KVM: arm64: Use generic allocator for hyp stage-1 page-tables
[linux-2.6-microblaze.git] / arch / arm64 / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31
32 static unsigned long io_map_base;
33
34 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
35 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
36
37 static bool is_iomap(unsigned long flags)
38 {
39         return flags & KVM_S2PTE_FLAG_IS_IOMAP;
40 }
41
42 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
43 {
44         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
45 }
46
47 /**
48  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
49  * @kvm:        pointer to kvm structure.
50  *
51  * Interface to HYP function to flush all VM TLB entries
52  */
53 void kvm_flush_remote_tlbs(struct kvm *kvm)
54 {
55         kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
56 }
57
58 static void kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
59                                    int level)
60 {
61         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ipa, level);
62 }
63
64 /*
65  * D-Cache management functions. They take the page table entries by
66  * value, as they are flushing the cache using the kernel mapping (or
67  * kmap on 32bit).
68  */
69 static void kvm_flush_dcache_pte(pte_t pte)
70 {
71         __kvm_flush_dcache_pte(pte);
72 }
73
74 static void kvm_flush_dcache_pmd(pmd_t pmd)
75 {
76         __kvm_flush_dcache_pmd(pmd);
77 }
78
79 static void kvm_flush_dcache_pud(pud_t pud)
80 {
81         __kvm_flush_dcache_pud(pud);
82 }
83
84 static bool kvm_is_device_pfn(unsigned long pfn)
85 {
86         return !pfn_valid(pfn);
87 }
88
89 /**
90  * stage2_dissolve_pmd() - clear and flush huge PMD entry
91  * @mmu:        pointer to mmu structure to operate on
92  * @addr:       IPA
93  * @pmd:        pmd pointer for IPA
94  *
95  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
96  */
97 static void stage2_dissolve_pmd(struct kvm_s2_mmu *mmu, phys_addr_t addr, pmd_t *pmd)
98 {
99         if (!pmd_thp_or_huge(*pmd))
100                 return;
101
102         pmd_clear(pmd);
103         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
104         put_page(virt_to_page(pmd));
105 }
106
107 /**
108  * stage2_dissolve_pud() - clear and flush huge PUD entry
109  * @mmu:        pointer to mmu structure to operate on
110  * @addr:       IPA
111  * @pud:        pud pointer for IPA
112  *
113  * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
114  */
115 static void stage2_dissolve_pud(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t *pudp)
116 {
117         struct kvm *kvm = mmu->kvm;
118
119         if (!stage2_pud_huge(kvm, *pudp))
120                 return;
121
122         stage2_pud_clear(kvm, pudp);
123         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
124         put_page(virt_to_page(pudp));
125 }
126
127 static void clear_stage2_pgd_entry(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr)
128 {
129         struct kvm *kvm = mmu->kvm;
130         p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
131         stage2_pgd_clear(kvm, pgd);
132         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
133         stage2_p4d_free(kvm, p4d_table);
134         put_page(virt_to_page(pgd));
135 }
136
137 static void clear_stage2_p4d_entry(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr)
138 {
139         struct kvm *kvm = mmu->kvm;
140         pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
141         stage2_p4d_clear(kvm, p4d);
142         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
143         stage2_pud_free(kvm, pud_table);
144         put_page(virt_to_page(p4d));
145 }
146
147 static void clear_stage2_pud_entry(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr)
148 {
149         struct kvm *kvm = mmu->kvm;
150         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
151
152         VM_BUG_ON(stage2_pud_huge(kvm, *pud));
153         stage2_pud_clear(kvm, pud);
154         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
155         stage2_pmd_free(kvm, pmd_table);
156         put_page(virt_to_page(pud));
157 }
158
159 static void clear_stage2_pmd_entry(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr)
160 {
161         pte_t *pte_table = pte_offset_kernel(pmd, 0);
162         VM_BUG_ON(pmd_thp_or_huge(*pmd));
163         pmd_clear(pmd);
164         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
165         free_page((unsigned long)pte_table);
166         put_page(virt_to_page(pmd));
167 }
168
169 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
170 {
171         WRITE_ONCE(*ptep, new_pte);
172         dsb(ishst);
173 }
174
175 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
176 {
177         WRITE_ONCE(*pmdp, new_pmd);
178         dsb(ishst);
179 }
180
181 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
182 {
183         kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
184 }
185
186 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
187 {
188         WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
189         dsb(ishst);
190 }
191
192 static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp)
193 {
194         WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp));
195         dsb(ishst);
196 }
197
198 static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
199 {
200 #ifndef __PAGETABLE_P4D_FOLDED
201         WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp));
202         dsb(ishst);
203 #endif
204 }
205
206 /*
207  * Unmapping vs dcache management:
208  *
209  * If a guest maps certain memory pages as uncached, all writes will
210  * bypass the data cache and go directly to RAM.  However, the CPUs
211  * can still speculate reads (not writes) and fill cache lines with
212  * data.
213  *
214  * Those cache lines will be *clean* cache lines though, so a
215  * clean+invalidate operation is equivalent to an invalidate
216  * operation, because no cache lines are marked dirty.
217  *
218  * Those clean cache lines could be filled prior to an uncached write
219  * by the guest, and the cache coherent IO subsystem would therefore
220  * end up writing old data to disk.
221  *
222  * This is why right after unmapping a page/section and invalidating
223  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
224  * the IO subsystem will never hit in the cache.
225  *
226  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
227  * we then fully enforce cacheability of RAM, no matter what the guest
228  * does.
229  */
230 static void unmap_stage2_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
231                        phys_addr_t addr, phys_addr_t end)
232 {
233         phys_addr_t start_addr = addr;
234         pte_t *pte, *start_pte;
235
236         start_pte = pte = pte_offset_kernel(pmd, addr);
237         do {
238                 if (!pte_none(*pte)) {
239                         pte_t old_pte = *pte;
240
241                         kvm_set_pte(pte, __pte(0));
242                         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
243
244                         /* No need to invalidate the cache for device mappings */
245                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
246                                 kvm_flush_dcache_pte(old_pte);
247
248                         put_page(virt_to_page(pte));
249                 }
250         } while (pte++, addr += PAGE_SIZE, addr != end);
251
252         if (stage2_pte_table_empty(mmu->kvm, start_pte))
253                 clear_stage2_pmd_entry(mmu, pmd, start_addr);
254 }
255
256 static void unmap_stage2_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
257                        phys_addr_t addr, phys_addr_t end)
258 {
259         struct kvm *kvm = mmu->kvm;
260         phys_addr_t next, start_addr = addr;
261         pmd_t *pmd, *start_pmd;
262
263         start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
264         do {
265                 next = stage2_pmd_addr_end(kvm, addr, end);
266                 if (!pmd_none(*pmd)) {
267                         if (pmd_thp_or_huge(*pmd)) {
268                                 pmd_t old_pmd = *pmd;
269
270                                 pmd_clear(pmd);
271                                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
272
273                                 kvm_flush_dcache_pmd(old_pmd);
274
275                                 put_page(virt_to_page(pmd));
276                         } else {
277                                 unmap_stage2_ptes(mmu, pmd, addr, next);
278                         }
279                 }
280         } while (pmd++, addr = next, addr != end);
281
282         if (stage2_pmd_table_empty(kvm, start_pmd))
283                 clear_stage2_pud_entry(mmu, pud, start_addr);
284 }
285
286 static void unmap_stage2_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
287                        phys_addr_t addr, phys_addr_t end)
288 {
289         struct kvm *kvm = mmu->kvm;
290         phys_addr_t next, start_addr = addr;
291         pud_t *pud, *start_pud;
292
293         start_pud = pud = stage2_pud_offset(kvm, p4d, addr);
294         do {
295                 next = stage2_pud_addr_end(kvm, addr, end);
296                 if (!stage2_pud_none(kvm, *pud)) {
297                         if (stage2_pud_huge(kvm, *pud)) {
298                                 pud_t old_pud = *pud;
299
300                                 stage2_pud_clear(kvm, pud);
301                                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
302                                 kvm_flush_dcache_pud(old_pud);
303                                 put_page(virt_to_page(pud));
304                         } else {
305                                 unmap_stage2_pmds(mmu, pud, addr, next);
306                         }
307                 }
308         } while (pud++, addr = next, addr != end);
309
310         if (stage2_pud_table_empty(kvm, start_pud))
311                 clear_stage2_p4d_entry(mmu, p4d, start_addr);
312 }
313
314 static void unmap_stage2_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
315                        phys_addr_t addr, phys_addr_t end)
316 {
317         struct kvm *kvm = mmu->kvm;
318         phys_addr_t next, start_addr = addr;
319         p4d_t *p4d, *start_p4d;
320
321         start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr);
322         do {
323                 next = stage2_p4d_addr_end(kvm, addr, end);
324                 if (!stage2_p4d_none(kvm, *p4d))
325                         unmap_stage2_puds(mmu, p4d, addr, next);
326         } while (p4d++, addr = next, addr != end);
327
328         if (stage2_p4d_table_empty(kvm, start_p4d))
329                 clear_stage2_pgd_entry(mmu, pgd, start_addr);
330 }
331
332 /**
333  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
334  * @kvm:   The VM pointer
335  * @start: The intermediate physical base address of the range to unmap
336  * @size:  The size of the area to unmap
337  *
338  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
339  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
340  * destroying the VM), otherwise another faulting VCPU may come in and mess
341  * with things behind our backs.
342  */
343 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
344                                  bool may_block)
345 {
346         struct kvm *kvm = mmu->kvm;
347         pgd_t *pgd;
348         phys_addr_t addr = start, end = start + size;
349         phys_addr_t next;
350
351         assert_spin_locked(&kvm->mmu_lock);
352         WARN_ON(size & ~PAGE_MASK);
353
354         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
355         do {
356                 /*
357                  * Make sure the page table is still active, as another thread
358                  * could have possibly freed the page table, while we released
359                  * the lock.
360                  */
361                 if (!READ_ONCE(mmu->pgd))
362                         break;
363                 next = stage2_pgd_addr_end(kvm, addr, end);
364                 if (!stage2_pgd_none(kvm, *pgd))
365                         unmap_stage2_p4ds(mmu, pgd, addr, next);
366                 /*
367                  * If the range is too large, release the kvm->mmu_lock
368                  * to prevent starvation and lockup detector warnings.
369                  */
370                 if (may_block && next != end)
371                         cond_resched_lock(&kvm->mmu_lock);
372         } while (pgd++, addr = next, addr != end);
373 }
374
375 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
376 {
377         __unmap_stage2_range(mmu, start, size, true);
378 }
379
380 static void stage2_flush_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
381                               phys_addr_t addr, phys_addr_t end)
382 {
383         pte_t *pte;
384
385         pte = pte_offset_kernel(pmd, addr);
386         do {
387                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
388                         kvm_flush_dcache_pte(*pte);
389         } while (pte++, addr += PAGE_SIZE, addr != end);
390 }
391
392 static void stage2_flush_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
393                               phys_addr_t addr, phys_addr_t end)
394 {
395         struct kvm *kvm = mmu->kvm;
396         pmd_t *pmd;
397         phys_addr_t next;
398
399         pmd = stage2_pmd_offset(kvm, pud, addr);
400         do {
401                 next = stage2_pmd_addr_end(kvm, addr, end);
402                 if (!pmd_none(*pmd)) {
403                         if (pmd_thp_or_huge(*pmd))
404                                 kvm_flush_dcache_pmd(*pmd);
405                         else
406                                 stage2_flush_ptes(mmu, pmd, addr, next);
407                 }
408         } while (pmd++, addr = next, addr != end);
409 }
410
411 static void stage2_flush_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
412                               phys_addr_t addr, phys_addr_t end)
413 {
414         struct kvm *kvm = mmu->kvm;
415         pud_t *pud;
416         phys_addr_t next;
417
418         pud = stage2_pud_offset(kvm, p4d, addr);
419         do {
420                 next = stage2_pud_addr_end(kvm, addr, end);
421                 if (!stage2_pud_none(kvm, *pud)) {
422                         if (stage2_pud_huge(kvm, *pud))
423                                 kvm_flush_dcache_pud(*pud);
424                         else
425                                 stage2_flush_pmds(mmu, pud, addr, next);
426                 }
427         } while (pud++, addr = next, addr != end);
428 }
429
430 static void stage2_flush_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
431                               phys_addr_t addr, phys_addr_t end)
432 {
433         struct kvm *kvm = mmu->kvm;
434         p4d_t *p4d;
435         phys_addr_t next;
436
437         p4d = stage2_p4d_offset(kvm, pgd, addr);
438         do {
439                 next = stage2_p4d_addr_end(kvm, addr, end);
440                 if (!stage2_p4d_none(kvm, *p4d))
441                         stage2_flush_puds(mmu, p4d, addr, next);
442         } while (p4d++, addr = next, addr != end);
443 }
444
445 static void stage2_flush_memslot(struct kvm *kvm,
446                                  struct kvm_memory_slot *memslot)
447 {
448         struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
449         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
450         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
451         phys_addr_t next;
452         pgd_t *pgd;
453
454         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
455         do {
456                 next = stage2_pgd_addr_end(kvm, addr, end);
457                 if (!stage2_pgd_none(kvm, *pgd))
458                         stage2_flush_p4ds(mmu, pgd, addr, next);
459
460                 if (next != end)
461                         cond_resched_lock(&kvm->mmu_lock);
462         } while (pgd++, addr = next, addr != end);
463 }
464
465 /**
466  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
467  * @kvm: The struct kvm pointer
468  *
469  * Go through the stage 2 page tables and invalidate any cache lines
470  * backing memory already mapped to the VM.
471  */
472 static void stage2_flush_vm(struct kvm *kvm)
473 {
474         struct kvm_memslots *slots;
475         struct kvm_memory_slot *memslot;
476         int idx;
477
478         idx = srcu_read_lock(&kvm->srcu);
479         spin_lock(&kvm->mmu_lock);
480
481         slots = kvm_memslots(kvm);
482         kvm_for_each_memslot(memslot, slots)
483                 stage2_flush_memslot(kvm, memslot);
484
485         spin_unlock(&kvm->mmu_lock);
486         srcu_read_unlock(&kvm->srcu, idx);
487 }
488
489 /**
490  * free_hyp_pgds - free Hyp-mode page tables
491  */
492 void free_hyp_pgds(void)
493 {
494         mutex_lock(&kvm_hyp_pgd_mutex);
495         if (hyp_pgtable) {
496                 kvm_pgtable_hyp_destroy(hyp_pgtable);
497                 kfree(hyp_pgtable);
498         }
499         mutex_unlock(&kvm_hyp_pgd_mutex);
500 }
501
502 static int __create_hyp_mappings(unsigned long start, unsigned long size,
503                                  unsigned long phys, enum kvm_pgtable_prot prot)
504 {
505         int err;
506
507         mutex_lock(&kvm_hyp_pgd_mutex);
508         err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
509         mutex_unlock(&kvm_hyp_pgd_mutex);
510
511         return err;
512 }
513
514 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
515 {
516         if (!is_vmalloc_addr(kaddr)) {
517                 BUG_ON(!virt_addr_valid(kaddr));
518                 return __pa(kaddr);
519         } else {
520                 return page_to_phys(vmalloc_to_page(kaddr)) +
521                        offset_in_page(kaddr);
522         }
523 }
524
525 /**
526  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
527  * @from:       The virtual kernel start address of the range
528  * @to:         The virtual kernel end address of the range (exclusive)
529  * @prot:       The protection to be applied to this range
530  *
531  * The same virtual address as the kernel virtual address is also used
532  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
533  * physical pages.
534  */
535 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
536 {
537         phys_addr_t phys_addr;
538         unsigned long virt_addr;
539         unsigned long start = kern_hyp_va((unsigned long)from);
540         unsigned long end = kern_hyp_va((unsigned long)to);
541
542         if (is_kernel_in_hyp_mode())
543                 return 0;
544
545         start = start & PAGE_MASK;
546         end = PAGE_ALIGN(end);
547
548         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
549                 int err;
550
551                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
552                 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
553                                             prot);
554                 if (err)
555                         return err;
556         }
557
558         return 0;
559 }
560
561 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
562                                         unsigned long *haddr,
563                                         enum kvm_pgtable_prot prot)
564 {
565         unsigned long base;
566         int ret = 0;
567
568         mutex_lock(&kvm_hyp_pgd_mutex);
569
570         /*
571          * This assumes that we have enough space below the idmap
572          * page to allocate our VAs. If not, the check below will
573          * kick. A potential alternative would be to detect that
574          * overflow and switch to an allocation above the idmap.
575          *
576          * The allocated size is always a multiple of PAGE_SIZE.
577          */
578         size = PAGE_ALIGN(size + offset_in_page(phys_addr));
579         base = io_map_base - size;
580
581         /*
582          * Verify that BIT(VA_BITS - 1) hasn't been flipped by
583          * allocating the new area, as it would indicate we've
584          * overflowed the idmap/IO address range.
585          */
586         if ((base ^ io_map_base) & BIT(VA_BITS - 1))
587                 ret = -ENOMEM;
588         else
589                 io_map_base = base;
590
591         mutex_unlock(&kvm_hyp_pgd_mutex);
592
593         if (ret)
594                 goto out;
595
596         ret = __create_hyp_mappings(base, size, phys_addr, prot);
597         if (ret)
598                 goto out;
599
600         *haddr = base + offset_in_page(phys_addr);
601 out:
602         return ret;
603 }
604
605 /**
606  * create_hyp_io_mappings - Map IO into both kernel and HYP
607  * @phys_addr:  The physical start address which gets mapped
608  * @size:       Size of the region being mapped
609  * @kaddr:      Kernel VA for this mapping
610  * @haddr:      HYP VA for this mapping
611  */
612 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
613                            void __iomem **kaddr,
614                            void __iomem **haddr)
615 {
616         unsigned long addr;
617         int ret;
618
619         *kaddr = ioremap(phys_addr, size);
620         if (!*kaddr)
621                 return -ENOMEM;
622
623         if (is_kernel_in_hyp_mode()) {
624                 *haddr = *kaddr;
625                 return 0;
626         }
627
628         ret = __create_hyp_private_mapping(phys_addr, size,
629                                            &addr, PAGE_HYP_DEVICE);
630         if (ret) {
631                 iounmap(*kaddr);
632                 *kaddr = NULL;
633                 *haddr = NULL;
634                 return ret;
635         }
636
637         *haddr = (void __iomem *)addr;
638         return 0;
639 }
640
641 /**
642  * create_hyp_exec_mappings - Map an executable range into HYP
643  * @phys_addr:  The physical start address which gets mapped
644  * @size:       Size of the region being mapped
645  * @haddr:      HYP VA for this mapping
646  */
647 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
648                              void **haddr)
649 {
650         unsigned long addr;
651         int ret;
652
653         BUG_ON(is_kernel_in_hyp_mode());
654
655         ret = __create_hyp_private_mapping(phys_addr, size,
656                                            &addr, PAGE_HYP_EXEC);
657         if (ret) {
658                 *haddr = NULL;
659                 return ret;
660         }
661
662         *haddr = (void *)addr;
663         return 0;
664 }
665
666 /**
667  * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
668  * @kvm:        The pointer to the KVM structure
669  * @mmu:        The pointer to the s2 MMU structure
670  *
671  * Allocates only the stage-2 HW PGD level table(s) of size defined by
672  * stage2_pgd_size(mmu->kvm).
673  *
674  * Note we don't need locking here as this is only called when the VM is
675  * created, which can only be done once.
676  */
677 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
678 {
679         phys_addr_t pgd_phys;
680         pgd_t *pgd;
681         int cpu;
682
683         if (mmu->pgd != NULL) {
684                 kvm_err("kvm_arch already initialized?\n");
685                 return -EINVAL;
686         }
687
688         /* Allocate the HW PGD, making sure that each page gets its own refcount */
689         pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
690         if (!pgd)
691                 return -ENOMEM;
692
693         pgd_phys = virt_to_phys(pgd);
694         if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
695                 return -EINVAL;
696
697         mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
698         if (!mmu->last_vcpu_ran) {
699                 free_pages_exact(pgd, stage2_pgd_size(kvm));
700                 return -ENOMEM;
701         }
702
703         for_each_possible_cpu(cpu)
704                 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
705
706         mmu->kvm = kvm;
707         mmu->pgd = pgd;
708         mmu->pgd_phys = pgd_phys;
709         mmu->vmid.vmid_gen = 0;
710
711         return 0;
712 }
713
714 static void stage2_unmap_memslot(struct kvm *kvm,
715                                  struct kvm_memory_slot *memslot)
716 {
717         hva_t hva = memslot->userspace_addr;
718         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
719         phys_addr_t size = PAGE_SIZE * memslot->npages;
720         hva_t reg_end = hva + size;
721
722         /*
723          * A memory region could potentially cover multiple VMAs, and any holes
724          * between them, so iterate over all of them to find out if we should
725          * unmap any of them.
726          *
727          *     +--------------------------------------------+
728          * +---------------+----------------+   +----------------+
729          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
730          * +---------------+----------------+   +----------------+
731          *     |               memory region                |
732          *     +--------------------------------------------+
733          */
734         do {
735                 struct vm_area_struct *vma = find_vma(current->mm, hva);
736                 hva_t vm_start, vm_end;
737
738                 if (!vma || vma->vm_start >= reg_end)
739                         break;
740
741                 /*
742                  * Take the intersection of this VMA with the memory region
743                  */
744                 vm_start = max(hva, vma->vm_start);
745                 vm_end = min(reg_end, vma->vm_end);
746
747                 if (!(vma->vm_flags & VM_PFNMAP)) {
748                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
749                         unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
750                 }
751                 hva = vm_end;
752         } while (hva < reg_end);
753 }
754
755 /**
756  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
757  * @kvm: The struct kvm pointer
758  *
759  * Go through the memregions and unmap any regular RAM
760  * backing memory already mapped to the VM.
761  */
762 void stage2_unmap_vm(struct kvm *kvm)
763 {
764         struct kvm_memslots *slots;
765         struct kvm_memory_slot *memslot;
766         int idx;
767
768         idx = srcu_read_lock(&kvm->srcu);
769         mmap_read_lock(current->mm);
770         spin_lock(&kvm->mmu_lock);
771
772         slots = kvm_memslots(kvm);
773         kvm_for_each_memslot(memslot, slots)
774                 stage2_unmap_memslot(kvm, memslot);
775
776         spin_unlock(&kvm->mmu_lock);
777         mmap_read_unlock(current->mm);
778         srcu_read_unlock(&kvm->srcu, idx);
779 }
780
781 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
782 {
783         struct kvm *kvm = mmu->kvm;
784         void *pgd = NULL;
785
786         spin_lock(&kvm->mmu_lock);
787         if (mmu->pgd) {
788                 unmap_stage2_range(mmu, 0, kvm_phys_size(kvm));
789                 pgd = READ_ONCE(mmu->pgd);
790                 mmu->pgd = NULL;
791         }
792         spin_unlock(&kvm->mmu_lock);
793
794         /* Free the HW pgd, one page at a time */
795         if (pgd) {
796                 free_pages_exact(pgd, stage2_pgd_size(kvm));
797                 free_percpu(mmu->last_vcpu_ran);
798         }
799 }
800
801 static p4d_t *stage2_get_p4d(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
802                              phys_addr_t addr)
803 {
804         struct kvm *kvm = mmu->kvm;
805         pgd_t *pgd;
806         p4d_t *p4d;
807
808         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
809         if (stage2_pgd_none(kvm, *pgd)) {
810                 if (!cache)
811                         return NULL;
812                 p4d = kvm_mmu_memory_cache_alloc(cache);
813                 stage2_pgd_populate(kvm, pgd, p4d);
814                 get_page(virt_to_page(pgd));
815         }
816
817         return stage2_p4d_offset(kvm, pgd, addr);
818 }
819
820 static pud_t *stage2_get_pud(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
821                              phys_addr_t addr)
822 {
823         struct kvm *kvm = mmu->kvm;
824         p4d_t *p4d;
825         pud_t *pud;
826
827         p4d = stage2_get_p4d(mmu, cache, addr);
828         if (stage2_p4d_none(kvm, *p4d)) {
829                 if (!cache)
830                         return NULL;
831                 pud = kvm_mmu_memory_cache_alloc(cache);
832                 stage2_p4d_populate(kvm, p4d, pud);
833                 get_page(virt_to_page(p4d));
834         }
835
836         return stage2_pud_offset(kvm, p4d, addr);
837 }
838
839 static pmd_t *stage2_get_pmd(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
840                              phys_addr_t addr)
841 {
842         struct kvm *kvm = mmu->kvm;
843         pud_t *pud;
844         pmd_t *pmd;
845
846         pud = stage2_get_pud(mmu, cache, addr);
847         if (!pud || stage2_pud_huge(kvm, *pud))
848                 return NULL;
849
850         if (stage2_pud_none(kvm, *pud)) {
851                 if (!cache)
852                         return NULL;
853                 pmd = kvm_mmu_memory_cache_alloc(cache);
854                 stage2_pud_populate(kvm, pud, pmd);
855                 get_page(virt_to_page(pud));
856         }
857
858         return stage2_pmd_offset(kvm, pud, addr);
859 }
860
861 static int stage2_set_pmd_huge(struct kvm_s2_mmu *mmu,
862                                struct kvm_mmu_memory_cache *cache,
863                                phys_addr_t addr, const pmd_t *new_pmd)
864 {
865         pmd_t *pmd, old_pmd;
866
867 retry:
868         pmd = stage2_get_pmd(mmu, cache, addr);
869         VM_BUG_ON(!pmd);
870
871         old_pmd = *pmd;
872         /*
873          * Multiple vcpus faulting on the same PMD entry, can
874          * lead to them sequentially updating the PMD with the
875          * same value. Following the break-before-make
876          * (pmd_clear() followed by tlb_flush()) process can
877          * hinder forward progress due to refaults generated
878          * on missing translations.
879          *
880          * Skip updating the page table if the entry is
881          * unchanged.
882          */
883         if (pmd_val(old_pmd) == pmd_val(*new_pmd))
884                 return 0;
885
886         if (pmd_present(old_pmd)) {
887                 /*
888                  * If we already have PTE level mapping for this block,
889                  * we must unmap it to avoid inconsistent TLB state and
890                  * leaking the table page. We could end up in this situation
891                  * if the memory slot was marked for dirty logging and was
892                  * reverted, leaving PTE level mappings for the pages accessed
893                  * during the period. So, unmap the PTE level mapping for this
894                  * block and retry, as we could have released the upper level
895                  * table in the process.
896                  *
897                  * Normal THP split/merge follows mmu_notifier callbacks and do
898                  * get handled accordingly.
899                  */
900                 if (!pmd_thp_or_huge(old_pmd)) {
901                         unmap_stage2_range(mmu, addr & S2_PMD_MASK, S2_PMD_SIZE);
902                         goto retry;
903                 }
904                 /*
905                  * Mapping in huge pages should only happen through a
906                  * fault.  If a page is merged into a transparent huge
907                  * page, the individual subpages of that huge page
908                  * should be unmapped through MMU notifiers before we
909                  * get here.
910                  *
911                  * Merging of CompoundPages is not supported; they
912                  * should become splitting first, unmapped, merged,
913                  * and mapped back in on-demand.
914                  */
915                 WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
916                 pmd_clear(pmd);
917                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
918         } else {
919                 get_page(virt_to_page(pmd));
920         }
921
922         kvm_set_pmd(pmd, *new_pmd);
923         return 0;
924 }
925
926 static int stage2_set_pud_huge(struct kvm_s2_mmu *mmu,
927                                struct kvm_mmu_memory_cache *cache,
928                                phys_addr_t addr, const pud_t *new_pudp)
929 {
930         struct kvm *kvm = mmu->kvm;
931         pud_t *pudp, old_pud;
932
933 retry:
934         pudp = stage2_get_pud(mmu, cache, addr);
935         VM_BUG_ON(!pudp);
936
937         old_pud = *pudp;
938
939         /*
940          * A large number of vcpus faulting on the same stage 2 entry,
941          * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
942          * Skip updating the page tables if there is no change.
943          */
944         if (pud_val(old_pud) == pud_val(*new_pudp))
945                 return 0;
946
947         if (stage2_pud_present(kvm, old_pud)) {
948                 /*
949                  * If we already have table level mapping for this block, unmap
950                  * the range for this block and retry.
951                  */
952                 if (!stage2_pud_huge(kvm, old_pud)) {
953                         unmap_stage2_range(mmu, addr & S2_PUD_MASK, S2_PUD_SIZE);
954                         goto retry;
955                 }
956
957                 WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
958                 stage2_pud_clear(kvm, pudp);
959                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
960         } else {
961                 get_page(virt_to_page(pudp));
962         }
963
964         kvm_set_pud(pudp, *new_pudp);
965         return 0;
966 }
967
968 /*
969  * stage2_get_leaf_entry - walk the stage2 VM page tables and return
970  * true if a valid and present leaf-entry is found. A pointer to the
971  * leaf-entry is returned in the appropriate level variable - pudpp,
972  * pmdpp, ptepp.
973  */
974 static bool stage2_get_leaf_entry(struct kvm_s2_mmu *mmu, phys_addr_t addr,
975                                   pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
976 {
977         struct kvm *kvm = mmu->kvm;
978         pud_t *pudp;
979         pmd_t *pmdp;
980         pte_t *ptep;
981
982         *pudpp = NULL;
983         *pmdpp = NULL;
984         *ptepp = NULL;
985
986         pudp = stage2_get_pud(mmu, NULL, addr);
987         if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
988                 return false;
989
990         if (stage2_pud_huge(kvm, *pudp)) {
991                 *pudpp = pudp;
992                 return true;
993         }
994
995         pmdp = stage2_pmd_offset(kvm, pudp, addr);
996         if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
997                 return false;
998
999         if (pmd_thp_or_huge(*pmdp)) {
1000                 *pmdpp = pmdp;
1001                 return true;
1002         }
1003
1004         ptep = pte_offset_kernel(pmdp, addr);
1005         if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1006                 return false;
1007
1008         *ptepp = ptep;
1009         return true;
1010 }
1011
1012 static bool stage2_is_exec(struct kvm_s2_mmu *mmu, phys_addr_t addr, unsigned long sz)
1013 {
1014         pud_t *pudp;
1015         pmd_t *pmdp;
1016         pte_t *ptep;
1017         bool found;
1018
1019         found = stage2_get_leaf_entry(mmu, addr, &pudp, &pmdp, &ptep);
1020         if (!found)
1021                 return false;
1022
1023         if (pudp)
1024                 return sz <= PUD_SIZE && kvm_s2pud_exec(pudp);
1025         else if (pmdp)
1026                 return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp);
1027         else
1028                 return sz == PAGE_SIZE && kvm_s2pte_exec(ptep);
1029 }
1030
1031 static int stage2_set_pte(struct kvm_s2_mmu *mmu,
1032                           struct kvm_mmu_memory_cache *cache,
1033                           phys_addr_t addr, const pte_t *new_pte,
1034                           unsigned long flags)
1035 {
1036         struct kvm *kvm = mmu->kvm;
1037         pud_t *pud;
1038         pmd_t *pmd;
1039         pte_t *pte, old_pte;
1040         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1041         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1042
1043         VM_BUG_ON(logging_active && !cache);
1044
1045         /* Create stage-2 page table mapping - Levels 0 and 1 */
1046         pud = stage2_get_pud(mmu, cache, addr);
1047         if (!pud) {
1048                 /*
1049                  * Ignore calls from kvm_set_spte_hva for unallocated
1050                  * address ranges.
1051                  */
1052                 return 0;
1053         }
1054
1055         /*
1056          * While dirty page logging - dissolve huge PUD, then continue
1057          * on to allocate page.
1058          */
1059         if (logging_active)
1060                 stage2_dissolve_pud(mmu, addr, pud);
1061
1062         if (stage2_pud_none(kvm, *pud)) {
1063                 if (!cache)
1064                         return 0; /* ignore calls from kvm_set_spte_hva */
1065                 pmd = kvm_mmu_memory_cache_alloc(cache);
1066                 stage2_pud_populate(kvm, pud, pmd);
1067                 get_page(virt_to_page(pud));
1068         }
1069
1070         pmd = stage2_pmd_offset(kvm, pud, addr);
1071         if (!pmd) {
1072                 /*
1073                  * Ignore calls from kvm_set_spte_hva for unallocated
1074                  * address ranges.
1075                  */
1076                 return 0;
1077         }
1078
1079         /*
1080          * While dirty page logging - dissolve huge PMD, then continue on to
1081          * allocate page.
1082          */
1083         if (logging_active)
1084                 stage2_dissolve_pmd(mmu, addr, pmd);
1085
1086         /* Create stage-2 page mappings - Level 2 */
1087         if (pmd_none(*pmd)) {
1088                 if (!cache)
1089                         return 0; /* ignore calls from kvm_set_spte_hva */
1090                 pte = kvm_mmu_memory_cache_alloc(cache);
1091                 kvm_pmd_populate(pmd, pte);
1092                 get_page(virt_to_page(pmd));
1093         }
1094
1095         pte = pte_offset_kernel(pmd, addr);
1096
1097         if (iomap && pte_present(*pte))
1098                 return -EFAULT;
1099
1100         /* Create 2nd stage page table mapping - Level 3 */
1101         old_pte = *pte;
1102         if (pte_present(old_pte)) {
1103                 /* Skip page table update if there is no change */
1104                 if (pte_val(old_pte) == pte_val(*new_pte))
1105                         return 0;
1106
1107                 kvm_set_pte(pte, __pte(0));
1108                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
1109         } else {
1110                 get_page(virt_to_page(pte));
1111         }
1112
1113         kvm_set_pte(pte, *new_pte);
1114         return 0;
1115 }
1116
1117 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1118 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1119 {
1120         if (pte_young(*pte)) {
1121                 *pte = pte_mkold(*pte);
1122                 return 1;
1123         }
1124         return 0;
1125 }
1126 #else
1127 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1128 {
1129         return __ptep_test_and_clear_young(pte);
1130 }
1131 #endif
1132
1133 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1134 {
1135         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1136 }
1137
1138 static int stage2_pudp_test_and_clear_young(pud_t *pud)
1139 {
1140         return stage2_ptep_test_and_clear_young((pte_t *)pud);
1141 }
1142
1143 /**
1144  * kvm_phys_addr_ioremap - map a device range to guest IPA
1145  *
1146  * @kvm:        The KVM pointer
1147  * @guest_ipa:  The IPA at which to insert the mapping
1148  * @pa:         The physical address of the device
1149  * @size:       The size of the mapping
1150  */
1151 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1152                           phys_addr_t pa, unsigned long size, bool writable)
1153 {
1154         phys_addr_t addr, end;
1155         int ret = 0;
1156         unsigned long pfn;
1157         struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
1158
1159         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1160         pfn = __phys_to_pfn(pa);
1161
1162         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1163                 pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1164
1165                 if (writable)
1166                         pte = kvm_s2pte_mkwrite(pte);
1167
1168                 ret = kvm_mmu_topup_memory_cache(&cache,
1169                                                  kvm_mmu_cache_min_pages(kvm));
1170                 if (ret)
1171                         goto out;
1172                 spin_lock(&kvm->mmu_lock);
1173                 ret = stage2_set_pte(&kvm->arch.mmu, &cache, addr, &pte,
1174                                      KVM_S2PTE_FLAG_IS_IOMAP);
1175                 spin_unlock(&kvm->mmu_lock);
1176                 if (ret)
1177                         goto out;
1178
1179                 pfn++;
1180         }
1181
1182 out:
1183         kvm_mmu_free_memory_cache(&cache);
1184         return ret;
1185 }
1186
1187 /**
1188  * stage2_wp_ptes - write protect PMD range
1189  * @pmd:        pointer to pmd entry
1190  * @addr:       range start address
1191  * @end:        range end address
1192  */
1193 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1194 {
1195         pte_t *pte;
1196
1197         pte = pte_offset_kernel(pmd, addr);
1198         do {
1199                 if (!pte_none(*pte)) {
1200                         if (!kvm_s2pte_readonly(pte))
1201                                 kvm_set_s2pte_readonly(pte);
1202                 }
1203         } while (pte++, addr += PAGE_SIZE, addr != end);
1204 }
1205
1206 /**
1207  * stage2_wp_pmds - write protect PUD range
1208  * kvm:         kvm instance for the VM
1209  * @pud:        pointer to pud entry
1210  * @addr:       range start address
1211  * @end:        range end address
1212  */
1213 static void stage2_wp_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
1214                            phys_addr_t addr, phys_addr_t end)
1215 {
1216         struct kvm *kvm = mmu->kvm;
1217         pmd_t *pmd;
1218         phys_addr_t next;
1219
1220         pmd = stage2_pmd_offset(kvm, pud, addr);
1221
1222         do {
1223                 next = stage2_pmd_addr_end(kvm, addr, end);
1224                 if (!pmd_none(*pmd)) {
1225                         if (pmd_thp_or_huge(*pmd)) {
1226                                 if (!kvm_s2pmd_readonly(pmd))
1227                                         kvm_set_s2pmd_readonly(pmd);
1228                         } else {
1229                                 stage2_wp_ptes(pmd, addr, next);
1230                         }
1231                 }
1232         } while (pmd++, addr = next, addr != end);
1233 }
1234
1235 /**
1236  * stage2_wp_puds - write protect P4D range
1237  * @p4d:        pointer to p4d entry
1238  * @addr:       range start address
1239  * @end:        range end address
1240  */
1241 static void  stage2_wp_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
1242                             phys_addr_t addr, phys_addr_t end)
1243 {
1244         struct kvm *kvm = mmu->kvm;
1245         pud_t *pud;
1246         phys_addr_t next;
1247
1248         pud = stage2_pud_offset(kvm, p4d, addr);
1249         do {
1250                 next = stage2_pud_addr_end(kvm, addr, end);
1251                 if (!stage2_pud_none(kvm, *pud)) {
1252                         if (stage2_pud_huge(kvm, *pud)) {
1253                                 if (!kvm_s2pud_readonly(pud))
1254                                         kvm_set_s2pud_readonly(pud);
1255                         } else {
1256                                 stage2_wp_pmds(mmu, pud, addr, next);
1257                         }
1258                 }
1259         } while (pud++, addr = next, addr != end);
1260 }
1261
1262 /**
1263  * stage2_wp_p4ds - write protect PGD range
1264  * @pgd:        pointer to pgd entry
1265  * @addr:       range start address
1266  * @end:        range end address
1267  */
1268 static void  stage2_wp_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
1269                             phys_addr_t addr, phys_addr_t end)
1270 {
1271         struct kvm *kvm = mmu->kvm;
1272         p4d_t *p4d;
1273         phys_addr_t next;
1274
1275         p4d = stage2_p4d_offset(kvm, pgd, addr);
1276         do {
1277                 next = stage2_p4d_addr_end(kvm, addr, end);
1278                 if (!stage2_p4d_none(kvm, *p4d))
1279                         stage2_wp_puds(mmu, p4d, addr, next);
1280         } while (p4d++, addr = next, addr != end);
1281 }
1282
1283 /**
1284  * stage2_wp_range() - write protect stage2 memory region range
1285  * @kvm:        The KVM pointer
1286  * @addr:       Start address of range
1287  * @end:        End address of range
1288  */
1289 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1290 {
1291         struct kvm *kvm = mmu->kvm;
1292         pgd_t *pgd;
1293         phys_addr_t next;
1294
1295         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
1296         do {
1297                 /*
1298                  * Release kvm_mmu_lock periodically if the memory region is
1299                  * large. Otherwise, we may see kernel panics with
1300                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1301                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1302                  * will also starve other vCPUs. We have to also make sure
1303                  * that the page tables are not freed while we released
1304                  * the lock.
1305                  */
1306                 cond_resched_lock(&kvm->mmu_lock);
1307                 if (!READ_ONCE(mmu->pgd))
1308                         break;
1309                 next = stage2_pgd_addr_end(kvm, addr, end);
1310                 if (stage2_pgd_present(kvm, *pgd))
1311                         stage2_wp_p4ds(mmu, pgd, addr, next);
1312         } while (pgd++, addr = next, addr != end);
1313 }
1314
1315 /**
1316  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1317  * @kvm:        The KVM pointer
1318  * @slot:       The memory slot to write protect
1319  *
1320  * Called to start logging dirty pages after memory region
1321  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1322  * all present PUD, PMD and PTEs are write protected in the memory region.
1323  * Afterwards read of dirty page log can be called.
1324  *
1325  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1326  * serializing operations for VM memory regions.
1327  */
1328 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1329 {
1330         struct kvm_memslots *slots = kvm_memslots(kvm);
1331         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1332         phys_addr_t start, end;
1333
1334         if (WARN_ON_ONCE(!memslot))
1335                 return;
1336
1337         start = memslot->base_gfn << PAGE_SHIFT;
1338         end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1339
1340         spin_lock(&kvm->mmu_lock);
1341         stage2_wp_range(&kvm->arch.mmu, start, end);
1342         spin_unlock(&kvm->mmu_lock);
1343         kvm_flush_remote_tlbs(kvm);
1344 }
1345
1346 /**
1347  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1348  * @kvm:        The KVM pointer
1349  * @slot:       The memory slot associated with mask
1350  * @gfn_offset: The gfn offset in memory slot
1351  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1352  *              slot to be write protected
1353  *
1354  * Walks bits set in mask write protects the associated pte's. Caller must
1355  * acquire kvm_mmu_lock.
1356  */
1357 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1358                 struct kvm_memory_slot *slot,
1359                 gfn_t gfn_offset, unsigned long mask)
1360 {
1361         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1362         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1363         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1364
1365         stage2_wp_range(&kvm->arch.mmu, start, end);
1366 }
1367
1368 /*
1369  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1370  * dirty pages.
1371  *
1372  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1373  * enable dirty logging for them.
1374  */
1375 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1376                 struct kvm_memory_slot *slot,
1377                 gfn_t gfn_offset, unsigned long mask)
1378 {
1379         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1380 }
1381
1382 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1383 {
1384         __clean_dcache_guest_page(pfn, size);
1385 }
1386
1387 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1388 {
1389         __invalidate_icache_guest_page(pfn, size);
1390 }
1391
1392 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1393 {
1394         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1395 }
1396
1397 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1398                                                unsigned long hva,
1399                                                unsigned long map_size)
1400 {
1401         gpa_t gpa_start;
1402         hva_t uaddr_start, uaddr_end;
1403         size_t size;
1404
1405         /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1406         if (map_size == PAGE_SIZE)
1407                 return true;
1408
1409         size = memslot->npages * PAGE_SIZE;
1410
1411         gpa_start = memslot->base_gfn << PAGE_SHIFT;
1412
1413         uaddr_start = memslot->userspace_addr;
1414         uaddr_end = uaddr_start + size;
1415
1416         /*
1417          * Pages belonging to memslots that don't have the same alignment
1418          * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1419          * PMD/PUD entries, because we'll end up mapping the wrong pages.
1420          *
1421          * Consider a layout like the following:
1422          *
1423          *    memslot->userspace_addr:
1424          *    +-----+--------------------+--------------------+---+
1425          *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1426          *    +-----+--------------------+--------------------+---+
1427          *
1428          *    memslot->base_gfn << PAGE_SHIFT:
1429          *      +---+--------------------+--------------------+-----+
1430          *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1431          *      +---+--------------------+--------------------+-----+
1432          *
1433          * If we create those stage-2 blocks, we'll end up with this incorrect
1434          * mapping:
1435          *   d -> f
1436          *   e -> g
1437          *   f -> h
1438          */
1439         if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1440                 return false;
1441
1442         /*
1443          * Next, let's make sure we're not trying to map anything not covered
1444          * by the memslot. This means we have to prohibit block size mappings
1445          * for the beginning and end of a non-block aligned and non-block sized
1446          * memory slot (illustrated by the head and tail parts of the
1447          * userspace view above containing pages 'abcde' and 'xyz',
1448          * respectively).
1449          *
1450          * Note that it doesn't matter if we do the check using the
1451          * userspace_addr or the base_gfn, as both are equally aligned (per
1452          * the check above) and equally sized.
1453          */
1454         return (hva & ~(map_size - 1)) >= uaddr_start &&
1455                (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1456 }
1457
1458 /*
1459  * Check if the given hva is backed by a transparent huge page (THP) and
1460  * whether it can be mapped using block mapping in stage2. If so, adjust
1461  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1462  * supported. This will need to be updated to support other THP sizes.
1463  *
1464  * Returns the size of the mapping.
1465  */
1466 static unsigned long
1467 transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
1468                             unsigned long hva, kvm_pfn_t *pfnp,
1469                             phys_addr_t *ipap)
1470 {
1471         kvm_pfn_t pfn = *pfnp;
1472
1473         /*
1474          * Make sure the adjustment is done only for THP pages. Also make
1475          * sure that the HVA and IPA are sufficiently aligned and that the
1476          * block map is contained within the memslot.
1477          */
1478         if (kvm_is_transparent_hugepage(pfn) &&
1479             fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1480                 /*
1481                  * The address we faulted on is backed by a transparent huge
1482                  * page.  However, because we map the compound huge page and
1483                  * not the individual tail page, we need to transfer the
1484                  * refcount to the head page.  We have to be careful that the
1485                  * THP doesn't start to split while we are adjusting the
1486                  * refcounts.
1487                  *
1488                  * We are sure this doesn't happen, because mmu_notifier_retry
1489                  * was successful and we are holding the mmu_lock, so if this
1490                  * THP is trying to split, it will be blocked in the mmu
1491                  * notifier before touching any of the pages, specifically
1492                  * before being able to call __split_huge_page_refcount().
1493                  *
1494                  * We can therefore safely transfer the refcount from PG_tail
1495                  * to PG_head and switch the pfn from a tail page to the head
1496                  * page accordingly.
1497                  */
1498                 *ipap &= PMD_MASK;
1499                 kvm_release_pfn_clean(pfn);
1500                 pfn &= ~(PTRS_PER_PMD - 1);
1501                 kvm_get_pfn(pfn);
1502                 *pfnp = pfn;
1503
1504                 return PMD_SIZE;
1505         }
1506
1507         /* Use page mapping if we cannot use block mapping. */
1508         return PAGE_SIZE;
1509 }
1510
1511 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1512                           struct kvm_memory_slot *memslot, unsigned long hva,
1513                           unsigned long fault_status)
1514 {
1515         int ret;
1516         bool write_fault, writable, force_pte = false;
1517         bool exec_fault, needs_exec;
1518         unsigned long mmu_seq;
1519         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1520         struct kvm *kvm = vcpu->kvm;
1521         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1522         struct vm_area_struct *vma;
1523         short vma_shift;
1524         kvm_pfn_t pfn;
1525         pgprot_t mem_type = PAGE_S2;
1526         bool logging_active = memslot_is_logging(memslot);
1527         unsigned long vma_pagesize, flags = 0;
1528         struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
1529
1530         write_fault = kvm_is_write_fault(vcpu);
1531         exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1532         VM_BUG_ON(write_fault && exec_fault);
1533
1534         if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1535                 kvm_err("Unexpected L2 read permission error\n");
1536                 return -EFAULT;
1537         }
1538
1539         /* Let's check if we will get back a huge page backed by hugetlbfs */
1540         mmap_read_lock(current->mm);
1541         vma = find_vma_intersection(current->mm, hva, hva + 1);
1542         if (unlikely(!vma)) {
1543                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1544                 mmap_read_unlock(current->mm);
1545                 return -EFAULT;
1546         }
1547
1548         if (is_vm_hugetlb_page(vma))
1549                 vma_shift = huge_page_shift(hstate_vma(vma));
1550         else
1551                 vma_shift = PAGE_SHIFT;
1552
1553         vma_pagesize = 1ULL << vma_shift;
1554         if (logging_active ||
1555             (vma->vm_flags & VM_PFNMAP) ||
1556             !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1557                 force_pte = true;
1558                 vma_pagesize = PAGE_SIZE;
1559         }
1560
1561         /*
1562          * The stage2 has a minimum of 2 level table (For arm64 see
1563          * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1564          * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1565          * As for PUD huge maps, we must make sure that we have at least
1566          * 3 levels, i.e, PMD is not folded.
1567          */
1568         if (vma_pagesize == PMD_SIZE ||
1569             (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1570                 gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1571         mmap_read_unlock(current->mm);
1572
1573         /* We need minimum second+third level pages */
1574         ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm));
1575         if (ret)
1576                 return ret;
1577
1578         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1579         /*
1580          * Ensure the read of mmu_notifier_seq happens before we call
1581          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1582          * the page we just got a reference to gets unmapped before we have a
1583          * chance to grab the mmu_lock, which ensure that if the page gets
1584          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1585          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1586          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1587          */
1588         smp_rmb();
1589
1590         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1591         if (pfn == KVM_PFN_ERR_HWPOISON) {
1592                 kvm_send_hwpoison_signal(hva, vma_shift);
1593                 return 0;
1594         }
1595         if (is_error_noslot_pfn(pfn))
1596                 return -EFAULT;
1597
1598         if (kvm_is_device_pfn(pfn)) {
1599                 mem_type = PAGE_S2_DEVICE;
1600                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1601         } else if (logging_active) {
1602                 /*
1603                  * Faults on pages in a memslot with logging enabled
1604                  * should not be mapped with huge pages (it introduces churn
1605                  * and performance degradation), so force a pte mapping.
1606                  */
1607                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1608
1609                 /*
1610                  * Only actually map the page as writable if this was a write
1611                  * fault.
1612                  */
1613                 if (!write_fault)
1614                         writable = false;
1615         }
1616
1617         if (exec_fault && is_iomap(flags))
1618                 return -ENOEXEC;
1619
1620         spin_lock(&kvm->mmu_lock);
1621         if (mmu_notifier_retry(kvm, mmu_seq))
1622                 goto out_unlock;
1623
1624         /*
1625          * If we are not forced to use page mapping, check if we are
1626          * backed by a THP and thus use block mapping if possible.
1627          */
1628         if (vma_pagesize == PAGE_SIZE && !force_pte)
1629                 vma_pagesize = transparent_hugepage_adjust(memslot, hva,
1630                                                            &pfn, &fault_ipa);
1631         if (writable)
1632                 kvm_set_pfn_dirty(pfn);
1633
1634         if (fault_status != FSC_PERM && !is_iomap(flags))
1635                 clean_dcache_guest_page(pfn, vma_pagesize);
1636
1637         if (exec_fault)
1638                 invalidate_icache_guest_page(pfn, vma_pagesize);
1639
1640         /*
1641          * If we took an execution fault we have made the
1642          * icache/dcache coherent above and should now let the s2
1643          * mapping be executable.
1644          *
1645          * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1646          * execute permissions, and we preserve whatever we have.
1647          */
1648         needs_exec = exec_fault ||
1649                 (fault_status == FSC_PERM &&
1650                  stage2_is_exec(mmu, fault_ipa, vma_pagesize));
1651
1652         if (vma_pagesize == PUD_SIZE) {
1653                 pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1654
1655                 new_pud = kvm_pud_mkhuge(new_pud);
1656                 if (writable)
1657                         new_pud = kvm_s2pud_mkwrite(new_pud);
1658
1659                 if (needs_exec)
1660                         new_pud = kvm_s2pud_mkexec(new_pud);
1661
1662                 ret = stage2_set_pud_huge(mmu, memcache, fault_ipa, &new_pud);
1663         } else if (vma_pagesize == PMD_SIZE) {
1664                 pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1665
1666                 new_pmd = kvm_pmd_mkhuge(new_pmd);
1667
1668                 if (writable)
1669                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1670
1671                 if (needs_exec)
1672                         new_pmd = kvm_s2pmd_mkexec(new_pmd);
1673
1674                 ret = stage2_set_pmd_huge(mmu, memcache, fault_ipa, &new_pmd);
1675         } else {
1676                 pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1677
1678                 if (writable) {
1679                         new_pte = kvm_s2pte_mkwrite(new_pte);
1680                         mark_page_dirty(kvm, gfn);
1681                 }
1682
1683                 if (needs_exec)
1684                         new_pte = kvm_s2pte_mkexec(new_pte);
1685
1686                 ret = stage2_set_pte(mmu, memcache, fault_ipa, &new_pte, flags);
1687         }
1688
1689 out_unlock:
1690         spin_unlock(&kvm->mmu_lock);
1691         kvm_set_pfn_accessed(pfn);
1692         kvm_release_pfn_clean(pfn);
1693         return ret;
1694 }
1695
1696 /*
1697  * Resolve the access fault by making the page young again.
1698  * Note that because the faulting entry is guaranteed not to be
1699  * cached in the TLB, we don't need to invalidate anything.
1700  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1701  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1702  */
1703 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1704 {
1705         pud_t *pud;
1706         pmd_t *pmd;
1707         pte_t *pte;
1708         kvm_pfn_t pfn;
1709         bool pfn_valid = false;
1710
1711         trace_kvm_access_fault(fault_ipa);
1712
1713         spin_lock(&vcpu->kvm->mmu_lock);
1714
1715         if (!stage2_get_leaf_entry(vcpu->arch.hw_mmu, fault_ipa, &pud, &pmd, &pte))
1716                 goto out;
1717
1718         if (pud) {              /* HugeTLB */
1719                 *pud = kvm_s2pud_mkyoung(*pud);
1720                 pfn = kvm_pud_pfn(*pud);
1721                 pfn_valid = true;
1722         } else  if (pmd) {      /* THP, HugeTLB */
1723                 *pmd = pmd_mkyoung(*pmd);
1724                 pfn = pmd_pfn(*pmd);
1725                 pfn_valid = true;
1726         } else {
1727                 *pte = pte_mkyoung(*pte);       /* Just a page... */
1728                 pfn = pte_pfn(*pte);
1729                 pfn_valid = true;
1730         }
1731
1732 out:
1733         spin_unlock(&vcpu->kvm->mmu_lock);
1734         if (pfn_valid)
1735                 kvm_set_pfn_accessed(pfn);
1736 }
1737
1738 /**
1739  * kvm_handle_guest_abort - handles all 2nd stage aborts
1740  * @vcpu:       the VCPU pointer
1741  *
1742  * Any abort that gets to the host is almost guaranteed to be caused by a
1743  * missing second stage translation table entry, which can mean that either the
1744  * guest simply needs more memory and we must allocate an appropriate page or it
1745  * can mean that the guest tried to access I/O memory, which is emulated by user
1746  * space. The distinction is based on the IPA causing the fault and whether this
1747  * memory region has been registered as standard RAM by user space.
1748  */
1749 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1750 {
1751         unsigned long fault_status;
1752         phys_addr_t fault_ipa;
1753         struct kvm_memory_slot *memslot;
1754         unsigned long hva;
1755         bool is_iabt, write_fault, writable;
1756         gfn_t gfn;
1757         int ret, idx;
1758
1759         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1760
1761         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1762         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1763
1764         /* Synchronous External Abort? */
1765         if (kvm_vcpu_abt_issea(vcpu)) {
1766                 /*
1767                  * For RAS the host kernel may handle this abort.
1768                  * There is no need to pass the error into the guest.
1769                  */
1770                 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1771                         kvm_inject_vabt(vcpu);
1772
1773                 return 1;
1774         }
1775
1776         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1777                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1778
1779         /* Check the stage-2 fault is trans. fault or write fault */
1780         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1781             fault_status != FSC_ACCESS) {
1782                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1783                         kvm_vcpu_trap_get_class(vcpu),
1784                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1785                         (unsigned long)kvm_vcpu_get_esr(vcpu));
1786                 return -EFAULT;
1787         }
1788
1789         idx = srcu_read_lock(&vcpu->kvm->srcu);
1790
1791         gfn = fault_ipa >> PAGE_SHIFT;
1792         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1793         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1794         write_fault = kvm_is_write_fault(vcpu);
1795         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1796                 /*
1797                  * The guest has put either its instructions or its page-tables
1798                  * somewhere it shouldn't have. Userspace won't be able to do
1799                  * anything about this (there's no syndrome for a start), so
1800                  * re-inject the abort back into the guest.
1801                  */
1802                 if (is_iabt) {
1803                         ret = -ENOEXEC;
1804                         goto out;
1805                 }
1806
1807                 if (kvm_vcpu_dabt_iss1tw(vcpu)) {
1808                         kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1809                         ret = 1;
1810                         goto out_unlock;
1811                 }
1812
1813                 /*
1814                  * Check for a cache maintenance operation. Since we
1815                  * ended-up here, we know it is outside of any memory
1816                  * slot. But we can't find out if that is for a device,
1817                  * or if the guest is just being stupid. The only thing
1818                  * we know for sure is that this range cannot be cached.
1819                  *
1820                  * So let's assume that the guest is just being
1821                  * cautious, and skip the instruction.
1822                  */
1823                 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1824                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1825                         ret = 1;
1826                         goto out_unlock;
1827                 }
1828
1829                 /*
1830                  * The IPA is reported as [MAX:12], so we need to
1831                  * complement it with the bottom 12 bits from the
1832                  * faulting VA. This is always 12 bits, irrespective
1833                  * of the page size.
1834                  */
1835                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1836                 ret = io_mem_abort(vcpu, fault_ipa);
1837                 goto out_unlock;
1838         }
1839
1840         /* Userspace should not be able to register out-of-bounds IPAs */
1841         VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1842
1843         if (fault_status == FSC_ACCESS) {
1844                 handle_access_fault(vcpu, fault_ipa);
1845                 ret = 1;
1846                 goto out_unlock;
1847         }
1848
1849         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1850         if (ret == 0)
1851                 ret = 1;
1852 out:
1853         if (ret == -ENOEXEC) {
1854                 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1855                 ret = 1;
1856         }
1857 out_unlock:
1858         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1859         return ret;
1860 }
1861
1862 static int handle_hva_to_gpa(struct kvm *kvm,
1863                              unsigned long start,
1864                              unsigned long end,
1865                              int (*handler)(struct kvm *kvm,
1866                                             gpa_t gpa, u64 size,
1867                                             void *data),
1868                              void *data)
1869 {
1870         struct kvm_memslots *slots;
1871         struct kvm_memory_slot *memslot;
1872         int ret = 0;
1873
1874         slots = kvm_memslots(kvm);
1875
1876         /* we only care about the pages that the guest sees */
1877         kvm_for_each_memslot(memslot, slots) {
1878                 unsigned long hva_start, hva_end;
1879                 gfn_t gpa;
1880
1881                 hva_start = max(start, memslot->userspace_addr);
1882                 hva_end = min(end, memslot->userspace_addr +
1883                                         (memslot->npages << PAGE_SHIFT));
1884                 if (hva_start >= hva_end)
1885                         continue;
1886
1887                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1888                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1889         }
1890
1891         return ret;
1892 }
1893
1894 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1895 {
1896         unsigned flags = *(unsigned *)data;
1897         bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE;
1898
1899         __unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block);
1900         return 0;
1901 }
1902
1903 int kvm_unmap_hva_range(struct kvm *kvm,
1904                         unsigned long start, unsigned long end, unsigned flags)
1905 {
1906         if (!kvm->arch.mmu.pgd)
1907                 return 0;
1908
1909         trace_kvm_unmap_hva_range(start, end);
1910         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags);
1911         return 0;
1912 }
1913
1914 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1915 {
1916         pte_t *pte = (pte_t *)data;
1917
1918         WARN_ON(size != PAGE_SIZE);
1919         /*
1920          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1921          * flag clear because MMU notifiers will have unmapped a huge PMD before
1922          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1923          * therefore stage2_set_pte() never needs to clear out a huge PMD
1924          * through this calling path.
1925          */
1926         stage2_set_pte(&kvm->arch.mmu, NULL, gpa, pte, 0);
1927         return 0;
1928 }
1929
1930
1931 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1932 {
1933         unsigned long end = hva + PAGE_SIZE;
1934         kvm_pfn_t pfn = pte_pfn(pte);
1935         pte_t stage2_pte;
1936
1937         if (!kvm->arch.mmu.pgd)
1938                 return 0;
1939
1940         trace_kvm_set_spte_hva(hva);
1941
1942         /*
1943          * We've moved a page around, probably through CoW, so let's treat it
1944          * just like a translation fault and clean the cache to the PoC.
1945          */
1946         clean_dcache_guest_page(pfn, PAGE_SIZE);
1947         stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
1948         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1949
1950         return 0;
1951 }
1952
1953 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1954 {
1955         pud_t *pud;
1956         pmd_t *pmd;
1957         pte_t *pte;
1958
1959         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1960         if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
1961                 return 0;
1962
1963         if (pud)
1964                 return stage2_pudp_test_and_clear_young(pud);
1965         else if (pmd)
1966                 return stage2_pmdp_test_and_clear_young(pmd);
1967         else
1968                 return stage2_ptep_test_and_clear_young(pte);
1969 }
1970
1971 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1972 {
1973         pud_t *pud;
1974         pmd_t *pmd;
1975         pte_t *pte;
1976
1977         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1978         if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
1979                 return 0;
1980
1981         if (pud)
1982                 return kvm_s2pud_young(*pud);
1983         else if (pmd)
1984                 return pmd_young(*pmd);
1985         else
1986                 return pte_young(*pte);
1987 }
1988
1989 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1990 {
1991         if (!kvm->arch.mmu.pgd)
1992                 return 0;
1993         trace_kvm_age_hva(start, end);
1994         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1995 }
1996
1997 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1998 {
1999         if (!kvm->arch.mmu.pgd)
2000                 return 0;
2001         trace_kvm_test_age_hva(hva);
2002         return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
2003                                  kvm_test_age_hva_handler, NULL);
2004 }
2005
2006 phys_addr_t kvm_mmu_get_httbr(void)
2007 {
2008         return __pa(hyp_pgtable->pgd);
2009 }
2010
2011 phys_addr_t kvm_get_idmap_vector(void)
2012 {
2013         return hyp_idmap_vector;
2014 }
2015
2016 static int kvm_map_idmap_text(void)
2017 {
2018         unsigned long size = hyp_idmap_end - hyp_idmap_start;
2019         int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
2020                                         PAGE_HYP_EXEC);
2021         if (err)
2022                 kvm_err("Failed to idmap %lx-%lx\n",
2023                         hyp_idmap_start, hyp_idmap_end);
2024
2025         return err;
2026 }
2027
2028 int kvm_mmu_init(void)
2029 {
2030         int err;
2031         u32 hyp_va_bits;
2032
2033         hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2034         hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2035         hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2036         hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2037         hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2038
2039         /*
2040          * We rely on the linker script to ensure at build time that the HYP
2041          * init code does not cross a page boundary.
2042          */
2043         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2044
2045         hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
2046         kvm_debug("Using %u-bit virtual addresses at EL2\n", hyp_va_bits);
2047         kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2048         kvm_debug("HYP VA range: %lx:%lx\n",
2049                   kern_hyp_va(PAGE_OFFSET),
2050                   kern_hyp_va((unsigned long)high_memory - 1));
2051
2052         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2053             hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2054             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2055                 /*
2056                  * The idmap page is intersecting with the VA space,
2057                  * it is not safe to continue further.
2058                  */
2059                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2060                 err = -EINVAL;
2061                 goto out;
2062         }
2063
2064         hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
2065         if (!hyp_pgtable) {
2066                 kvm_err("Hyp mode page-table not allocated\n");
2067                 err = -ENOMEM;
2068                 goto out;
2069         }
2070
2071         err = kvm_pgtable_hyp_init(hyp_pgtable, hyp_va_bits);
2072         if (err)
2073                 goto out_free_pgtable;
2074
2075         err = kvm_map_idmap_text();
2076         if (err)
2077                 goto out_destroy_pgtable;
2078
2079         io_map_base = hyp_idmap_start;
2080         return 0;
2081
2082 out_destroy_pgtable:
2083         kvm_pgtable_hyp_destroy(hyp_pgtable);
2084 out_free_pgtable:
2085         kfree(hyp_pgtable);
2086         hyp_pgtable = NULL;
2087 out:
2088         return err;
2089 }
2090
2091 void kvm_arch_commit_memory_region(struct kvm *kvm,
2092                                    const struct kvm_userspace_memory_region *mem,
2093                                    struct kvm_memory_slot *old,
2094                                    const struct kvm_memory_slot *new,
2095                                    enum kvm_mr_change change)
2096 {
2097         /*
2098          * At this point memslot has been committed and there is an
2099          * allocated dirty_bitmap[], dirty pages will be tracked while the
2100          * memory slot is write protected.
2101          */
2102         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2103                 /*
2104                  * If we're with initial-all-set, we don't need to write
2105                  * protect any pages because they're all reported as dirty.
2106                  * Huge pages and normal pages will be write protect gradually.
2107                  */
2108                 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
2109                         kvm_mmu_wp_memory_region(kvm, mem->slot);
2110                 }
2111         }
2112 }
2113
2114 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2115                                    struct kvm_memory_slot *memslot,
2116                                    const struct kvm_userspace_memory_region *mem,
2117                                    enum kvm_mr_change change)
2118 {
2119         hva_t hva = mem->userspace_addr;
2120         hva_t reg_end = hva + mem->memory_size;
2121         bool writable = !(mem->flags & KVM_MEM_READONLY);
2122         int ret = 0;
2123
2124         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2125                         change != KVM_MR_FLAGS_ONLY)
2126                 return 0;
2127
2128         /*
2129          * Prevent userspace from creating a memory region outside of the IPA
2130          * space addressable by the KVM guest IPA space.
2131          */
2132         if (memslot->base_gfn + memslot->npages >=
2133             (kvm_phys_size(kvm) >> PAGE_SHIFT))
2134                 return -EFAULT;
2135
2136         mmap_read_lock(current->mm);
2137         /*
2138          * A memory region could potentially cover multiple VMAs, and any holes
2139          * between them, so iterate over all of them to find out if we can map
2140          * any of them right now.
2141          *
2142          *     +--------------------------------------------+
2143          * +---------------+----------------+   +----------------+
2144          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2145          * +---------------+----------------+   +----------------+
2146          *     |               memory region                |
2147          *     +--------------------------------------------+
2148          */
2149         do {
2150                 struct vm_area_struct *vma = find_vma(current->mm, hva);
2151                 hva_t vm_start, vm_end;
2152
2153                 if (!vma || vma->vm_start >= reg_end)
2154                         break;
2155
2156                 /*
2157                  * Take the intersection of this VMA with the memory region
2158                  */
2159                 vm_start = max(hva, vma->vm_start);
2160                 vm_end = min(reg_end, vma->vm_end);
2161
2162                 if (vma->vm_flags & VM_PFNMAP) {
2163                         gpa_t gpa = mem->guest_phys_addr +
2164                                     (vm_start - mem->userspace_addr);
2165                         phys_addr_t pa;
2166
2167                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2168                         pa += vm_start - vma->vm_start;
2169
2170                         /* IO region dirty page logging not allowed */
2171                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2172                                 ret = -EINVAL;
2173                                 goto out;
2174                         }
2175
2176                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2177                                                     vm_end - vm_start,
2178                                                     writable);
2179                         if (ret)
2180                                 break;
2181                 }
2182                 hva = vm_end;
2183         } while (hva < reg_end);
2184
2185         if (change == KVM_MR_FLAGS_ONLY)
2186                 goto out;
2187
2188         spin_lock(&kvm->mmu_lock);
2189         if (ret)
2190                 unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
2191         else
2192                 stage2_flush_memslot(kvm, memslot);
2193         spin_unlock(&kvm->mmu_lock);
2194 out:
2195         mmap_read_unlock(current->mm);
2196         return ret;
2197 }
2198
2199 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2200 {
2201 }
2202
2203 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2204 {
2205 }
2206
2207 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2208 {
2209         kvm_free_stage2_pgd(&kvm->arch.mmu);
2210 }
2211
2212 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2213                                    struct kvm_memory_slot *slot)
2214 {
2215         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2216         phys_addr_t size = slot->npages << PAGE_SHIFT;
2217
2218         spin_lock(&kvm->mmu_lock);
2219         unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2220         spin_unlock(&kvm->mmu_lock);
2221 }
2222
2223 /*
2224  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2225  *
2226  * Main problems:
2227  * - S/W ops are local to a CPU (not broadcast)
2228  * - We have line migration behind our back (speculation)
2229  * - System caches don't support S/W at all (damn!)
2230  *
2231  * In the face of the above, the best we can do is to try and convert
2232  * S/W ops to VA ops. Because the guest is not allowed to infer the
2233  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2234  * which is a rather good thing for us.
2235  *
2236  * Also, it is only used when turning caches on/off ("The expected
2237  * usage of the cache maintenance instructions that operate by set/way
2238  * is associated with the cache maintenance instructions associated
2239  * with the powerdown and powerup of caches, if this is required by
2240  * the implementation.").
2241  *
2242  * We use the following policy:
2243  *
2244  * - If we trap a S/W operation, we enable VM trapping to detect
2245  *   caches being turned on/off, and do a full clean.
2246  *
2247  * - We flush the caches on both caches being turned on and off.
2248  *
2249  * - Once the caches are enabled, we stop trapping VM ops.
2250  */
2251 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2252 {
2253         unsigned long hcr = *vcpu_hcr(vcpu);
2254
2255         /*
2256          * If this is the first time we do a S/W operation
2257          * (i.e. HCR_TVM not set) flush the whole memory, and set the
2258          * VM trapping.
2259          *
2260          * Otherwise, rely on the VM trapping to wait for the MMU +
2261          * Caches to be turned off. At that point, we'll be able to
2262          * clean the caches again.
2263          */
2264         if (!(hcr & HCR_TVM)) {
2265                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2266                                         vcpu_has_cache_enabled(vcpu));
2267                 stage2_flush_vm(vcpu->kvm);
2268                 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2269         }
2270 }
2271
2272 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2273 {
2274         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2275
2276         /*
2277          * If switching the MMU+caches on, need to invalidate the caches.
2278          * If switching it off, need to clean the caches.
2279          * Clean + invalidate does the trick always.
2280          */
2281         if (now_enabled != was_enabled)
2282                 stage2_flush_vm(vcpu->kvm);
2283
2284         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2285         if (now_enabled)
2286                 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2287
2288         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2289 }