deferred until
139          * kvm_arm_vcpu_finalize(), which freezes the configuration.
140          */
141         vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE;
142
143         return 0;
144 }
145
146 /*
147  * Finalize vcpu's maximum SVE vector length, allocating
148  * vcpu->arch.sve_state as necessary.
149  */
150 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
151 {
152         void *buf;
153         unsigned int vl;
154
155         vl = vcpu->arch.sve_max_vl;
156
157         /*
158          * Responsibility for these properties is shared between
159          * kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and
160          * set_sve_vls().  Double-check here just to be sure:
161          */
162         if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl ||
163                     vl > SVE_VL_ARCH_MAX))
164                 return -EIO;
165
166         buf = kzalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)), GFP_KERNEL);
167         if (!buf)
168                 return -ENOMEM;
169
170         vcpu->arch.sve_state = buf;
171         vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED;
172         return 0;
173 }
174
175 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
176 {
177         switch (feature) {
178         case KVM_ARM_VCPU_SVE:
179                 if (!vcpu_has_sve(vcpu))
180                         return -EINVAL;
181
182                 if (kvm_arm_vcpu_sve_finalized(vcpu))
183                         return -EPERM;
184
185                 return kvm_vcpu_finalize_sve(vcpu);
186         }
187
188         return -EINVAL;
189 }
190
191 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
192 {
193         if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
194                 return false;
195
196         return true;
197 }
198
199 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
200 {
201         kfree(vcpu->arch.sve_state);
202 }
203
204 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
205 {
206         if (vcpu_has_sve(vcpu))
207                 memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
208 }
209
210 static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
211 {
212         /*
213          * For now make sure that both address/generic pointer authentication
214          * features are requested by the userspace together and the system
215          * supports these capabilities.
216          */
217         if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
218             !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) ||
219             !system_has_full_ptr_auth())
220                 return -EINVAL;
221
222         vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH;
223         return 0;
224 }
225
226 /**
227  * kvm_reset_vcpu - sets core registers and sys_regs to reset value
228  * @vcpu: The VCPU pointer
229  *
230  * This function finds the right table above and sets the registers on
231  * the virtual CPU struct to their architecturally defined reset
232  * values, except for registers whose reset is deferred until
233  * kvm_arm_vcpu_finalize().
234  *
235  * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
236  * ioctl or as part of handling a request issued by another VCPU in the PSCI
237  * handling code.  In the first case, the VCPU will not be loaded, and in the
238  * second case the VCPU will be loaded.  Because this function operates purely
239  * on the memory-backed values of system registers, we want to do a full put if
240  * we were loaded (handling a request) and load the values back at the end of
241  * the function.  Otherwise we leave the state alone.  In both cases, we
242  * disable preemption around the vcpu reset as we would otherwise race with
243  * preempt notifiers which also call put/load.
244  */
245 int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
246 {
247         int ret;
248         bool loaded;
249         u32 pstate;
250
251         /* Reset PMU outside of the non-preemptible section */
252         kvm_pmu_vcpu_reset(vcpu);
253
254         preempt_disable();
255         loaded = (vcpu->cpu != -1);
256         if (loaded)
257                 kvm_arch_vcpu_put(vcpu);
258
259         if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
260                 if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
261                         ret = kvm_vcpu_enable_sve(vcpu);
262                         if (ret)
263                                 goto out;
264                 }
265         } else {
266                 kvm_vcpu_reset_sve(vcpu);
267         }
268
269         if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
270             test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
271                 if (kvm_vcpu_enable_ptrauth(vcpu)) {
272                         ret = -EINVAL;
273                         goto out;
274                 }
275         }
276
277         switch (vcpu->arch.target) {
278         default:
279                 if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) {
280                         if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1)) {
281                                 ret = -EINVAL;
282                                 goto out;
283                         }
284                         pstate = VCPU_RESET_PSTATE_SVC;
285                 } else {
286                         pstate = VCPU_RESET_PSTATE_EL1;
287                 }
288
289                 break;
290         }
291
292         /* Reset core registers */
293         memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
294         vcpu_gp_regs(vcpu)->pstate = pstate;
295
296         /* Reset system registers */
297         kvm_reset_sys_regs(vcpu);
298
299         /*
300          * Additional reset state handling that PSCI may have imposed on us.
301          * Must be done after all the sys_reg reset.
302          */
303         if (vcpu->arch.reset_state.reset) {
304                 unsigned long target_pc = vcpu->arch.reset_state.pc;
305
306                 /* Gracefully handle Thumb2 entry point */
307                 if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
308                         target_pc &= ~1UL;
309                         vcpu_set_thumb(vcpu);
310                 }
311
312                 /* Propagate caller endianness */
313                 if (vcpu->arch.reset_state.be)
314                         kvm_vcpu_set_be(vcpu);
315
316                 *vcpu_pc(vcpu) = target_pc;
317                 vcpu_set_reg(vcpu, 0, vcpu->arch.reset_state.r0);
318
319                 vcpu->arch.reset_state.reset = false;
320         }
321
322         /* Default workaround setup is enabled (if supported) */
323         if (kvm_arm_have_ssbd() == KVM_SSBD_KERNEL)
324                 vcpu->arch.workaround_flags |= VCPU_WORKAROUND_2_FLAG;
325
326         /* Reset timer */
327         ret = kvm_timer_vcpu_reset(vcpu);
328 out:
329         if (loaded)
330                 kvm_arch_vcpu_load(vcpu, smp_processor_id());
331         preempt_enable();
332         return ret;
333 }
334
335 u32 get_kvm_ipa_limit(void)
336 {
337         return kvm_ipa_limit;
338 }
339
340 int kvm_set_ipa_limit(void)
341 {
342         unsigned int ipa_max, pa_max, va_max, parange, tgran_2;
343         u64 mmfr0;
344
345         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
346         parange = cpuid_feature_extract_unsigned_field(mmfr0,
347                                 ID_AA64MMFR0_PARANGE_SHIFT);
348
349         /*
350          * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
351          * Stage-2. If not, things will stop very quickly.
352          */
353         switch (PAGE_SIZE) {
354         default:
355         case SZ_4K:
356                 tgran_2 = ID_AA64MMFR0_TGRAN4_2_SHIFT;
357                 break;
358         case SZ_16K:
359                 tgran_2 = ID_AA64MMFR0_TGRAN16_2_SHIFT;
360                 break;
361         case SZ_64K:
362                 tgran_2 = ID_AA64MMFR0_TGRAN64_2_SHIFT;
363                 break;
364         }
365
366         switch (cpuid_feature_extract_unsigned_field(mmfr0, tgran_2)) {
367         default:
368         case 1:
369                 kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
370                 return -EINVAL;
371         case 0:
372                 kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
373                 break;
374         case 2:
375                 kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
376                 break;
377         }
378
379         pa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
380
381         /* Clamp the IPA limit to the PA size supported by the kernel */
382         ipa_max = (pa_max > PHYS_MASK_SHIFT) ? PHYS_MASK_SHIFT : pa_max;
383         /*
384          * Since our stage2 table is dependent on the stage1 page table code,
385          * we must always honor the following condition:
386          *
387          *  Number of levels in Stage1 >= Number of levels in Stage2.
388          *
389          * So clamp the ipa limit further down to limit the number of levels.
390          * Since we can concatenate upto 16 tables at entry level, we could
391          * go upto 4bits above the maximum VA addressable with the current
392          * number of levels.
393          */
394         va_max = PGDIR_SHIFT + PAGE_SHIFT - 3;
395         va_max += 4;
396
397         if (va_max < ipa_max)
398                 ipa_max = va_max;
399
400         /*
401          * If the final limit is lower than the real physical address
402          * limit of the CPUs, report the reason.
403          */
404         if (ipa_max < pa_max)
405                 pr_info("kvm: Limiting the IPA size due to kernel %s Address limit\n",
406                         (va_max < pa_max) ? "Virtual" : "Physical");
407
408         WARN(ipa_max < KVM_PHYS_SHIFT,
409              "KVM IPA limit (%d bit) is smaller than default size\n", ipa_max);
410         kvm_ipa_limit = ipa_max;
411         kvm_info("IPA Size Limit: %dbits\n", kvm_ipa_limit);
412
413         return 0;
414 }
415
416 /*
417  * Configure the VTCR_EL2 for this VM. The VTCR value is common
418  * across all the physical CPUs on the system. We use system wide
419  * sanitised values to fill in different fields, except for Hardware
420  * Management of Access Flags. HA Flag is set unconditionally on
421  * all CPUs, as it is safe to run with or without the feature and
422  * the bit is RES0 on CPUs that don't support it.
423  */
424 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
425 {
426         u64 vtcr = VTCR_EL2_FLAGS, mmfr0;
427         u32 parange, phys_shift;
428         u8 lvls;
429
430         if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
431                 return -EINVAL;
432
433         phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
434         if (phys_shift) {
435                 if (phys_shift > kvm_ipa_limit ||
436                     phys_shift < 32)
437                         return -EINVAL;
438         } else {
439                 phys_shift = KVM_PHYS_SHIFT;
440         }
441
442         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
443         parange = cpuid_feature_extract_unsigned_field(mmfr0,
444                                 ID_AA64MMFR0_PARANGE_SHIFT);
445         if (parange > ID_AA64MMFR0_PARANGE_MAX)
446                 parange = ID_AA64MMFR0_PARANGE_MAX;
447         vtcr |= parange << VTCR_EL2_PS_SHIFT;
448
449         vtcr |= VTCR_EL2_T0SZ(phys_shift);
450         /*
451          * Use a minimum 2 level page table to prevent splitting
452          * host PMD huge pages at stage2.
453          */
454         lvls = stage2_pgtable_levels(phys_shift);
455         if (lvls < 2)
456                 lvls = 2;
457         vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
458
459         /*
460          * Enable the Hardware Access Flag management, unconditionally
461          * on all CPUs. The features is RES0 on CPUs without the support
462          * and must be ignored by the CPUs.
463          */
464         vtcr |= VTCR_EL2_HA;
465
466         /* Set the vmid bits */
467         vtcr |= (kvm_get_vmid_bits() == 16) ?
468                 VTCR_EL2_VS_16BIT :
469                 VTCR_EL2_VS_8BIT;
470         kvm->arch.vtcr = vtcr;
471         return 0;
472 }