Linux 6.9-rc1
[linux-2.6-microblaze.git] / arch / arm64 / kvm / pmu-emul.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list.h>
11 #include <linux/perf_event.h>
12 #include <linux/perf/arm_pmu.h>
13 #include <linux/uaccess.h>
14 #include <asm/kvm_emulate.h>
15 #include <kvm/arm_pmu.h>
16 #include <kvm/arm_vgic.h>
17 #include <asm/arm_pmuv3.h>
18
19 #define PERF_ATTR_CFG1_COUNTER_64BIT    BIT(0)
20
21 DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
22
23 static LIST_HEAD(arm_pmus);
24 static DEFINE_MUTEX(arm_pmus_lock);
25
26 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
27 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
28
29 static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
30 {
31         return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
32 }
33
34 static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
35 {
36         return &vcpu->arch.pmu.pmc[cnt_idx];
37 }
38
39 static u32 __kvm_pmu_event_mask(unsigned int pmuver)
40 {
41         switch (pmuver) {
42         case ID_AA64DFR0_EL1_PMUVer_IMP:
43                 return GENMASK(9, 0);
44         case ID_AA64DFR0_EL1_PMUVer_V3P1:
45         case ID_AA64DFR0_EL1_PMUVer_V3P4:
46         case ID_AA64DFR0_EL1_PMUVer_V3P5:
47         case ID_AA64DFR0_EL1_PMUVer_V3P7:
48                 return GENMASK(15, 0);
49         default:                /* Shouldn't be here, just for sanity */
50                 WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
51                 return 0;
52         }
53 }
54
55 static u32 kvm_pmu_event_mask(struct kvm *kvm)
56 {
57         u64 dfr0 = IDREG(kvm, SYS_ID_AA64DFR0_EL1);
58         u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
59
60         return __kvm_pmu_event_mask(pmuver);
61 }
62
63 u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
64 {
65         u64 mask = ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMU_EXCLUDE_EL0 |
66                    kvm_pmu_event_mask(kvm);
67
68         if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL2, IMP))
69                 mask |= ARMV8_PMU_INCLUDE_EL2;
70
71         if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
72                 mask |= ARMV8_PMU_EXCLUDE_NS_EL0 |
73                         ARMV8_PMU_EXCLUDE_NS_EL1 |
74                         ARMV8_PMU_EXCLUDE_EL3;
75
76         return mask;
77 }
78
79 /**
80  * kvm_pmc_is_64bit - determine if counter is 64bit
81  * @pmc: counter context
82  */
83 static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
84 {
85         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
86
87         return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
88                 kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5));
89 }
90
91 static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
92 {
93         u64 val = kvm_vcpu_read_pmcr(kvm_pmc_to_vcpu(pmc));
94
95         return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
96                (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
97 }
98
99 static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
100 {
101         return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
102                 !kvm_pmc_has_64bit_overflow(pmc));
103 }
104
105 static u32 counter_index_to_reg(u64 idx)
106 {
107         return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
108 }
109
110 static u32 counter_index_to_evtreg(u64 idx)
111 {
112         return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
113 }
114
115 static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
116 {
117         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
118         u64 counter, reg, enabled, running;
119
120         reg = counter_index_to_reg(pmc->idx);
121         counter = __vcpu_sys_reg(vcpu, reg);
122
123         /*
124          * The real counter value is equal to the value of counter register plus
125          * the value perf event counts.
126          */
127         if (pmc->perf_event)
128                 counter += perf_event_read_value(pmc->perf_event, &enabled,
129                                                  &running);
130
131         if (!kvm_pmc_is_64bit(pmc))
132                 counter = lower_32_bits(counter);
133
134         return counter;
135 }
136
137 /**
138  * kvm_pmu_get_counter_value - get PMU counter value
139  * @vcpu: The vcpu pointer
140  * @select_idx: The counter index
141  */
142 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
143 {
144         if (!kvm_vcpu_has_pmu(vcpu))
145                 return 0;
146
147         return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
148 }
149
150 static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
151 {
152         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
153         u64 reg;
154
155         kvm_pmu_release_perf_event(pmc);
156
157         reg = counter_index_to_reg(pmc->idx);
158
159         if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
160             !force) {
161                 /*
162                  * Even with PMUv3p5, AArch32 cannot write to the top
163                  * 32bit of the counters. The only possible course of
164                  * action is to use PMCR.P, which will reset them to
165                  * 0 (the only use of the 'force' parameter).
166                  */
167                 val  = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
168                 val |= lower_32_bits(val);
169         }
170
171         __vcpu_sys_reg(vcpu, reg) = val;
172
173         /* Recreate the perf event to reflect the updated sample_period */
174         kvm_pmu_create_perf_event(pmc);
175 }
176
177 /**
178  * kvm_pmu_set_counter_value - set PMU counter value
179  * @vcpu: The vcpu pointer
180  * @select_idx: The counter index
181  * @val: The counter value
182  */
183 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
184 {
185         if (!kvm_vcpu_has_pmu(vcpu))
186                 return;
187
188         kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
189 }
190
191 /**
192  * kvm_pmu_release_perf_event - remove the perf event
193  * @pmc: The PMU counter pointer
194  */
195 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
196 {
197         if (pmc->perf_event) {
198                 perf_event_disable(pmc->perf_event);
199                 perf_event_release_kernel(pmc->perf_event);
200                 pmc->perf_event = NULL;
201         }
202 }
203
204 /**
205  * kvm_pmu_stop_counter - stop PMU counter
206  * @pmc: The PMU counter pointer
207  *
208  * If this counter has been configured to monitor some event, release it here.
209  */
210 static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
211 {
212         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
213         u64 reg, val;
214
215         if (!pmc->perf_event)
216                 return;
217
218         val = kvm_pmu_get_pmc_value(pmc);
219
220         reg = counter_index_to_reg(pmc->idx);
221
222         __vcpu_sys_reg(vcpu, reg) = val;
223
224         kvm_pmu_release_perf_event(pmc);
225 }
226
227 /**
228  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
229  * @vcpu: The vcpu pointer
230  *
231  */
232 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
233 {
234         int i;
235         struct kvm_pmu *pmu = &vcpu->arch.pmu;
236
237         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
238                 pmu->pmc[i].idx = i;
239 }
240
241 /**
242  * kvm_pmu_vcpu_reset - reset pmu state for cpu
243  * @vcpu: The vcpu pointer
244  *
245  */
246 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
247 {
248         unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
249         int i;
250
251         for_each_set_bit(i, &mask, 32)
252                 kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
253 }
254
255 /**
256  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
257  * @vcpu: The vcpu pointer
258  *
259  */
260 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
261 {
262         int i;
263
264         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
265                 kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
266         irq_work_sync(&vcpu->arch.pmu.overflow_work);
267 }
268
269 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
270 {
271         u64 val = FIELD_GET(ARMV8_PMU_PMCR_N, kvm_vcpu_read_pmcr(vcpu));
272
273         if (val == 0)
274                 return BIT(ARMV8_PMU_CYCLE_IDX);
275         else
276                 return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
277 }
278
279 /**
280  * kvm_pmu_enable_counter_mask - enable selected PMU counters
281  * @vcpu: The vcpu pointer
282  * @val: the value guest writes to PMCNTENSET register
283  *
284  * Call perf_event_enable to start counting the perf event
285  */
286 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
287 {
288         int i;
289         if (!kvm_vcpu_has_pmu(vcpu))
290                 return;
291
292         if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) || !val)
293                 return;
294
295         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
296                 struct kvm_pmc *pmc;
297
298                 if (!(val & BIT(i)))
299                         continue;
300
301                 pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
302
303                 if (!pmc->perf_event) {
304                         kvm_pmu_create_perf_event(pmc);
305                 } else {
306                         perf_event_enable(pmc->perf_event);
307                         if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
308                                 kvm_debug("fail to enable perf event\n");
309                 }
310         }
311 }
312
313 /**
314  * kvm_pmu_disable_counter_mask - disable selected PMU counters
315  * @vcpu: The vcpu pointer
316  * @val: the value guest writes to PMCNTENCLR register
317  *
318  * Call perf_event_disable to stop counting the perf event
319  */
320 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
321 {
322         int i;
323
324         if (!kvm_vcpu_has_pmu(vcpu) || !val)
325                 return;
326
327         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
328                 struct kvm_pmc *pmc;
329
330                 if (!(val & BIT(i)))
331                         continue;
332
333                 pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
334
335                 if (pmc->perf_event)
336                         perf_event_disable(pmc->perf_event);
337         }
338 }
339
340 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
341 {
342         u64 reg = 0;
343
344         if ((kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E)) {
345                 reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
346                 reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
347                 reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
348         }
349
350         return reg;
351 }
352
353 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
354 {
355         struct kvm_pmu *pmu = &vcpu->arch.pmu;
356         bool overflow;
357
358         if (!kvm_vcpu_has_pmu(vcpu))
359                 return;
360
361         overflow = !!kvm_pmu_overflow_status(vcpu);
362         if (pmu->irq_level == overflow)
363                 return;
364
365         pmu->irq_level = overflow;
366
367         if (likely(irqchip_in_kernel(vcpu->kvm))) {
368                 int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
369                                               pmu->irq_num, overflow, pmu);
370                 WARN_ON(ret);
371         }
372 }
373
374 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
375 {
376         struct kvm_pmu *pmu = &vcpu->arch.pmu;
377         struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
378         bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
379
380         if (likely(irqchip_in_kernel(vcpu->kvm)))
381                 return false;
382
383         return pmu->irq_level != run_level;
384 }
385
386 /*
387  * Reflect the PMU overflow interrupt output level into the kvm_run structure
388  */
389 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
390 {
391         struct kvm_sync_regs *regs = &vcpu->run->s.regs;
392
393         /* Populate the timer bitmap for user space */
394         regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
395         if (vcpu->arch.pmu.irq_level)
396                 regs->device_irq_level |= KVM_ARM_DEV_PMU;
397 }
398
399 /**
400  * kvm_pmu_flush_hwstate - flush pmu state to cpu
401  * @vcpu: The vcpu pointer
402  *
403  * Check if the PMU has overflowed while we were running in the host, and inject
404  * an interrupt if that was the case.
405  */
406 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
407 {
408         kvm_pmu_update_state(vcpu);
409 }
410
411 /**
412  * kvm_pmu_sync_hwstate - sync pmu state from cpu
413  * @vcpu: The vcpu pointer
414  *
415  * Check if the PMU has overflowed while we were running in the guest, and
416  * inject an interrupt if that was the case.
417  */
418 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
419 {
420         kvm_pmu_update_state(vcpu);
421 }
422
423 /*
424  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
425  * to the event.
426  * This is why we need a callback to do it once outside of the NMI context.
427  */
428 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
429 {
430         struct kvm_vcpu *vcpu;
431
432         vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
433         kvm_vcpu_kick(vcpu);
434 }
435
436 /*
437  * Perform an increment on any of the counters described in @mask,
438  * generating the overflow if required, and propagate it as a chained
439  * event if possible.
440  */
441 static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
442                                       unsigned long mask, u32 event)
443 {
444         int i;
445
446         if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
447                 return;
448
449         /* Weed out disabled counters */
450         mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
451
452         for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
453                 struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
454                 u64 type, reg;
455
456                 /* Filter on event type */
457                 type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
458                 type &= kvm_pmu_event_mask(vcpu->kvm);
459                 if (type != event)
460                         continue;
461
462                 /* Increment this counter */
463                 reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
464                 if (!kvm_pmc_is_64bit(pmc))
465                         reg = lower_32_bits(reg);
466                 __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
467
468                 /* No overflow? move on */
469                 if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
470                         continue;
471
472                 /* Mark overflow */
473                 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
474
475                 if (kvm_pmu_counter_can_chain(pmc))
476                         kvm_pmu_counter_increment(vcpu, BIT(i + 1),
477                                                   ARMV8_PMUV3_PERFCTR_CHAIN);
478         }
479 }
480
481 /* Compute the sample period for a given counter value */
482 static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
483 {
484         u64 val;
485
486         if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
487                 val = (-counter) & GENMASK(63, 0);
488         else
489                 val = (-counter) & GENMASK(31, 0);
490
491         return val;
492 }
493
494 /*
495  * When the perf event overflows, set the overflow status and inform the vcpu.
496  */
497 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
498                                   struct perf_sample_data *data,
499                                   struct pt_regs *regs)
500 {
501         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
502         struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
503         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
504         int idx = pmc->idx;
505         u64 period;
506
507         cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
508
509         /*
510          * Reset the sample period to the architectural limit,
511          * i.e. the point where the counter overflows.
512          */
513         period = compute_period(pmc, local64_read(&perf_event->count));
514
515         local64_set(&perf_event->hw.period_left, 0);
516         perf_event->attr.sample_period = period;
517         perf_event->hw.sample_period = period;
518
519         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
520
521         if (kvm_pmu_counter_can_chain(pmc))
522                 kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
523                                           ARMV8_PMUV3_PERFCTR_CHAIN);
524
525         if (kvm_pmu_overflow_status(vcpu)) {
526                 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
527
528                 if (!in_nmi())
529                         kvm_vcpu_kick(vcpu);
530                 else
531                         irq_work_queue(&vcpu->arch.pmu.overflow_work);
532         }
533
534         cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
535 }
536
537 /**
538  * kvm_pmu_software_increment - do software increment
539  * @vcpu: The vcpu pointer
540  * @val: the value guest writes to PMSWINC register
541  */
542 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
543 {
544         kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
545 }
546
547 /**
548  * kvm_pmu_handle_pmcr - handle PMCR register
549  * @vcpu: The vcpu pointer
550  * @val: the value guest writes to PMCR register
551  */
552 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
553 {
554         int i;
555
556         if (!kvm_vcpu_has_pmu(vcpu))
557                 return;
558
559         /* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
560         if (!kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
561                 val &= ~ARMV8_PMU_PMCR_LP;
562
563         /* The reset bits don't indicate any state, and shouldn't be saved. */
564         __vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
565
566         if (val & ARMV8_PMU_PMCR_E) {
567                 kvm_pmu_enable_counter_mask(vcpu,
568                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
569         } else {
570                 kvm_pmu_disable_counter_mask(vcpu,
571                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
572         }
573
574         if (val & ARMV8_PMU_PMCR_C)
575                 kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
576
577         if (val & ARMV8_PMU_PMCR_P) {
578                 unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
579                 mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
580                 for_each_set_bit(i, &mask, 32)
581                         kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
582         }
583         kvm_vcpu_pmu_restore_guest(vcpu);
584 }
585
586 static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
587 {
588         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
589         return (kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) &&
590                (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
591 }
592
593 /**
594  * kvm_pmu_create_perf_event - create a perf event for a counter
595  * @pmc: Counter context
596  */
597 static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
598 {
599         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
600         struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
601         struct perf_event *event;
602         struct perf_event_attr attr;
603         u64 eventsel, reg, data;
604         bool p, u, nsk, nsu;
605
606         reg = counter_index_to_evtreg(pmc->idx);
607         data = __vcpu_sys_reg(vcpu, reg);
608
609         kvm_pmu_stop_counter(pmc);
610         if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
611                 eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
612         else
613                 eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
614
615         /*
616          * Neither SW increment nor chained events need to be backed
617          * by a perf event.
618          */
619         if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
620             eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
621                 return;
622
623         /*
624          * If we have a filter in place and that the event isn't allowed, do
625          * not install a perf event either.
626          */
627         if (vcpu->kvm->arch.pmu_filter &&
628             !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
629                 return;
630
631         p = data & ARMV8_PMU_EXCLUDE_EL1;
632         u = data & ARMV8_PMU_EXCLUDE_EL0;
633         nsk = data & ARMV8_PMU_EXCLUDE_NS_EL1;
634         nsu = data & ARMV8_PMU_EXCLUDE_NS_EL0;
635
636         memset(&attr, 0, sizeof(struct perf_event_attr));
637         attr.type = arm_pmu->pmu.type;
638         attr.size = sizeof(attr);
639         attr.pinned = 1;
640         attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
641         attr.exclude_user = (u != nsu);
642         attr.exclude_kernel = (p != nsk);
643         attr.exclude_hv = 1; /* Don't count EL2 events */
644         attr.exclude_host = 1; /* Don't count host events */
645         attr.config = eventsel;
646
647         /*
648          * If counting with a 64bit counter, advertise it to the perf
649          * code, carefully dealing with the initial sample period
650          * which also depends on the overflow.
651          */
652         if (kvm_pmc_is_64bit(pmc))
653                 attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
654
655         attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
656
657         event = perf_event_create_kernel_counter(&attr, -1, current,
658                                                  kvm_pmu_perf_overflow, pmc);
659
660         if (IS_ERR(event)) {
661                 pr_err_once("kvm: pmu event creation failed %ld\n",
662                             PTR_ERR(event));
663                 return;
664         }
665
666         pmc->perf_event = event;
667 }
668
669 /**
670  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
671  * @vcpu: The vcpu pointer
672  * @data: The data guest writes to PMXEVTYPER_EL0
673  * @select_idx: The number of selected counter
674  *
675  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
676  * event with given hardware event number. Here we call perf_event API to
677  * emulate this action and create a kernel perf event for it.
678  */
679 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
680                                     u64 select_idx)
681 {
682         struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
683         u64 reg;
684
685         if (!kvm_vcpu_has_pmu(vcpu))
686                 return;
687
688         reg = counter_index_to_evtreg(pmc->idx);
689         __vcpu_sys_reg(vcpu, reg) = data & kvm_pmu_evtyper_mask(vcpu->kvm);
690
691         kvm_pmu_create_perf_event(pmc);
692 }
693
694 void kvm_host_pmu_init(struct arm_pmu *pmu)
695 {
696         struct arm_pmu_entry *entry;
697
698         /*
699          * Check the sanitised PMU version for the system, as KVM does not
700          * support implementations where PMUv3 exists on a subset of CPUs.
701          */
702         if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
703                 return;
704
705         mutex_lock(&arm_pmus_lock);
706
707         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
708         if (!entry)
709                 goto out_unlock;
710
711         entry->arm_pmu = pmu;
712         list_add_tail(&entry->entry, &arm_pmus);
713
714         if (list_is_singular(&arm_pmus))
715                 static_branch_enable(&kvm_arm_pmu_available);
716
717 out_unlock:
718         mutex_unlock(&arm_pmus_lock);
719 }
720
721 static struct arm_pmu *kvm_pmu_probe_armpmu(void)
722 {
723         struct arm_pmu *tmp, *pmu = NULL;
724         struct arm_pmu_entry *entry;
725         int cpu;
726
727         mutex_lock(&arm_pmus_lock);
728
729         /*
730          * It is safe to use a stale cpu to iterate the list of PMUs so long as
731          * the same value is used for the entirety of the loop. Given this, and
732          * the fact that no percpu data is used for the lookup there is no need
733          * to disable preemption.
734          *
735          * It is still necessary to get a valid cpu, though, to probe for the
736          * default PMU instance as userspace is not required to specify a PMU
737          * type. In order to uphold the preexisting behavior KVM selects the
738          * PMU instance for the core during vcpu init. A dependent use
739          * case would be a user with disdain of all things big.LITTLE that
740          * affines the VMM to a particular cluster of cores.
741          *
742          * In any case, userspace should just do the sane thing and use the UAPI
743          * to select a PMU type directly. But, be wary of the baggage being
744          * carried here.
745          */
746         cpu = raw_smp_processor_id();
747         list_for_each_entry(entry, &arm_pmus, entry) {
748                 tmp = entry->arm_pmu;
749
750                 if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
751                         pmu = tmp;
752                         break;
753                 }
754         }
755
756         mutex_unlock(&arm_pmus_lock);
757
758         return pmu;
759 }
760
761 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
762 {
763         unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
764         u64 val, mask = 0;
765         int base, i, nr_events;
766
767         if (!kvm_vcpu_has_pmu(vcpu))
768                 return 0;
769
770         if (!pmceid1) {
771                 val = read_sysreg(pmceid0_el0);
772                 /* always support CHAIN */
773                 val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
774                 base = 0;
775         } else {
776                 val = read_sysreg(pmceid1_el0);
777                 /*
778                  * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
779                  * as RAZ
780                  */
781                 val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
782                          BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
783                          BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
784                 base = 32;
785         }
786
787         if (!bmap)
788                 return val;
789
790         nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
791
792         for (i = 0; i < 32; i += 8) {
793                 u64 byte;
794
795                 byte = bitmap_get_value8(bmap, base + i);
796                 mask |= byte << i;
797                 if (nr_events >= (0x4000 + base + 32)) {
798                         byte = bitmap_get_value8(bmap, 0x4000 + base + i);
799                         mask |= byte << (32 + i);
800                 }
801         }
802
803         return val & mask;
804 }
805
806 void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
807 {
808         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
809
810         kvm_pmu_handle_pmcr(vcpu, kvm_vcpu_read_pmcr(vcpu));
811
812         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= mask;
813         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= mask;
814         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= mask;
815 }
816
817 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
818 {
819         if (!kvm_vcpu_has_pmu(vcpu))
820                 return 0;
821
822         if (!vcpu->arch.pmu.created)
823                 return -EINVAL;
824
825         /*
826          * A valid interrupt configuration for the PMU is either to have a
827          * properly configured interrupt number and using an in-kernel
828          * irqchip, or to not have an in-kernel GIC and not set an IRQ.
829          */
830         if (irqchip_in_kernel(vcpu->kvm)) {
831                 int irq = vcpu->arch.pmu.irq_num;
832                 /*
833                  * If we are using an in-kernel vgic, at this point we know
834                  * the vgic will be initialized, so we can check the PMU irq
835                  * number against the dimensions of the vgic and make sure
836                  * it's valid.
837                  */
838                 if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
839                         return -EINVAL;
840         } else if (kvm_arm_pmu_irq_initialized(vcpu)) {
841                    return -EINVAL;
842         }
843
844         /* One-off reload of the PMU on first run */
845         kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
846
847         return 0;
848 }
849
850 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
851 {
852         if (irqchip_in_kernel(vcpu->kvm)) {
853                 int ret;
854
855                 /*
856                  * If using the PMU with an in-kernel virtual GIC
857                  * implementation, we require the GIC to be already
858                  * initialized when initializing the PMU.
859                  */
860                 if (!vgic_initialized(vcpu->kvm))
861                         return -ENODEV;
862
863                 if (!kvm_arm_pmu_irq_initialized(vcpu))
864                         return -ENXIO;
865
866                 ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
867                                          &vcpu->arch.pmu);
868                 if (ret)
869                         return ret;
870         }
871
872         init_irq_work(&vcpu->arch.pmu.overflow_work,
873                       kvm_pmu_perf_overflow_notify_vcpu);
874
875         vcpu->arch.pmu.created = true;
876         return 0;
877 }
878
879 /*
880  * For one VM the interrupt type must be same for each vcpu.
881  * As a PPI, the interrupt number is the same for all vcpus,
882  * while as an SPI it must be a separate number per vcpu.
883  */
884 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
885 {
886         unsigned long i;
887         struct kvm_vcpu *vcpu;
888
889         kvm_for_each_vcpu(i, vcpu, kvm) {
890                 if (!kvm_arm_pmu_irq_initialized(vcpu))
891                         continue;
892
893                 if (irq_is_ppi(irq)) {
894                         if (vcpu->arch.pmu.irq_num != irq)
895                                 return false;
896                 } else {
897                         if (vcpu->arch.pmu.irq_num == irq)
898                                 return false;
899                 }
900         }
901
902         return true;
903 }
904
905 /**
906  * kvm_arm_pmu_get_max_counters - Return the max number of PMU counters.
907  * @kvm: The kvm pointer
908  */
909 u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
910 {
911         struct arm_pmu *arm_pmu = kvm->arch.arm_pmu;
912
913         /*
914          * The arm_pmu->num_events considers the cycle counter as well.
915          * Ignore that and return only the general-purpose counters.
916          */
917         return arm_pmu->num_events - 1;
918 }
919
920 static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu)
921 {
922         lockdep_assert_held(&kvm->arch.config_lock);
923
924         kvm->arch.arm_pmu = arm_pmu;
925         kvm->arch.pmcr_n = kvm_arm_pmu_get_max_counters(kvm);
926 }
927
928 /**
929  * kvm_arm_set_default_pmu - No PMU set, get the default one.
930  * @kvm: The kvm pointer
931  *
932  * The observant among you will notice that the supported_cpus
933  * mask does not get updated for the default PMU even though it
934  * is quite possible the selected instance supports only a
935  * subset of cores in the system. This is intentional, and
936  * upholds the preexisting behavior on heterogeneous systems
937  * where vCPUs can be scheduled on any core but the guest
938  * counters could stop working.
939  */
940 int kvm_arm_set_default_pmu(struct kvm *kvm)
941 {
942         struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu();
943
944         if (!arm_pmu)
945                 return -ENODEV;
946
947         kvm_arm_set_pmu(kvm, arm_pmu);
948         return 0;
949 }
950
951 static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
952 {
953         struct kvm *kvm = vcpu->kvm;
954         struct arm_pmu_entry *entry;
955         struct arm_pmu *arm_pmu;
956         int ret = -ENXIO;
957
958         lockdep_assert_held(&kvm->arch.config_lock);
959         mutex_lock(&arm_pmus_lock);
960
961         list_for_each_entry(entry, &arm_pmus, entry) {
962                 arm_pmu = entry->arm_pmu;
963                 if (arm_pmu->pmu.type == pmu_id) {
964                         if (kvm_vm_has_ran_once(kvm) ||
965                             (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
966                                 ret = -EBUSY;
967                                 break;
968                         }
969
970                         kvm_arm_set_pmu(kvm, arm_pmu);
971                         cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
972                         ret = 0;
973                         break;
974                 }
975         }
976
977         mutex_unlock(&arm_pmus_lock);
978         return ret;
979 }
980
981 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
982 {
983         struct kvm *kvm = vcpu->kvm;
984
985         lockdep_assert_held(&kvm->arch.config_lock);
986
987         if (!kvm_vcpu_has_pmu(vcpu))
988                 return -ENODEV;
989
990         if (vcpu->arch.pmu.created)
991                 return -EBUSY;
992
993         switch (attr->attr) {
994         case KVM_ARM_VCPU_PMU_V3_IRQ: {
995                 int __user *uaddr = (int __user *)(long)attr->addr;
996                 int irq;
997
998                 if (!irqchip_in_kernel(kvm))
999                         return -EINVAL;
1000
1001                 if (get_user(irq, uaddr))
1002                         return -EFAULT;
1003
1004                 /* The PMU overflow interrupt can be a PPI or a valid SPI. */
1005                 if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
1006                         return -EINVAL;
1007
1008                 if (!pmu_irq_is_valid(kvm, irq))
1009                         return -EINVAL;
1010
1011                 if (kvm_arm_pmu_irq_initialized(vcpu))
1012                         return -EBUSY;
1013
1014                 kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
1015                 vcpu->arch.pmu.irq_num = irq;
1016                 return 0;
1017         }
1018         case KVM_ARM_VCPU_PMU_V3_FILTER: {
1019                 u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
1020                 struct kvm_pmu_event_filter __user *uaddr;
1021                 struct kvm_pmu_event_filter filter;
1022                 int nr_events;
1023
1024                 /*
1025                  * Allow userspace to specify an event filter for the entire
1026                  * event range supported by PMUVer of the hardware, rather
1027                  * than the guest's PMUVer for KVM backward compatibility.
1028                  */
1029                 nr_events = __kvm_pmu_event_mask(pmuver) + 1;
1030
1031                 uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
1032
1033                 if (copy_from_user(&filter, uaddr, sizeof(filter)))
1034                         return -EFAULT;
1035
1036                 if (((u32)filter.base_event + filter.nevents) > nr_events ||
1037                     (filter.action != KVM_PMU_EVENT_ALLOW &&
1038                      filter.action != KVM_PMU_EVENT_DENY))
1039                         return -EINVAL;
1040
1041                 if (kvm_vm_has_ran_once(kvm))
1042                         return -EBUSY;
1043
1044                 if (!kvm->arch.pmu_filter) {
1045                         kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
1046                         if (!kvm->arch.pmu_filter)
1047                                 return -ENOMEM;
1048
1049                         /*
1050                          * The default depends on the first applied filter.
1051                          * If it allows events, the default is to deny.
1052                          * Conversely, if the first filter denies a set of
1053                          * events, the default is to allow.
1054                          */
1055                         if (filter.action == KVM_PMU_EVENT_ALLOW)
1056                                 bitmap_zero(kvm->arch.pmu_filter, nr_events);
1057                         else
1058                                 bitmap_fill(kvm->arch.pmu_filter, nr_events);
1059                 }
1060
1061                 if (filter.action == KVM_PMU_EVENT_ALLOW)
1062                         bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1063                 else
1064                         bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1065
1066                 return 0;
1067         }
1068         case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
1069                 int __user *uaddr = (int __user *)(long)attr->addr;
1070                 int pmu_id;
1071
1072                 if (get_user(pmu_id, uaddr))
1073                         return -EFAULT;
1074
1075                 return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
1076         }
1077         case KVM_ARM_VCPU_PMU_V3_INIT:
1078                 return kvm_arm_pmu_v3_init(vcpu);
1079         }
1080
1081         return -ENXIO;
1082 }
1083
1084 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1085 {
1086         switch (attr->attr) {
1087         case KVM_ARM_VCPU_PMU_V3_IRQ: {
1088                 int __user *uaddr = (int __user *)(long)attr->addr;
1089                 int irq;
1090
1091                 if (!irqchip_in_kernel(vcpu->kvm))
1092                         return -EINVAL;
1093
1094                 if (!kvm_vcpu_has_pmu(vcpu))
1095                         return -ENODEV;
1096
1097                 if (!kvm_arm_pmu_irq_initialized(vcpu))
1098                         return -ENXIO;
1099
1100                 irq = vcpu->arch.pmu.irq_num;
1101                 return put_user(irq, uaddr);
1102         }
1103         }
1104
1105         return -ENXIO;
1106 }
1107
1108 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1109 {
1110         switch (attr->attr) {
1111         case KVM_ARM_VCPU_PMU_V3_IRQ:
1112         case KVM_ARM_VCPU_PMU_V3_INIT:
1113         case KVM_ARM_VCPU_PMU_V3_FILTER:
1114         case KVM_ARM_VCPU_PMU_V3_SET_PMU:
1115                 if (kvm_vcpu_has_pmu(vcpu))
1116                         return 0;
1117         }
1118
1119         return -ENXIO;
1120 }
1121
1122 u8 kvm_arm_pmu_get_pmuver_limit(void)
1123 {
1124         u64 tmp;
1125
1126         tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1127         tmp = cpuid_feature_cap_perfmon_field(tmp,
1128                                               ID_AA64DFR0_EL1_PMUVer_SHIFT,
1129                                               ID_AA64DFR0_EL1_PMUVer_V3P5);
1130         return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
1131 }
1132
1133 /**
1134  * kvm_vcpu_read_pmcr - Read PMCR_EL0 register for the vCPU
1135  * @vcpu: The vcpu pointer
1136  */
1137 u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
1138 {
1139         u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
1140
1141         return u64_replace_bits(pmcr, vcpu->kvm->arch.pmcr_n, ARMV8_PMU_PMCR_N);
1142 }