0121ef2c7c8d2f720a9377257058bf090228811c
[linux-2.6-microblaze.git] / arch / arm64 / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_ras.h>
18 #include <asm/kvm_asm.h>
19 #include <asm/kvm_emulate.h>
20 #include <asm/virt.h>
21
22 #include "trace.h"
23
24 static pgd_t *boot_hyp_pgd;
25 static pgd_t *hyp_pgd;
26 static pgd_t *merged_hyp_pgd;
27 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
28
29 static unsigned long hyp_idmap_start;
30 static unsigned long hyp_idmap_end;
31 static phys_addr_t hyp_idmap_vector;
32
33 static unsigned long io_map_base;
34
35 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
36
37 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
38 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
39
40 static bool is_iomap(unsigned long flags)
41 {
42         return flags & KVM_S2PTE_FLAG_IS_IOMAP;
43 }
44
45 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
46 {
47         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
48 }
49
50 /**
51  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
52  * @kvm:        pointer to kvm structure.
53  *
54  * Interface to HYP function to flush all VM TLB entries
55  */
56 void kvm_flush_remote_tlbs(struct kvm *kvm)
57 {
58         kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
59 }
60
61 static void kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
62                                    int level)
63 {
64         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ipa, level);
65 }
66
67 /*
68  * D-Cache management functions. They take the page table entries by
69  * value, as they are flushing the cache using the kernel mapping (or
70  * kmap on 32bit).
71  */
72 static void kvm_flush_dcache_pte(pte_t pte)
73 {
74         __kvm_flush_dcache_pte(pte);
75 }
76
77 static void kvm_flush_dcache_pmd(pmd_t pmd)
78 {
79         __kvm_flush_dcache_pmd(pmd);
80 }
81
82 static void kvm_flush_dcache_pud(pud_t pud)
83 {
84         __kvm_flush_dcache_pud(pud);
85 }
86
87 static bool kvm_is_device_pfn(unsigned long pfn)
88 {
89         return !pfn_valid(pfn);
90 }
91
92 /**
93  * stage2_dissolve_pmd() - clear and flush huge PMD entry
94  * @mmu:        pointer to mmu structure to operate on
95  * @addr:       IPA
96  * @pmd:        pmd pointer for IPA
97  *
98  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
99  */
100 static void stage2_dissolve_pmd(struct kvm_s2_mmu *mmu, phys_addr_t addr, pmd_t *pmd)
101 {
102         if (!pmd_thp_or_huge(*pmd))
103                 return;
104
105         pmd_clear(pmd);
106         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
107         put_page(virt_to_page(pmd));
108 }
109
110 /**
111  * stage2_dissolve_pud() - clear and flush huge PUD entry
112  * @mmu:        pointer to mmu structure to operate on
113  * @addr:       IPA
114  * @pud:        pud pointer for IPA
115  *
116  * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
117  */
118 static void stage2_dissolve_pud(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t *pudp)
119 {
120         struct kvm *kvm = mmu->kvm;
121
122         if (!stage2_pud_huge(kvm, *pudp))
123                 return;
124
125         stage2_pud_clear(kvm, pudp);
126         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
127         put_page(virt_to_page(pudp));
128 }
129
130 static void clear_stage2_pgd_entry(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr)
131 {
132         struct kvm *kvm = mmu->kvm;
133         p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
134         stage2_pgd_clear(kvm, pgd);
135         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
136         stage2_p4d_free(kvm, p4d_table);
137         put_page(virt_to_page(pgd));
138 }
139
140 static void clear_stage2_p4d_entry(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr)
141 {
142         struct kvm *kvm = mmu->kvm;
143         pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
144         stage2_p4d_clear(kvm, p4d);
145         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
146         stage2_pud_free(kvm, pud_table);
147         put_page(virt_to_page(p4d));
148 }
149
150 static void clear_stage2_pud_entry(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr)
151 {
152         struct kvm *kvm = mmu->kvm;
153         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
154
155         VM_BUG_ON(stage2_pud_huge(kvm, *pud));
156         stage2_pud_clear(kvm, pud);
157         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
158         stage2_pmd_free(kvm, pmd_table);
159         put_page(virt_to_page(pud));
160 }
161
162 static void clear_stage2_pmd_entry(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr)
163 {
164         pte_t *pte_table = pte_offset_kernel(pmd, 0);
165         VM_BUG_ON(pmd_thp_or_huge(*pmd));
166         pmd_clear(pmd);
167         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
168         free_page((unsigned long)pte_table);
169         put_page(virt_to_page(pmd));
170 }
171
172 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
173 {
174         WRITE_ONCE(*ptep, new_pte);
175         dsb(ishst);
176 }
177
178 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
179 {
180         WRITE_ONCE(*pmdp, new_pmd);
181         dsb(ishst);
182 }
183
184 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
185 {
186         kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
187 }
188
189 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
190 {
191         WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
192         dsb(ishst);
193 }
194
195 static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp)
196 {
197         WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp));
198         dsb(ishst);
199 }
200
201 static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
202 {
203 #ifndef __PAGETABLE_P4D_FOLDED
204         WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp));
205         dsb(ishst);
206 #endif
207 }
208
209 /*
210  * Unmapping vs dcache management:
211  *
212  * If a guest maps certain memory pages as uncached, all writes will
213  * bypass the data cache and go directly to RAM.  However, the CPUs
214  * can still speculate reads (not writes) and fill cache lines with
215  * data.
216  *
217  * Those cache lines will be *clean* cache lines though, so a
218  * clean+invalidate operation is equivalent to an invalidate
219  * operation, because no cache lines are marked dirty.
220  *
221  * Those clean cache lines could be filled prior to an uncached write
222  * by the guest, and the cache coherent IO subsystem would therefore
223  * end up writing old data to disk.
224  *
225  * This is why right after unmapping a page/section and invalidating
226  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
227  * the IO subsystem will never hit in the cache.
228  *
229  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
230  * we then fully enforce cacheability of RAM, no matter what the guest
231  * does.
232  */
233 static void unmap_stage2_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
234                        phys_addr_t addr, phys_addr_t end)
235 {
236         phys_addr_t start_addr = addr;
237         pte_t *pte, *start_pte;
238
239         start_pte = pte = pte_offset_kernel(pmd, addr);
240         do {
241                 if (!pte_none(*pte)) {
242                         pte_t old_pte = *pte;
243
244                         kvm_set_pte(pte, __pte(0));
245                         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
246
247                         /* No need to invalidate the cache for device mappings */
248                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
249                                 kvm_flush_dcache_pte(old_pte);
250
251                         put_page(virt_to_page(pte));
252                 }
253         } while (pte++, addr += PAGE_SIZE, addr != end);
254
255         if (stage2_pte_table_empty(mmu->kvm, start_pte))
256                 clear_stage2_pmd_entry(mmu, pmd, start_addr);
257 }
258
259 static void unmap_stage2_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
260                        phys_addr_t addr, phys_addr_t end)
261 {
262         struct kvm *kvm = mmu->kvm;
263         phys_addr_t next, start_addr = addr;
264         pmd_t *pmd, *start_pmd;
265
266         start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
267         do {
268                 next = stage2_pmd_addr_end(kvm, addr, end);
269                 if (!pmd_none(*pmd)) {
270                         if (pmd_thp_or_huge(*pmd)) {
271                                 pmd_t old_pmd = *pmd;
272
273                                 pmd_clear(pmd);
274                                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
275
276                                 kvm_flush_dcache_pmd(old_pmd);
277
278                                 put_page(virt_to_page(pmd));
279                         } else {
280                                 unmap_stage2_ptes(mmu, pmd, addr, next);
281                         }
282                 }
283         } while (pmd++, addr = next, addr != end);
284
285         if (stage2_pmd_table_empty(kvm, start_pmd))
286                 clear_stage2_pud_entry(mmu, pud, start_addr);
287 }
288
289 static void unmap_stage2_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
290                        phys_addr_t addr, phys_addr_t end)
291 {
292         struct kvm *kvm = mmu->kvm;
293         phys_addr_t next, start_addr = addr;
294         pud_t *pud, *start_pud;
295
296         start_pud = pud = stage2_pud_offset(kvm, p4d, addr);
297         do {
298                 next = stage2_pud_addr_end(kvm, addr, end);
299                 if (!stage2_pud_none(kvm, *pud)) {
300                         if (stage2_pud_huge(kvm, *pud)) {
301                                 pud_t old_pud = *pud;
302
303                                 stage2_pud_clear(kvm, pud);
304                                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
305                                 kvm_flush_dcache_pud(old_pud);
306                                 put_page(virt_to_page(pud));
307                         } else {
308                                 unmap_stage2_pmds(mmu, pud, addr, next);
309                         }
310                 }
311         } while (pud++, addr = next, addr != end);
312
313         if (stage2_pud_table_empty(kvm, start_pud))
314                 clear_stage2_p4d_entry(mmu, p4d, start_addr);
315 }
316
317 static void unmap_stage2_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
318                        phys_addr_t addr, phys_addr_t end)
319 {
320         struct kvm *kvm = mmu->kvm;
321         phys_addr_t next, start_addr = addr;
322         p4d_t *p4d, *start_p4d;
323
324         start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr);
325         do {
326                 next = stage2_p4d_addr_end(kvm, addr, end);
327                 if (!stage2_p4d_none(kvm, *p4d))
328                         unmap_stage2_puds(mmu, p4d, addr, next);
329         } while (p4d++, addr = next, addr != end);
330
331         if (stage2_p4d_table_empty(kvm, start_p4d))
332                 clear_stage2_pgd_entry(mmu, pgd, start_addr);
333 }
334
335 /**
336  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
337  * @kvm:   The VM pointer
338  * @start: The intermediate physical base address of the range to unmap
339  * @size:  The size of the area to unmap
340  *
341  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
342  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
343  * destroying the VM), otherwise another faulting VCPU may come in and mess
344  * with things behind our backs.
345  */
346 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
347 {
348         struct kvm *kvm = mmu->kvm;
349         pgd_t *pgd;
350         phys_addr_t addr = start, end = start + size;
351         phys_addr_t next;
352
353         assert_spin_locked(&kvm->mmu_lock);
354         WARN_ON(size & ~PAGE_MASK);
355
356         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
357         do {
358                 /*
359                  * Make sure the page table is still active, as another thread
360                  * could have possibly freed the page table, while we released
361                  * the lock.
362                  */
363                 if (!READ_ONCE(mmu->pgd))
364                         break;
365                 next = stage2_pgd_addr_end(kvm, addr, end);
366                 if (!stage2_pgd_none(kvm, *pgd))
367                         unmap_stage2_p4ds(mmu, pgd, addr, next);
368                 /*
369                  * If the range is too large, release the kvm->mmu_lock
370                  * to prevent starvation and lockup detector warnings.
371                  */
372                 if (next != end)
373                         cond_resched_lock(&kvm->mmu_lock);
374         } while (pgd++, addr = next, addr != end);
375 }
376
377 static void stage2_flush_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
378                               phys_addr_t addr, phys_addr_t end)
379 {
380         pte_t *pte;
381
382         pte = pte_offset_kernel(pmd, addr);
383         do {
384                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
385                         kvm_flush_dcache_pte(*pte);
386         } while (pte++, addr += PAGE_SIZE, addr != end);
387 }
388
389 static void stage2_flush_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
390                               phys_addr_t addr, phys_addr_t end)
391 {
392         struct kvm *kvm = mmu->kvm;
393         pmd_t *pmd;
394         phys_addr_t next;
395
396         pmd = stage2_pmd_offset(kvm, pud, addr);
397         do {
398                 next = stage2_pmd_addr_end(kvm, addr, end);
399                 if (!pmd_none(*pmd)) {
400                         if (pmd_thp_or_huge(*pmd))
401                                 kvm_flush_dcache_pmd(*pmd);
402                         else
403                                 stage2_flush_ptes(mmu, pmd, addr, next);
404                 }
405         } while (pmd++, addr = next, addr != end);
406 }
407
408 static void stage2_flush_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
409                               phys_addr_t addr, phys_addr_t end)
410 {
411         struct kvm *kvm = mmu->kvm;
412         pud_t *pud;
413         phys_addr_t next;
414
415         pud = stage2_pud_offset(kvm, p4d, addr);
416         do {
417                 next = stage2_pud_addr_end(kvm, addr, end);
418                 if (!stage2_pud_none(kvm, *pud)) {
419                         if (stage2_pud_huge(kvm, *pud))
420                                 kvm_flush_dcache_pud(*pud);
421                         else
422                                 stage2_flush_pmds(mmu, pud, addr, next);
423                 }
424         } while (pud++, addr = next, addr != end);
425 }
426
427 static void stage2_flush_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
428                               phys_addr_t addr, phys_addr_t end)
429 {
430         struct kvm *kvm = mmu->kvm;
431         p4d_t *p4d;
432         phys_addr_t next;
433
434         p4d = stage2_p4d_offset(kvm, pgd, addr);
435         do {
436                 next = stage2_p4d_addr_end(kvm, addr, end);
437                 if (!stage2_p4d_none(kvm, *p4d))
438                         stage2_flush_puds(mmu, p4d, addr, next);
439         } while (p4d++, addr = next, addr != end);
440 }
441
442 static void stage2_flush_memslot(struct kvm *kvm,
443                                  struct kvm_memory_slot *memslot)
444 {
445         struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
446         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
447         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
448         phys_addr_t next;
449         pgd_t *pgd;
450
451         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
452         do {
453                 next = stage2_pgd_addr_end(kvm, addr, end);
454                 if (!stage2_pgd_none(kvm, *pgd))
455                         stage2_flush_p4ds(mmu, pgd, addr, next);
456
457                 if (next != end)
458                         cond_resched_lock(&kvm->mmu_lock);
459         } while (pgd++, addr = next, addr != end);
460 }
461
462 /**
463  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
464  * @kvm: The struct kvm pointer
465  *
466  * Go through the stage 2 page tables and invalidate any cache lines
467  * backing memory already mapped to the VM.
468  */
469 static void stage2_flush_vm(struct kvm *kvm)
470 {
471         struct kvm_memslots *slots;
472         struct kvm_memory_slot *memslot;
473         int idx;
474
475         idx = srcu_read_lock(&kvm->srcu);
476         spin_lock(&kvm->mmu_lock);
477
478         slots = kvm_memslots(kvm);
479         kvm_for_each_memslot(memslot, slots)
480                 stage2_flush_memslot(kvm, memslot);
481
482         spin_unlock(&kvm->mmu_lock);
483         srcu_read_unlock(&kvm->srcu, idx);
484 }
485
486 static void clear_hyp_pgd_entry(pgd_t *pgd)
487 {
488         p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL);
489         pgd_clear(pgd);
490         p4d_free(NULL, p4d_table);
491         put_page(virt_to_page(pgd));
492 }
493
494 static void clear_hyp_p4d_entry(p4d_t *p4d)
495 {
496         pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL);
497         VM_BUG_ON(p4d_huge(*p4d));
498         p4d_clear(p4d);
499         pud_free(NULL, pud_table);
500         put_page(virt_to_page(p4d));
501 }
502
503 static void clear_hyp_pud_entry(pud_t *pud)
504 {
505         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
506         VM_BUG_ON(pud_huge(*pud));
507         pud_clear(pud);
508         pmd_free(NULL, pmd_table);
509         put_page(virt_to_page(pud));
510 }
511
512 static void clear_hyp_pmd_entry(pmd_t *pmd)
513 {
514         pte_t *pte_table = pte_offset_kernel(pmd, 0);
515         VM_BUG_ON(pmd_thp_or_huge(*pmd));
516         pmd_clear(pmd);
517         pte_free_kernel(NULL, pte_table);
518         put_page(virt_to_page(pmd));
519 }
520
521 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
522 {
523         pte_t *pte, *start_pte;
524
525         start_pte = pte = pte_offset_kernel(pmd, addr);
526         do {
527                 if (!pte_none(*pte)) {
528                         kvm_set_pte(pte, __pte(0));
529                         put_page(virt_to_page(pte));
530                 }
531         } while (pte++, addr += PAGE_SIZE, addr != end);
532
533         if (hyp_pte_table_empty(start_pte))
534                 clear_hyp_pmd_entry(pmd);
535 }
536
537 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
538 {
539         phys_addr_t next;
540         pmd_t *pmd, *start_pmd;
541
542         start_pmd = pmd = pmd_offset(pud, addr);
543         do {
544                 next = pmd_addr_end(addr, end);
545                 /* Hyp doesn't use huge pmds */
546                 if (!pmd_none(*pmd))
547                         unmap_hyp_ptes(pmd, addr, next);
548         } while (pmd++, addr = next, addr != end);
549
550         if (hyp_pmd_table_empty(start_pmd))
551                 clear_hyp_pud_entry(pud);
552 }
553
554 static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end)
555 {
556         phys_addr_t next;
557         pud_t *pud, *start_pud;
558
559         start_pud = pud = pud_offset(p4d, addr);
560         do {
561                 next = pud_addr_end(addr, end);
562                 /* Hyp doesn't use huge puds */
563                 if (!pud_none(*pud))
564                         unmap_hyp_pmds(pud, addr, next);
565         } while (pud++, addr = next, addr != end);
566
567         if (hyp_pud_table_empty(start_pud))
568                 clear_hyp_p4d_entry(p4d);
569 }
570
571 static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
572 {
573         phys_addr_t next;
574         p4d_t *p4d, *start_p4d;
575
576         start_p4d = p4d = p4d_offset(pgd, addr);
577         do {
578                 next = p4d_addr_end(addr, end);
579                 /* Hyp doesn't use huge p4ds */
580                 if (!p4d_none(*p4d))
581                         unmap_hyp_puds(p4d, addr, next);
582         } while (p4d++, addr = next, addr != end);
583
584         if (hyp_p4d_table_empty(start_p4d))
585                 clear_hyp_pgd_entry(pgd);
586 }
587
588 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
589 {
590         return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
591 }
592
593 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
594                               phys_addr_t start, u64 size)
595 {
596         pgd_t *pgd;
597         phys_addr_t addr = start, end = start + size;
598         phys_addr_t next;
599
600         /*
601          * We don't unmap anything from HYP, except at the hyp tear down.
602          * Hence, we don't have to invalidate the TLBs here.
603          */
604         pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
605         do {
606                 next = pgd_addr_end(addr, end);
607                 if (!pgd_none(*pgd))
608                         unmap_hyp_p4ds(pgd, addr, next);
609         } while (pgd++, addr = next, addr != end);
610 }
611
612 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
613 {
614         __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
615 }
616
617 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
618 {
619         __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
620 }
621
622 /**
623  * free_hyp_pgds - free Hyp-mode page tables
624  *
625  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
626  * therefore contains either mappings in the kernel memory area (above
627  * PAGE_OFFSET), or device mappings in the idmap range.
628  *
629  * boot_hyp_pgd should only map the idmap range, and is only used in
630  * the extended idmap case.
631  */
632 void free_hyp_pgds(void)
633 {
634         pgd_t *id_pgd;
635
636         mutex_lock(&kvm_hyp_pgd_mutex);
637
638         id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
639
640         if (id_pgd) {
641                 /* In case we never called hyp_mmu_init() */
642                 if (!io_map_base)
643                         io_map_base = hyp_idmap_start;
644                 unmap_hyp_idmap_range(id_pgd, io_map_base,
645                                       hyp_idmap_start + PAGE_SIZE - io_map_base);
646         }
647
648         if (boot_hyp_pgd) {
649                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
650                 boot_hyp_pgd = NULL;
651         }
652
653         if (hyp_pgd) {
654                 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
655                                 (uintptr_t)high_memory - PAGE_OFFSET);
656
657                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
658                 hyp_pgd = NULL;
659         }
660         if (merged_hyp_pgd) {
661                 clear_page(merged_hyp_pgd);
662                 free_page((unsigned long)merged_hyp_pgd);
663                 merged_hyp_pgd = NULL;
664         }
665
666         mutex_unlock(&kvm_hyp_pgd_mutex);
667 }
668
669 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
670                                     unsigned long end, unsigned long pfn,
671                                     pgprot_t prot)
672 {
673         pte_t *pte;
674         unsigned long addr;
675
676         addr = start;
677         do {
678                 pte = pte_offset_kernel(pmd, addr);
679                 kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
680                 get_page(virt_to_page(pte));
681                 pfn++;
682         } while (addr += PAGE_SIZE, addr != end);
683 }
684
685 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
686                                    unsigned long end, unsigned long pfn,
687                                    pgprot_t prot)
688 {
689         pmd_t *pmd;
690         pte_t *pte;
691         unsigned long addr, next;
692
693         addr = start;
694         do {
695                 pmd = pmd_offset(pud, addr);
696
697                 BUG_ON(pmd_sect(*pmd));
698
699                 if (pmd_none(*pmd)) {
700                         pte = pte_alloc_one_kernel(NULL);
701                         if (!pte) {
702                                 kvm_err("Cannot allocate Hyp pte\n");
703                                 return -ENOMEM;
704                         }
705                         kvm_pmd_populate(pmd, pte);
706                         get_page(virt_to_page(pmd));
707                 }
708
709                 next = pmd_addr_end(addr, end);
710
711                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
712                 pfn += (next - addr) >> PAGE_SHIFT;
713         } while (addr = next, addr != end);
714
715         return 0;
716 }
717
718 static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start,
719                                    unsigned long end, unsigned long pfn,
720                                    pgprot_t prot)
721 {
722         pud_t *pud;
723         pmd_t *pmd;
724         unsigned long addr, next;
725         int ret;
726
727         addr = start;
728         do {
729                 pud = pud_offset(p4d, addr);
730
731                 if (pud_none_or_clear_bad(pud)) {
732                         pmd = pmd_alloc_one(NULL, addr);
733                         if (!pmd) {
734                                 kvm_err("Cannot allocate Hyp pmd\n");
735                                 return -ENOMEM;
736                         }
737                         kvm_pud_populate(pud, pmd);
738                         get_page(virt_to_page(pud));
739                 }
740
741                 next = pud_addr_end(addr, end);
742                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
743                 if (ret)
744                         return ret;
745                 pfn += (next - addr) >> PAGE_SHIFT;
746         } while (addr = next, addr != end);
747
748         return 0;
749 }
750
751 static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start,
752                                    unsigned long end, unsigned long pfn,
753                                    pgprot_t prot)
754 {
755         p4d_t *p4d;
756         pud_t *pud;
757         unsigned long addr, next;
758         int ret;
759
760         addr = start;
761         do {
762                 p4d = p4d_offset(pgd, addr);
763
764                 if (p4d_none(*p4d)) {
765                         pud = pud_alloc_one(NULL, addr);
766                         if (!pud) {
767                                 kvm_err("Cannot allocate Hyp pud\n");
768                                 return -ENOMEM;
769                         }
770                         kvm_p4d_populate(p4d, pud);
771                         get_page(virt_to_page(p4d));
772                 }
773
774                 next = p4d_addr_end(addr, end);
775                 ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot);
776                 if (ret)
777                         return ret;
778                 pfn += (next - addr) >> PAGE_SHIFT;
779         } while (addr = next, addr != end);
780
781         return 0;
782 }
783
784 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
785                                  unsigned long start, unsigned long end,
786                                  unsigned long pfn, pgprot_t prot)
787 {
788         pgd_t *pgd;
789         p4d_t *p4d;
790         unsigned long addr, next;
791         int err = 0;
792
793         mutex_lock(&kvm_hyp_pgd_mutex);
794         addr = start & PAGE_MASK;
795         end = PAGE_ALIGN(end);
796         do {
797                 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
798
799                 if (pgd_none(*pgd)) {
800                         p4d = p4d_alloc_one(NULL, addr);
801                         if (!p4d) {
802                                 kvm_err("Cannot allocate Hyp p4d\n");
803                                 err = -ENOMEM;
804                                 goto out;
805                         }
806                         kvm_pgd_populate(pgd, p4d);
807                         get_page(virt_to_page(pgd));
808                 }
809
810                 next = pgd_addr_end(addr, end);
811                 err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot);
812                 if (err)
813                         goto out;
814                 pfn += (next - addr) >> PAGE_SHIFT;
815         } while (addr = next, addr != end);
816 out:
817         mutex_unlock(&kvm_hyp_pgd_mutex);
818         return err;
819 }
820
821 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
822 {
823         if (!is_vmalloc_addr(kaddr)) {
824                 BUG_ON(!virt_addr_valid(kaddr));
825                 return __pa(kaddr);
826         } else {
827                 return page_to_phys(vmalloc_to_page(kaddr)) +
828                        offset_in_page(kaddr);
829         }
830 }
831
832 /**
833  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
834  * @from:       The virtual kernel start address of the range
835  * @to:         The virtual kernel end address of the range (exclusive)
836  * @prot:       The protection to be applied to this range
837  *
838  * The same virtual address as the kernel virtual address is also used
839  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
840  * physical pages.
841  */
842 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
843 {
844         phys_addr_t phys_addr;
845         unsigned long virt_addr;
846         unsigned long start = kern_hyp_va((unsigned long)from);
847         unsigned long end = kern_hyp_va((unsigned long)to);
848
849         if (is_kernel_in_hyp_mode())
850                 return 0;
851
852         start = start & PAGE_MASK;
853         end = PAGE_ALIGN(end);
854
855         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
856                 int err;
857
858                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
859                 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
860                                             virt_addr, virt_addr + PAGE_SIZE,
861                                             __phys_to_pfn(phys_addr),
862                                             prot);
863                 if (err)
864                         return err;
865         }
866
867         return 0;
868 }
869
870 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
871                                         unsigned long *haddr, pgprot_t prot)
872 {
873         pgd_t *pgd = hyp_pgd;
874         unsigned long base;
875         int ret = 0;
876
877         mutex_lock(&kvm_hyp_pgd_mutex);
878
879         /*
880          * This assumes that we have enough space below the idmap
881          * page to allocate our VAs. If not, the check below will
882          * kick. A potential alternative would be to detect that
883          * overflow and switch to an allocation above the idmap.
884          *
885          * The allocated size is always a multiple of PAGE_SIZE.
886          */
887         size = PAGE_ALIGN(size + offset_in_page(phys_addr));
888         base = io_map_base - size;
889
890         /*
891          * Verify that BIT(VA_BITS - 1) hasn't been flipped by
892          * allocating the new area, as it would indicate we've
893          * overflowed the idmap/IO address range.
894          */
895         if ((base ^ io_map_base) & BIT(VA_BITS - 1))
896                 ret = -ENOMEM;
897         else
898                 io_map_base = base;
899
900         mutex_unlock(&kvm_hyp_pgd_mutex);
901
902         if (ret)
903                 goto out;
904
905         if (__kvm_cpu_uses_extended_idmap())
906                 pgd = boot_hyp_pgd;
907
908         ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
909                                     base, base + size,
910                                     __phys_to_pfn(phys_addr), prot);
911         if (ret)
912                 goto out;
913
914         *haddr = base + offset_in_page(phys_addr);
915
916 out:
917         return ret;
918 }
919
920 /**
921  * create_hyp_io_mappings - Map IO into both kernel and HYP
922  * @phys_addr:  The physical start address which gets mapped
923  * @size:       Size of the region being mapped
924  * @kaddr:      Kernel VA for this mapping
925  * @haddr:      HYP VA for this mapping
926  */
927 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
928                            void __iomem **kaddr,
929                            void __iomem **haddr)
930 {
931         unsigned long addr;
932         int ret;
933
934         *kaddr = ioremap(phys_addr, size);
935         if (!*kaddr)
936                 return -ENOMEM;
937
938         if (is_kernel_in_hyp_mode()) {
939                 *haddr = *kaddr;
940                 return 0;
941         }
942
943         ret = __create_hyp_private_mapping(phys_addr, size,
944                                            &addr, PAGE_HYP_DEVICE);
945         if (ret) {
946                 iounmap(*kaddr);
947                 *kaddr = NULL;
948                 *haddr = NULL;
949                 return ret;
950         }
951
952         *haddr = (void __iomem *)addr;
953         return 0;
954 }
955
956 /**
957  * create_hyp_exec_mappings - Map an executable range into HYP
958  * @phys_addr:  The physical start address which gets mapped
959  * @size:       Size of the region being mapped
960  * @haddr:      HYP VA for this mapping
961  */
962 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
963                              void **haddr)
964 {
965         unsigned long addr;
966         int ret;
967
968         BUG_ON(is_kernel_in_hyp_mode());
969
970         ret = __create_hyp_private_mapping(phys_addr, size,
971                                            &addr, PAGE_HYP_EXEC);
972         if (ret) {
973                 *haddr = NULL;
974                 return ret;
975         }
976
977         *haddr = (void *)addr;
978         return 0;
979 }
980
981 /**
982  * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
983  * @kvm:        The pointer to the KVM structure
984  * @mmu:        The pointer to the s2 MMU structure
985  *
986  * Allocates only the stage-2 HW PGD level table(s) of size defined by
987  * stage2_pgd_size(mmu->kvm).
988  *
989  * Note we don't need locking here as this is only called when the VM is
990  * created, which can only be done once.
991  */
992 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
993 {
994         phys_addr_t pgd_phys;
995         pgd_t *pgd;
996         int cpu;
997
998         if (mmu->pgd != NULL) {
999                 kvm_err("kvm_arch already initialized?\n");
1000                 return -EINVAL;
1001         }
1002
1003         /* Allocate the HW PGD, making sure that each page gets its own refcount */
1004         pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
1005         if (!pgd)
1006                 return -ENOMEM;
1007
1008         pgd_phys = virt_to_phys(pgd);
1009         if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
1010                 return -EINVAL;
1011
1012         mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
1013         if (!mmu->last_vcpu_ran) {
1014                 free_pages_exact(pgd, stage2_pgd_size(kvm));
1015                 return -ENOMEM;
1016         }
1017
1018         for_each_possible_cpu(cpu)
1019                 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
1020
1021         mmu->kvm = kvm;
1022         mmu->pgd = pgd;
1023         mmu->pgd_phys = pgd_phys;
1024         mmu->vmid.vmid_gen = 0;
1025
1026         return 0;
1027 }
1028
1029 static void stage2_unmap_memslot(struct kvm *kvm,
1030                                  struct kvm_memory_slot *memslot)
1031 {
1032         hva_t hva = memslot->userspace_addr;
1033         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1034         phys_addr_t size = PAGE_SIZE * memslot->npages;
1035         hva_t reg_end = hva + size;
1036
1037         /*
1038          * A memory region could potentially cover multiple VMAs, and any holes
1039          * between them, so iterate over all of them to find out if we should
1040          * unmap any of them.
1041          *
1042          *     +--------------------------------------------+
1043          * +---------------+----------------+   +----------------+
1044          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1045          * +---------------+----------------+   +----------------+
1046          *     |               memory region                |
1047          *     +--------------------------------------------+
1048          */
1049         do {
1050                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1051                 hva_t vm_start, vm_end;
1052
1053                 if (!vma || vma->vm_start >= reg_end)
1054                         break;
1055
1056                 /*
1057                  * Take the intersection of this VMA with the memory region
1058                  */
1059                 vm_start = max(hva, vma->vm_start);
1060                 vm_end = min(reg_end, vma->vm_end);
1061
1062                 if (!(vma->vm_flags & VM_PFNMAP)) {
1063                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1064                         unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
1065                 }
1066                 hva = vm_end;
1067         } while (hva < reg_end);
1068 }
1069
1070 /**
1071  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1072  * @kvm: The struct kvm pointer
1073  *
1074  * Go through the memregions and unmap any regular RAM
1075  * backing memory already mapped to the VM.
1076  */
1077 void stage2_unmap_vm(struct kvm *kvm)
1078 {
1079         struct kvm_memslots *slots;
1080         struct kvm_memory_slot *memslot;
1081         int idx;
1082
1083         idx = srcu_read_lock(&kvm->srcu);
1084         mmap_read_lock(current->mm);
1085         spin_lock(&kvm->mmu_lock);
1086
1087         slots = kvm_memslots(kvm);
1088         kvm_for_each_memslot(memslot, slots)
1089                 stage2_unmap_memslot(kvm, memslot);
1090
1091         spin_unlock(&kvm->mmu_lock);
1092         mmap_read_unlock(current->mm);
1093         srcu_read_unlock(&kvm->srcu, idx);
1094 }
1095
1096 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1097 {
1098         struct kvm *kvm = mmu->kvm;
1099         void *pgd = NULL;
1100
1101         spin_lock(&kvm->mmu_lock);
1102         if (mmu->pgd) {
1103                 unmap_stage2_range(mmu, 0, kvm_phys_size(kvm));
1104                 pgd = READ_ONCE(mmu->pgd);
1105                 mmu->pgd = NULL;
1106         }
1107         spin_unlock(&kvm->mmu_lock);
1108
1109         /* Free the HW pgd, one page at a time */
1110         if (pgd) {
1111                 free_pages_exact(pgd, stage2_pgd_size(kvm));
1112                 free_percpu(mmu->last_vcpu_ran);
1113         }
1114 }
1115
1116 static p4d_t *stage2_get_p4d(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1117                              phys_addr_t addr)
1118 {
1119         struct kvm *kvm = mmu->kvm;
1120         pgd_t *pgd;
1121         p4d_t *p4d;
1122
1123         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
1124         if (stage2_pgd_none(kvm, *pgd)) {
1125                 if (!cache)
1126                         return NULL;
1127                 p4d = kvm_mmu_memory_cache_alloc(cache);
1128                 stage2_pgd_populate(kvm, pgd, p4d);
1129                 get_page(virt_to_page(pgd));
1130         }
1131
1132         return stage2_p4d_offset(kvm, pgd, addr);
1133 }
1134
1135 static pud_t *stage2_get_pud(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1136                              phys_addr_t addr)
1137 {
1138         struct kvm *kvm = mmu->kvm;
1139         p4d_t *p4d;
1140         pud_t *pud;
1141
1142         p4d = stage2_get_p4d(mmu, cache, addr);
1143         if (stage2_p4d_none(kvm, *p4d)) {
1144                 if (!cache)
1145                         return NULL;
1146                 pud = kvm_mmu_memory_cache_alloc(cache);
1147                 stage2_p4d_populate(kvm, p4d, pud);
1148                 get_page(virt_to_page(p4d));
1149         }
1150
1151         return stage2_pud_offset(kvm, p4d, addr);
1152 }
1153
1154 static pmd_t *stage2_get_pmd(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1155                              phys_addr_t addr)
1156 {
1157         struct kvm *kvm = mmu->kvm;
1158         pud_t *pud;
1159         pmd_t *pmd;
1160
1161         pud = stage2_get_pud(mmu, cache, addr);
1162         if (!pud || stage2_pud_huge(kvm, *pud))
1163                 return NULL;
1164
1165         if (stage2_pud_none(kvm, *pud)) {
1166                 if (!cache)
1167                         return NULL;
1168                 pmd = kvm_mmu_memory_cache_alloc(cache);
1169                 stage2_pud_populate(kvm, pud, pmd);
1170                 get_page(virt_to_page(pud));
1171         }
1172
1173         return stage2_pmd_offset(kvm, pud, addr);
1174 }
1175
1176 static int stage2_set_pmd_huge(struct kvm_s2_mmu *mmu,
1177                                struct kvm_mmu_memory_cache *cache,
1178                                phys_addr_t addr, const pmd_t *new_pmd)
1179 {
1180         pmd_t *pmd, old_pmd;
1181
1182 retry:
1183         pmd = stage2_get_pmd(mmu, cache, addr);
1184         VM_BUG_ON(!pmd);
1185
1186         old_pmd = *pmd;
1187         /*
1188          * Multiple vcpus faulting on the same PMD entry, can
1189          * lead to them sequentially updating the PMD with the
1190          * same value. Following the break-before-make
1191          * (pmd_clear() followed by tlb_flush()) process can
1192          * hinder forward progress due to refaults generated
1193          * on missing translations.
1194          *
1195          * Skip updating the page table if the entry is
1196          * unchanged.
1197          */
1198         if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1199                 return 0;
1200
1201         if (pmd_present(old_pmd)) {
1202                 /*
1203                  * If we already have PTE level mapping for this block,
1204                  * we must unmap it to avoid inconsistent TLB state and
1205                  * leaking the table page. We could end up in this situation
1206                  * if the memory slot was marked for dirty logging and was
1207                  * reverted, leaving PTE level mappings for the pages accessed
1208                  * during the period. So, unmap the PTE level mapping for this
1209                  * block and retry, as we could have released the upper level
1210                  * table in the process.
1211                  *
1212                  * Normal THP split/merge follows mmu_notifier callbacks and do
1213                  * get handled accordingly.
1214                  */
1215                 if (!pmd_thp_or_huge(old_pmd)) {
1216                         unmap_stage2_range(mmu, addr & S2_PMD_MASK, S2_PMD_SIZE);
1217                         goto retry;
1218                 }
1219                 /*
1220                  * Mapping in huge pages should only happen through a
1221                  * fault.  If a page is merged into a transparent huge
1222                  * page, the individual subpages of that huge page
1223                  * should be unmapped through MMU notifiers before we
1224                  * get here.
1225                  *
1226                  * Merging of CompoundPages is not supported; they
1227                  * should become splitting first, unmapped, merged,
1228                  * and mapped back in on-demand.
1229                  */
1230                 WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1231                 pmd_clear(pmd);
1232                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
1233         } else {
1234                 get_page(virt_to_page(pmd));
1235         }
1236
1237         kvm_set_pmd(pmd, *new_pmd);
1238         return 0;
1239 }
1240
1241 static int stage2_set_pud_huge(struct kvm_s2_mmu *mmu,
1242                                struct kvm_mmu_memory_cache *cache,
1243                                phys_addr_t addr, const pud_t *new_pudp)
1244 {
1245         struct kvm *kvm = mmu->kvm;
1246         pud_t *pudp, old_pud;
1247
1248 retry:
1249         pudp = stage2_get_pud(mmu, cache, addr);
1250         VM_BUG_ON(!pudp);
1251
1252         old_pud = *pudp;
1253
1254         /*
1255          * A large number of vcpus faulting on the same stage 2 entry,
1256          * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1257          * Skip updating the page tables if there is no change.
1258          */
1259         if (pud_val(old_pud) == pud_val(*new_pudp))
1260                 return 0;
1261
1262         if (stage2_pud_present(kvm, old_pud)) {
1263                 /*
1264                  * If we already have table level mapping for this block, unmap
1265                  * the range for this block and retry.
1266                  */
1267                 if (!stage2_pud_huge(kvm, old_pud)) {
1268                         unmap_stage2_range(mmu, addr & S2_PUD_MASK, S2_PUD_SIZE);
1269                         goto retry;
1270                 }
1271
1272                 WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1273                 stage2_pud_clear(kvm, pudp);
1274                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
1275         } else {
1276                 get_page(virt_to_page(pudp));
1277         }
1278
1279         kvm_set_pud(pudp, *new_pudp);
1280         return 0;
1281 }
1282
1283 /*
1284  * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1285  * true if a valid and present leaf-entry is found. A pointer to the
1286  * leaf-entry is returned in the appropriate level variable - pudpp,
1287  * pmdpp, ptepp.
1288  */
1289 static bool stage2_get_leaf_entry(struct kvm_s2_mmu *mmu, phys_addr_t addr,
1290                                   pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1291 {
1292         struct kvm *kvm = mmu->kvm;
1293         pud_t *pudp;
1294         pmd_t *pmdp;
1295         pte_t *ptep;
1296
1297         *pudpp = NULL;
1298         *pmdpp = NULL;
1299         *ptepp = NULL;
1300
1301         pudp = stage2_get_pud(mmu, NULL, addr);
1302         if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1303                 return false;
1304
1305         if (stage2_pud_huge(kvm, *pudp)) {
1306                 *pudpp = pudp;
1307                 return true;
1308         }
1309
1310         pmdp = stage2_pmd_offset(kvm, pudp, addr);
1311         if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1312                 return false;
1313
1314         if (pmd_thp_or_huge(*pmdp)) {
1315                 *pmdpp = pmdp;
1316                 return true;
1317         }
1318
1319         ptep = pte_offset_kernel(pmdp, addr);
1320         if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1321                 return false;
1322
1323         *ptepp = ptep;
1324         return true;
1325 }
1326
1327 static bool stage2_is_exec(struct kvm_s2_mmu *mmu, phys_addr_t addr, unsigned long sz)
1328 {
1329         pud_t *pudp;
1330         pmd_t *pmdp;
1331         pte_t *ptep;
1332         bool found;
1333
1334         found = stage2_get_leaf_entry(mmu, addr, &pudp, &pmdp, &ptep);
1335         if (!found)
1336                 return false;
1337
1338         if (pudp)
1339                 return sz <= PUD_SIZE && kvm_s2pud_exec(pudp);
1340         else if (pmdp)
1341                 return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp);
1342         else
1343                 return sz == PAGE_SIZE && kvm_s2pte_exec(ptep);
1344 }
1345
1346 static int stage2_set_pte(struct kvm_s2_mmu *mmu,
1347                           struct kvm_mmu_memory_cache *cache,
1348                           phys_addr_t addr, const pte_t *new_pte,
1349                           unsigned long flags)
1350 {
1351         struct kvm *kvm = mmu->kvm;
1352         pud_t *pud;
1353         pmd_t *pmd;
1354         pte_t *pte, old_pte;
1355         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1356         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1357
1358         VM_BUG_ON(logging_active && !cache);
1359
1360         /* Create stage-2 page table mapping - Levels 0 and 1 */
1361         pud = stage2_get_pud(mmu, cache, addr);
1362         if (!pud) {
1363                 /*
1364                  * Ignore calls from kvm_set_spte_hva for unallocated
1365                  * address ranges.
1366                  */
1367                 return 0;
1368         }
1369
1370         /*
1371          * While dirty page logging - dissolve huge PUD, then continue
1372          * on to allocate page.
1373          */
1374         if (logging_active)
1375                 stage2_dissolve_pud(mmu, addr, pud);
1376
1377         if (stage2_pud_none(kvm, *pud)) {
1378                 if (!cache)
1379                         return 0; /* ignore calls from kvm_set_spte_hva */
1380                 pmd = kvm_mmu_memory_cache_alloc(cache);
1381                 stage2_pud_populate(kvm, pud, pmd);
1382                 get_page(virt_to_page(pud));
1383         }
1384
1385         pmd = stage2_pmd_offset(kvm, pud, addr);
1386         if (!pmd) {
1387                 /*
1388                  * Ignore calls from kvm_set_spte_hva for unallocated
1389                  * address ranges.
1390                  */
1391                 return 0;
1392         }
1393
1394         /*
1395          * While dirty page logging - dissolve huge PMD, then continue on to
1396          * allocate page.
1397          */
1398         if (logging_active)
1399                 stage2_dissolve_pmd(mmu, addr, pmd);
1400
1401         /* Create stage-2 page mappings - Level 2 */
1402         if (pmd_none(*pmd)) {
1403                 if (!cache)
1404                         return 0; /* ignore calls from kvm_set_spte_hva */
1405                 pte = kvm_mmu_memory_cache_alloc(cache);
1406                 kvm_pmd_populate(pmd, pte);
1407                 get_page(virt_to_page(pmd));
1408         }
1409
1410         pte = pte_offset_kernel(pmd, addr);
1411
1412         if (iomap && pte_present(*pte))
1413                 return -EFAULT;
1414
1415         /* Create 2nd stage page table mapping - Level 3 */
1416         old_pte = *pte;
1417         if (pte_present(old_pte)) {
1418                 /* Skip page table update if there is no change */
1419                 if (pte_val(old_pte) == pte_val(*new_pte))
1420                         return 0;
1421
1422                 kvm_set_pte(pte, __pte(0));
1423                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
1424         } else {
1425                 get_page(virt_to_page(pte));
1426         }
1427
1428         kvm_set_pte(pte, *new_pte);
1429         return 0;
1430 }
1431
1432 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1433 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1434 {
1435         if (pte_young(*pte)) {
1436                 *pte = pte_mkold(*pte);
1437                 return 1;
1438         }
1439         return 0;
1440 }
1441 #else
1442 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1443 {
1444         return __ptep_test_and_clear_young(pte);
1445 }
1446 #endif
1447
1448 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1449 {
1450         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1451 }
1452
1453 static int stage2_pudp_test_and_clear_young(pud_t *pud)
1454 {
1455         return stage2_ptep_test_and_clear_young((pte_t *)pud);
1456 }
1457
1458 /**
1459  * kvm_phys_addr_ioremap - map a device range to guest IPA
1460  *
1461  * @kvm:        The KVM pointer
1462  * @guest_ipa:  The IPA at which to insert the mapping
1463  * @pa:         The physical address of the device
1464  * @size:       The size of the mapping
1465  */
1466 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1467                           phys_addr_t pa, unsigned long size, bool writable)
1468 {
1469         phys_addr_t addr, end;
1470         int ret = 0;
1471         unsigned long pfn;
1472         struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
1473
1474         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1475         pfn = __phys_to_pfn(pa);
1476
1477         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1478                 pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1479
1480                 if (writable)
1481                         pte = kvm_s2pte_mkwrite(pte);
1482
1483                 ret = kvm_mmu_topup_memory_cache(&cache,
1484                                                  kvm_mmu_cache_min_pages(kvm));
1485                 if (ret)
1486                         goto out;
1487                 spin_lock(&kvm->mmu_lock);
1488                 ret = stage2_set_pte(&kvm->arch.mmu, &cache, addr, &pte,
1489                                      KVM_S2PTE_FLAG_IS_IOMAP);
1490                 spin_unlock(&kvm->mmu_lock);
1491                 if (ret)
1492                         goto out;
1493
1494                 pfn++;
1495         }
1496
1497 out:
1498         kvm_mmu_free_memory_cache(&cache);
1499         return ret;
1500 }
1501
1502 /**
1503  * stage2_wp_ptes - write protect PMD range
1504  * @pmd:        pointer to pmd entry
1505  * @addr:       range start address
1506  * @end:        range end address
1507  */
1508 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1509 {
1510         pte_t *pte;
1511
1512         pte = pte_offset_kernel(pmd, addr);
1513         do {
1514                 if (!pte_none(*pte)) {
1515                         if (!kvm_s2pte_readonly(pte))
1516                                 kvm_set_s2pte_readonly(pte);
1517                 }
1518         } while (pte++, addr += PAGE_SIZE, addr != end);
1519 }
1520
1521 /**
1522  * stage2_wp_pmds - write protect PUD range
1523  * kvm:         kvm instance for the VM
1524  * @pud:        pointer to pud entry
1525  * @addr:       range start address
1526  * @end:        range end address
1527  */
1528 static void stage2_wp_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
1529                            phys_addr_t addr, phys_addr_t end)
1530 {
1531         struct kvm *kvm = mmu->kvm;
1532         pmd_t *pmd;
1533         phys_addr_t next;
1534
1535         pmd = stage2_pmd_offset(kvm, pud, addr);
1536
1537         do {
1538                 next = stage2_pmd_addr_end(kvm, addr, end);
1539                 if (!pmd_none(*pmd)) {
1540                         if (pmd_thp_or_huge(*pmd)) {
1541                                 if (!kvm_s2pmd_readonly(pmd))
1542                                         kvm_set_s2pmd_readonly(pmd);
1543                         } else {
1544                                 stage2_wp_ptes(pmd, addr, next);
1545                         }
1546                 }
1547         } while (pmd++, addr = next, addr != end);
1548 }
1549
1550 /**
1551  * stage2_wp_puds - write protect P4D range
1552  * @p4d:        pointer to p4d entry
1553  * @addr:       range start address
1554  * @end:        range end address
1555  */
1556 static void  stage2_wp_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
1557                             phys_addr_t addr, phys_addr_t end)
1558 {
1559         struct kvm *kvm = mmu->kvm;
1560         pud_t *pud;
1561         phys_addr_t next;
1562
1563         pud = stage2_pud_offset(kvm, p4d, addr);
1564         do {
1565                 next = stage2_pud_addr_end(kvm, addr, end);
1566                 if (!stage2_pud_none(kvm, *pud)) {
1567                         if (stage2_pud_huge(kvm, *pud)) {
1568                                 if (!kvm_s2pud_readonly(pud))
1569                                         kvm_set_s2pud_readonly(pud);
1570                         } else {
1571                                 stage2_wp_pmds(mmu, pud, addr, next);
1572                         }
1573                 }
1574         } while (pud++, addr = next, addr != end);
1575 }
1576
1577 /**
1578  * stage2_wp_p4ds - write protect PGD range
1579  * @pgd:        pointer to pgd entry
1580  * @addr:       range start address
1581  * @end:        range end address
1582  */
1583 static void  stage2_wp_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
1584                             phys_addr_t addr, phys_addr_t end)
1585 {
1586         struct kvm *kvm = mmu->kvm;
1587         p4d_t *p4d;
1588         phys_addr_t next;
1589
1590         p4d = stage2_p4d_offset(kvm, pgd, addr);
1591         do {
1592                 next = stage2_p4d_addr_end(kvm, addr, end);
1593                 if (!stage2_p4d_none(kvm, *p4d))
1594                         stage2_wp_puds(mmu, p4d, addr, next);
1595         } while (p4d++, addr = next, addr != end);
1596 }
1597
1598 /**
1599  * stage2_wp_range() - write protect stage2 memory region range
1600  * @kvm:        The KVM pointer
1601  * @addr:       Start address of range
1602  * @end:        End address of range
1603  */
1604 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1605 {
1606         struct kvm *kvm = mmu->kvm;
1607         pgd_t *pgd;
1608         phys_addr_t next;
1609
1610         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
1611         do {
1612                 /*
1613                  * Release kvm_mmu_lock periodically if the memory region is
1614                  * large. Otherwise, we may see kernel panics with
1615                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1616                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1617                  * will also starve other vCPUs. We have to also make sure
1618                  * that the page tables are not freed while we released
1619                  * the lock.
1620                  */
1621                 cond_resched_lock(&kvm->mmu_lock);
1622                 if (!READ_ONCE(mmu->pgd))
1623                         break;
1624                 next = stage2_pgd_addr_end(kvm, addr, end);
1625                 if (stage2_pgd_present(kvm, *pgd))
1626                         stage2_wp_p4ds(mmu, pgd, addr, next);
1627         } while (pgd++, addr = next, addr != end);
1628 }
1629
1630 /**
1631  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1632  * @kvm:        The KVM pointer
1633  * @slot:       The memory slot to write protect
1634  *
1635  * Called to start logging dirty pages after memory region
1636  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1637  * all present PUD, PMD and PTEs are write protected in the memory region.
1638  * Afterwards read of dirty page log can be called.
1639  *
1640  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1641  * serializing operations for VM memory regions.
1642  */
1643 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1644 {
1645         struct kvm_memslots *slots = kvm_memslots(kvm);
1646         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1647         phys_addr_t start, end;
1648
1649         if (WARN_ON_ONCE(!memslot))
1650                 return;
1651
1652         start = memslot->base_gfn << PAGE_SHIFT;
1653         end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1654
1655         spin_lock(&kvm->mmu_lock);
1656         stage2_wp_range(&kvm->arch.mmu, start, end);
1657         spin_unlock(&kvm->mmu_lock);
1658         kvm_flush_remote_tlbs(kvm);
1659 }
1660
1661 /**
1662  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1663  * @kvm:        The KVM pointer
1664  * @slot:       The memory slot associated with mask
1665  * @gfn_offset: The gfn offset in memory slot
1666  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1667  *              slot to be write protected
1668  *
1669  * Walks bits set in mask write protects the associated pte's. Caller must
1670  * acquire kvm_mmu_lock.
1671  */
1672 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1673                 struct kvm_memory_slot *slot,
1674                 gfn_t gfn_offset, unsigned long mask)
1675 {
1676         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1677         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1678         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1679
1680         stage2_wp_range(&kvm->arch.mmu, start, end);
1681 }
1682
1683 /*
1684  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1685  * dirty pages.
1686  *
1687  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1688  * enable dirty logging for them.
1689  */
1690 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1691                 struct kvm_memory_slot *slot,
1692                 gfn_t gfn_offset, unsigned long mask)
1693 {
1694         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1695 }
1696
1697 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1698 {
1699         __clean_dcache_guest_page(pfn, size);
1700 }
1701
1702 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1703 {
1704         __invalidate_icache_guest_page(pfn, size);
1705 }
1706
1707 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1708 {
1709         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1710 }
1711
1712 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1713                                                unsigned long hva,
1714                                                unsigned long map_size)
1715 {
1716         gpa_t gpa_start;
1717         hva_t uaddr_start, uaddr_end;
1718         size_t size;
1719
1720         /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1721         if (map_size == PAGE_SIZE)
1722                 return true;
1723
1724         size = memslot->npages * PAGE_SIZE;
1725
1726         gpa_start = memslot->base_gfn << PAGE_SHIFT;
1727
1728         uaddr_start = memslot->userspace_addr;
1729         uaddr_end = uaddr_start + size;
1730
1731         /*
1732          * Pages belonging to memslots that don't have the same alignment
1733          * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1734          * PMD/PUD entries, because we'll end up mapping the wrong pages.
1735          *
1736          * Consider a layout like the following:
1737          *
1738          *    memslot->userspace_addr:
1739          *    +-----+--------------------+--------------------+---+
1740          *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1741          *    +-----+--------------------+--------------------+---+
1742          *
1743          *    memslot->base_gfn << PAGE_SHIFT:
1744          *      +---+--------------------+--------------------+-----+
1745          *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1746          *      +---+--------------------+--------------------+-----+
1747          *
1748          * If we create those stage-2 blocks, we'll end up with this incorrect
1749          * mapping:
1750          *   d -> f
1751          *   e -> g
1752          *   f -> h
1753          */
1754         if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1755                 return false;
1756
1757         /*
1758          * Next, let's make sure we're not trying to map anything not covered
1759          * by the memslot. This means we have to prohibit block size mappings
1760          * for the beginning and end of a non-block aligned and non-block sized
1761          * memory slot (illustrated by the head and tail parts of the
1762          * userspace view above containing pages 'abcde' and 'xyz',
1763          * respectively).
1764          *
1765          * Note that it doesn't matter if we do the check using the
1766          * userspace_addr or the base_gfn, as both are equally aligned (per
1767          * the check above) and equally sized.
1768          */
1769         return (hva & ~(map_size - 1)) >= uaddr_start &&
1770                (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1771 }
1772
1773 /*
1774  * Check if the given hva is backed by a transparent huge page (THP) and
1775  * whether it can be mapped using block mapping in stage2. If so, adjust
1776  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1777  * supported. This will need to be updated to support other THP sizes.
1778  *
1779  * Returns the size of the mapping.
1780  */
1781 static unsigned long
1782 transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
1783                             unsigned long hva, kvm_pfn_t *pfnp,
1784                             phys_addr_t *ipap)
1785 {
1786         kvm_pfn_t pfn = *pfnp;
1787
1788         /*
1789          * Make sure the adjustment is done only for THP pages. Also make
1790          * sure that the HVA and IPA are sufficiently aligned and that the
1791          * block map is contained within the memslot.
1792          */
1793         if (kvm_is_transparent_hugepage(pfn) &&
1794             fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1795                 /*
1796                  * The address we faulted on is backed by a transparent huge
1797                  * page.  However, because we map the compound huge page and
1798                  * not the individual tail page, we need to transfer the
1799                  * refcount to the head page.  We have to be careful that the
1800                  * THP doesn't start to split while we are adjusting the
1801                  * refcounts.
1802                  *
1803                  * We are sure this doesn't happen, because mmu_notifier_retry
1804                  * was successful and we are holding the mmu_lock, so if this
1805                  * THP is trying to split, it will be blocked in the mmu
1806                  * notifier before touching any of the pages, specifically
1807                  * before being able to call __split_huge_page_refcount().
1808                  *
1809                  * We can therefore safely transfer the refcount from PG_tail
1810                  * to PG_head and switch the pfn from a tail page to the head
1811                  * page accordingly.
1812                  */
1813                 *ipap &= PMD_MASK;
1814                 kvm_release_pfn_clean(pfn);
1815                 pfn &= ~(PTRS_PER_PMD - 1);
1816                 kvm_get_pfn(pfn);
1817                 *pfnp = pfn;
1818
1819                 return PMD_SIZE;
1820         }
1821
1822         /* Use page mapping if we cannot use block mapping. */
1823         return PAGE_SIZE;
1824 }
1825
1826 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1827                           struct kvm_memory_slot *memslot, unsigned long hva,
1828                           unsigned long fault_status)
1829 {
1830         int ret;
1831         bool write_fault, writable, force_pte = false;
1832         bool exec_fault, needs_exec;
1833         unsigned long mmu_seq;
1834         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1835         struct kvm *kvm = vcpu->kvm;
1836         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1837         struct vm_area_struct *vma;
1838         short vma_shift;
1839         kvm_pfn_t pfn;
1840         pgprot_t mem_type = PAGE_S2;
1841         bool logging_active = memslot_is_logging(memslot);
1842         unsigned long vma_pagesize, flags = 0;
1843         struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
1844
1845         write_fault = kvm_is_write_fault(vcpu);
1846         exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1847         VM_BUG_ON(write_fault && exec_fault);
1848
1849         if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1850                 kvm_err("Unexpected L2 read permission error\n");
1851                 return -EFAULT;
1852         }
1853
1854         /* Let's check if we will get back a huge page backed by hugetlbfs */
1855         mmap_read_lock(current->mm);
1856         vma = find_vma_intersection(current->mm, hva, hva + 1);
1857         if (unlikely(!vma)) {
1858                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1859                 mmap_read_unlock(current->mm);
1860                 return -EFAULT;
1861         }
1862
1863         if (is_vm_hugetlb_page(vma))
1864                 vma_shift = huge_page_shift(hstate_vma(vma));
1865         else
1866                 vma_shift = PAGE_SHIFT;
1867
1868         vma_pagesize = 1ULL << vma_shift;
1869         if (logging_active ||
1870             (vma->vm_flags & VM_PFNMAP) ||
1871             !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1872                 force_pte = true;
1873                 vma_pagesize = PAGE_SIZE;
1874         }
1875
1876         /*
1877          * The stage2 has a minimum of 2 level table (For arm64 see
1878          * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1879          * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1880          * As for PUD huge maps, we must make sure that we have at least
1881          * 3 levels, i.e, PMD is not folded.
1882          */
1883         if (vma_pagesize == PMD_SIZE ||
1884             (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1885                 gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1886         mmap_read_unlock(current->mm);
1887
1888         /* We need minimum second+third level pages */
1889         ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm));
1890         if (ret)
1891                 return ret;
1892
1893         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1894         /*
1895          * Ensure the read of mmu_notifier_seq happens before we call
1896          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1897          * the page we just got a reference to gets unmapped before we have a
1898          * chance to grab the mmu_lock, which ensure that if the page gets
1899          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1900          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1901          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1902          */
1903         smp_rmb();
1904
1905         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1906         if (pfn == KVM_PFN_ERR_HWPOISON) {
1907                 kvm_send_hwpoison_signal(hva, vma_shift);
1908                 return 0;
1909         }
1910         if (is_error_noslot_pfn(pfn))
1911                 return -EFAULT;
1912
1913         if (kvm_is_device_pfn(pfn)) {
1914                 mem_type = PAGE_S2_DEVICE;
1915                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1916         } else if (logging_active) {
1917                 /*
1918                  * Faults on pages in a memslot with logging enabled
1919                  * should not be mapped with huge pages (it introduces churn
1920                  * and performance degradation), so force a pte mapping.
1921                  */
1922                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1923
1924                 /*
1925                  * Only actually map the page as writable if this was a write
1926                  * fault.
1927                  */
1928                 if (!write_fault)
1929                         writable = false;
1930         }
1931
1932         if (exec_fault && is_iomap(flags))
1933                 return -ENOEXEC;
1934
1935         spin_lock(&kvm->mmu_lock);
1936         if (mmu_notifier_retry(kvm, mmu_seq))
1937                 goto out_unlock;
1938
1939         /*
1940          * If we are not forced to use page mapping, check if we are
1941          * backed by a THP and thus use block mapping if possible.
1942          */
1943         if (vma_pagesize == PAGE_SIZE && !force_pte)
1944                 vma_pagesize = transparent_hugepage_adjust(memslot, hva,
1945                                                            &pfn, &fault_ipa);
1946         if (writable)
1947                 kvm_set_pfn_dirty(pfn);
1948
1949         if (fault_status != FSC_PERM && !is_iomap(flags))
1950                 clean_dcache_guest_page(pfn, vma_pagesize);
1951
1952         if (exec_fault)
1953                 invalidate_icache_guest_page(pfn, vma_pagesize);
1954
1955         /*
1956          * If we took an execution fault we have made the
1957          * icache/dcache coherent above and should now let the s2
1958          * mapping be executable.
1959          *
1960          * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1961          * execute permissions, and we preserve whatever we have.
1962          */
1963         needs_exec = exec_fault ||
1964                 (fault_status == FSC_PERM &&
1965                  stage2_is_exec(mmu, fault_ipa, vma_pagesize));
1966
1967         if (vma_pagesize == PUD_SIZE) {
1968                 pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1969
1970                 new_pud = kvm_pud_mkhuge(new_pud);
1971                 if (writable)
1972                         new_pud = kvm_s2pud_mkwrite(new_pud);
1973
1974                 if (needs_exec)
1975                         new_pud = kvm_s2pud_mkexec(new_pud);
1976
1977                 ret = stage2_set_pud_huge(mmu, memcache, fault_ipa, &new_pud);
1978         } else if (vma_pagesize == PMD_SIZE) {
1979                 pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1980
1981                 new_pmd = kvm_pmd_mkhuge(new_pmd);
1982
1983                 if (writable)
1984                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1985
1986                 if (needs_exec)
1987                         new_pmd = kvm_s2pmd_mkexec(new_pmd);
1988
1989                 ret = stage2_set_pmd_huge(mmu, memcache, fault_ipa, &new_pmd);
1990         } else {
1991                 pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1992
1993                 if (writable) {
1994                         new_pte = kvm_s2pte_mkwrite(new_pte);
1995                         mark_page_dirty(kvm, gfn);
1996                 }
1997
1998                 if (needs_exec)
1999                         new_pte = kvm_s2pte_mkexec(new_pte);
2000
2001                 ret = stage2_set_pte(mmu, memcache, fault_ipa, &new_pte, flags);
2002         }
2003
2004 out_unlock:
2005         spin_unlock(&kvm->mmu_lock);
2006         kvm_set_pfn_accessed(pfn);
2007         kvm_release_pfn_clean(pfn);
2008         return ret;
2009 }
2010
2011 /*
2012  * Resolve the access fault by making the page young again.
2013  * Note that because the faulting entry is guaranteed not to be
2014  * cached in the TLB, we don't need to invalidate anything.
2015  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
2016  * so there is no need for atomic (pte|pmd)_mkyoung operations.
2017  */
2018 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
2019 {
2020         pud_t *pud;
2021         pmd_t *pmd;
2022         pte_t *pte;
2023         kvm_pfn_t pfn;
2024         bool pfn_valid = false;
2025
2026         trace_kvm_access_fault(fault_ipa);
2027
2028         spin_lock(&vcpu->kvm->mmu_lock);
2029
2030         if (!stage2_get_leaf_entry(vcpu->arch.hw_mmu, fault_ipa, &pud, &pmd, &pte))
2031                 goto out;
2032
2033         if (pud) {              /* HugeTLB */
2034                 *pud = kvm_s2pud_mkyoung(*pud);
2035                 pfn = kvm_pud_pfn(*pud);
2036                 pfn_valid = true;
2037         } else  if (pmd) {      /* THP, HugeTLB */
2038                 *pmd = pmd_mkyoung(*pmd);
2039                 pfn = pmd_pfn(*pmd);
2040                 pfn_valid = true;
2041         } else {
2042                 *pte = pte_mkyoung(*pte);       /* Just a page... */
2043                 pfn = pte_pfn(*pte);
2044                 pfn_valid = true;
2045         }
2046
2047 out:
2048         spin_unlock(&vcpu->kvm->mmu_lock);
2049         if (pfn_valid)
2050                 kvm_set_pfn_accessed(pfn);
2051 }
2052
2053 /**
2054  * kvm_handle_guest_abort - handles all 2nd stage aborts
2055  * @vcpu:       the VCPU pointer
2056  *
2057  * Any abort that gets to the host is almost guaranteed to be caused by a
2058  * missing second stage translation table entry, which can mean that either the
2059  * guest simply needs more memory and we must allocate an appropriate page or it
2060  * can mean that the guest tried to access I/O memory, which is emulated by user
2061  * space. The distinction is based on the IPA causing the fault and whether this
2062  * memory region has been registered as standard RAM by user space.
2063  */
2064 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
2065 {
2066         unsigned long fault_status;
2067         phys_addr_t fault_ipa;
2068         struct kvm_memory_slot *memslot;
2069         unsigned long hva;
2070         bool is_iabt, write_fault, writable;
2071         gfn_t gfn;
2072         int ret, idx;
2073
2074         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
2075
2076         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
2077         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
2078
2079         /* Synchronous External Abort? */
2080         if (kvm_vcpu_abt_issea(vcpu)) {
2081                 /*
2082                  * For RAS the host kernel may handle this abort.
2083                  * There is no need to pass the error into the guest.
2084                  */
2085                 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
2086                         kvm_inject_vabt(vcpu);
2087
2088                 return 1;
2089         }
2090
2091         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
2092                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
2093
2094         /* Check the stage-2 fault is trans. fault or write fault */
2095         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
2096             fault_status != FSC_ACCESS) {
2097                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
2098                         kvm_vcpu_trap_get_class(vcpu),
2099                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
2100                         (unsigned long)kvm_vcpu_get_esr(vcpu));
2101                 return -EFAULT;
2102         }
2103
2104         idx = srcu_read_lock(&vcpu->kvm->srcu);
2105
2106         gfn = fault_ipa >> PAGE_SHIFT;
2107         memslot = gfn_to_memslot(vcpu->kvm, gfn);
2108         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
2109         write_fault = kvm_is_write_fault(vcpu);
2110         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
2111                 /*
2112                  * The guest has put either its instructions or its page-tables
2113                  * somewhere it shouldn't have. Userspace won't be able to do
2114                  * anything about this (there's no syndrome for a start), so
2115                  * re-inject the abort back into the guest.
2116                  */
2117                 if (is_iabt) {
2118                         ret = -ENOEXEC;
2119                         goto out;
2120                 }
2121
2122                 if (kvm_vcpu_dabt_iss1tw(vcpu)) {
2123                         kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2124                         ret = 1;
2125                         goto out_unlock;
2126                 }
2127
2128                 /*
2129                  * Check for a cache maintenance operation. Since we
2130                  * ended-up here, we know it is outside of any memory
2131                  * slot. But we can't find out if that is for a device,
2132                  * or if the guest is just being stupid. The only thing
2133                  * we know for sure is that this range cannot be cached.
2134                  *
2135                  * So let's assume that the guest is just being
2136                  * cautious, and skip the instruction.
2137                  */
2138                 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
2139                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2140                         ret = 1;
2141                         goto out_unlock;
2142                 }
2143
2144                 /*
2145                  * The IPA is reported as [MAX:12], so we need to
2146                  * complement it with the bottom 12 bits from the
2147                  * faulting VA. This is always 12 bits, irrespective
2148                  * of the page size.
2149                  */
2150                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
2151                 ret = io_mem_abort(vcpu, fault_ipa);
2152                 goto out_unlock;
2153         }
2154
2155         /* Userspace should not be able to register out-of-bounds IPAs */
2156         VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
2157
2158         if (fault_status == FSC_ACCESS) {
2159                 handle_access_fault(vcpu, fault_ipa);
2160                 ret = 1;
2161                 goto out_unlock;
2162         }
2163
2164         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2165         if (ret == 0)
2166                 ret = 1;
2167 out:
2168         if (ret == -ENOEXEC) {
2169                 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2170                 ret = 1;
2171         }
2172 out_unlock:
2173         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2174         return ret;
2175 }
2176
2177 static int handle_hva_to_gpa(struct kvm *kvm,
2178                              unsigned long start,
2179                              unsigned long end,
2180                              int (*handler)(struct kvm *kvm,
2181                                             gpa_t gpa, u64 size,
2182                                             void *data),
2183                              void *data)
2184 {
2185         struct kvm_memslots *slots;
2186         struct kvm_memory_slot *memslot;
2187         int ret = 0;
2188
2189         slots = kvm_memslots(kvm);
2190
2191         /* we only care about the pages that the guest sees */
2192         kvm_for_each_memslot(memslot, slots) {
2193                 unsigned long hva_start, hva_end;
2194                 gfn_t gpa;
2195
2196                 hva_start = max(start, memslot->userspace_addr);
2197                 hva_end = min(end, memslot->userspace_addr +
2198                                         (memslot->npages << PAGE_SHIFT));
2199                 if (hva_start >= hva_end)
2200                         continue;
2201
2202                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2203                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2204         }
2205
2206         return ret;
2207 }
2208
2209 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2210 {
2211         unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2212         return 0;
2213 }
2214
2215 int kvm_unmap_hva_range(struct kvm *kvm,
2216                         unsigned long start, unsigned long end)
2217 {
2218         if (!kvm->arch.mmu.pgd)
2219                 return 0;
2220
2221         trace_kvm_unmap_hva_range(start, end);
2222         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2223         return 0;
2224 }
2225
2226 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2227 {
2228         pte_t *pte = (pte_t *)data;
2229
2230         WARN_ON(size != PAGE_SIZE);
2231         /*
2232          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2233          * flag clear because MMU notifiers will have unmapped a huge PMD before
2234          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2235          * therefore stage2_set_pte() never needs to clear out a huge PMD
2236          * through this calling path.
2237          */
2238         stage2_set_pte(&kvm->arch.mmu, NULL, gpa, pte, 0);
2239         return 0;
2240 }
2241
2242
2243 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2244 {
2245         unsigned long end = hva + PAGE_SIZE;
2246         kvm_pfn_t pfn = pte_pfn(pte);
2247         pte_t stage2_pte;
2248
2249         if (!kvm->arch.mmu.pgd)
2250                 return 0;
2251
2252         trace_kvm_set_spte_hva(hva);
2253
2254         /*
2255          * We've moved a page around, probably through CoW, so let's treat it
2256          * just like a translation fault and clean the cache to the PoC.
2257          */
2258         clean_dcache_guest_page(pfn, PAGE_SIZE);
2259         stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2260         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2261
2262         return 0;
2263 }
2264
2265 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2266 {
2267         pud_t *pud;
2268         pmd_t *pmd;
2269         pte_t *pte;
2270
2271         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2272         if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
2273                 return 0;
2274
2275         if (pud)
2276                 return stage2_pudp_test_and_clear_young(pud);
2277         else if (pmd)
2278                 return stage2_pmdp_test_and_clear_young(pmd);
2279         else
2280                 return stage2_ptep_test_and_clear_young(pte);
2281 }
2282
2283 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2284 {
2285         pud_t *pud;
2286         pmd_t *pmd;
2287         pte_t *pte;
2288
2289         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2290         if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
2291                 return 0;
2292
2293         if (pud)
2294                 return kvm_s2pud_young(*pud);
2295         else if (pmd)
2296                 return pmd_young(*pmd);
2297         else
2298                 return pte_young(*pte);
2299 }
2300
2301 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2302 {
2303         if (!kvm->arch.mmu.pgd)
2304                 return 0;
2305         trace_kvm_age_hva(start, end);
2306         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2307 }
2308
2309 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2310 {
2311         if (!kvm->arch.mmu.pgd)
2312                 return 0;
2313         trace_kvm_test_age_hva(hva);
2314         return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
2315                                  kvm_test_age_hva_handler, NULL);
2316 }
2317
2318 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2319 {
2320         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2321 }
2322
2323 phys_addr_t kvm_mmu_get_httbr(void)
2324 {
2325         if (__kvm_cpu_uses_extended_idmap())
2326                 return virt_to_phys(merged_hyp_pgd);
2327         else
2328                 return virt_to_phys(hyp_pgd);
2329 }
2330
2331 phys_addr_t kvm_get_idmap_vector(void)
2332 {
2333         return hyp_idmap_vector;
2334 }
2335
2336 static int kvm_map_idmap_text(pgd_t *pgd)
2337 {
2338         int err;
2339
2340         /* Create the idmap in the boot page tables */
2341         err =   __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2342                                       hyp_idmap_start, hyp_idmap_end,
2343                                       __phys_to_pfn(hyp_idmap_start),
2344                                       PAGE_HYP_EXEC);
2345         if (err)
2346                 kvm_err("Failed to idmap %lx-%lx\n",
2347                         hyp_idmap_start, hyp_idmap_end);
2348
2349         return err;
2350 }
2351
2352 int kvm_mmu_init(void)
2353 {
2354         int err;
2355
2356         hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2357         hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2358         hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2359         hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2360         hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2361
2362         /*
2363          * We rely on the linker script to ensure at build time that the HYP
2364          * init code does not cross a page boundary.
2365          */
2366         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2367
2368         kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2369         kvm_debug("HYP VA range: %lx:%lx\n",
2370                   kern_hyp_va(PAGE_OFFSET),
2371                   kern_hyp_va((unsigned long)high_memory - 1));
2372
2373         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2374             hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2375             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2376                 /*
2377                  * The idmap page is intersecting with the VA space,
2378                  * it is not safe to continue further.
2379                  */
2380                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2381                 err = -EINVAL;
2382                 goto out;
2383         }
2384
2385         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2386         if (!hyp_pgd) {
2387                 kvm_err("Hyp mode PGD not allocated\n");
2388                 err = -ENOMEM;
2389                 goto out;
2390         }
2391
2392         if (__kvm_cpu_uses_extended_idmap()) {
2393                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2394                                                          hyp_pgd_order);
2395                 if (!boot_hyp_pgd) {
2396                         kvm_err("Hyp boot PGD not allocated\n");
2397                         err = -ENOMEM;
2398                         goto out;
2399                 }
2400
2401                 err = kvm_map_idmap_text(boot_hyp_pgd);
2402                 if (err)
2403                         goto out;
2404
2405                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2406                 if (!merged_hyp_pgd) {
2407                         kvm_err("Failed to allocate extra HYP pgd\n");
2408                         goto out;
2409                 }
2410                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2411                                     hyp_idmap_start);
2412         } else {
2413                 err = kvm_map_idmap_text(hyp_pgd);
2414                 if (err)
2415                         goto out;
2416         }
2417
2418         io_map_base = hyp_idmap_start;
2419         return 0;
2420 out:
2421         free_hyp_pgds();
2422         return err;
2423 }
2424
2425 void kvm_arch_commit_memory_region(struct kvm *kvm,
2426                                    const struct kvm_userspace_memory_region *mem,
2427                                    struct kvm_memory_slot *old,
2428                                    const struct kvm_memory_slot *new,
2429                                    enum kvm_mr_change change)
2430 {
2431         /*
2432          * At this point memslot has been committed and there is an
2433          * allocated dirty_bitmap[], dirty pages will be tracked while the
2434          * memory slot is write protected.
2435          */
2436         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2437                 /*
2438                  * If we're with initial-all-set, we don't need to write
2439                  * protect any pages because they're all reported as dirty.
2440                  * Huge pages and normal pages will be write protect gradually.
2441                  */
2442                 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
2443                         kvm_mmu_wp_memory_region(kvm, mem->slot);
2444                 }
2445         }
2446 }
2447
2448 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2449                                    struct kvm_memory_slot *memslot,
2450                                    const struct kvm_userspace_memory_region *mem,
2451                                    enum kvm_mr_change change)
2452 {
2453         hva_t hva = mem->userspace_addr;
2454         hva_t reg_end = hva + mem->memory_size;
2455         bool writable = !(mem->flags & KVM_MEM_READONLY);
2456         int ret = 0;
2457
2458         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2459                         change != KVM_MR_FLAGS_ONLY)
2460                 return 0;
2461
2462         /*
2463          * Prevent userspace from creating a memory region outside of the IPA
2464          * space addressable by the KVM guest IPA space.
2465          */
2466         if (memslot->base_gfn + memslot->npages >=
2467             (kvm_phys_size(kvm) >> PAGE_SHIFT))
2468                 return -EFAULT;
2469
2470         mmap_read_lock(current->mm);
2471         /*
2472          * A memory region could potentially cover multiple VMAs, and any holes
2473          * between them, so iterate over all of them to find out if we can map
2474          * any of them right now.
2475          *
2476          *     +--------------------------------------------+
2477          * +---------------+----------------+   +----------------+
2478          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2479          * +---------------+----------------+   +----------------+
2480          *     |               memory region                |
2481          *     +--------------------------------------------+
2482          */
2483         do {
2484                 struct vm_area_struct *vma = find_vma(current->mm, hva);
2485                 hva_t vm_start, vm_end;
2486
2487                 if (!vma || vma->vm_start >= reg_end)
2488                         break;
2489
2490                 /*
2491                  * Take the intersection of this VMA with the memory region
2492                  */
2493                 vm_start = max(hva, vma->vm_start);
2494                 vm_end = min(reg_end, vma->vm_end);
2495
2496                 if (vma->vm_flags & VM_PFNMAP) {
2497                         gpa_t gpa = mem->guest_phys_addr +
2498                                     (vm_start - mem->userspace_addr);
2499                         phys_addr_t pa;
2500
2501                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2502                         pa += vm_start - vma->vm_start;
2503
2504                         /* IO region dirty page logging not allowed */
2505                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2506                                 ret = -EINVAL;
2507                                 goto out;
2508                         }
2509
2510                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2511                                                     vm_end - vm_start,
2512                                                     writable);
2513                         if (ret)
2514                                 break;
2515                 }
2516                 hva = vm_end;
2517         } while (hva < reg_end);
2518
2519         if (change == KVM_MR_FLAGS_ONLY)
2520                 goto out;
2521
2522         spin_lock(&kvm->mmu_lock);
2523         if (ret)
2524                 unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
2525         else
2526                 stage2_flush_memslot(kvm, memslot);
2527         spin_unlock(&kvm->mmu_lock);
2528 out:
2529         mmap_read_unlock(current->mm);
2530         return ret;
2531 }
2532
2533 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2534 {
2535 }
2536
2537 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2538 {
2539 }
2540
2541 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2542 {
2543         kvm_free_stage2_pgd(&kvm->arch.mmu);
2544 }
2545
2546 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2547                                    struct kvm_memory_slot *slot)
2548 {
2549         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2550         phys_addr_t size = slot->npages << PAGE_SHIFT;
2551
2552         spin_lock(&kvm->mmu_lock);
2553         unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2554         spin_unlock(&kvm->mmu_lock);
2555 }
2556
2557 /*
2558  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2559  *
2560  * Main problems:
2561  * - S/W ops are local to a CPU (not broadcast)
2562  * - We have line migration behind our back (speculation)
2563  * - System caches don't support S/W at all (damn!)
2564  *
2565  * In the face of the above, the best we can do is to try and convert
2566  * S/W ops to VA ops. Because the guest is not allowed to infer the
2567  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2568  * which is a rather good thing for us.
2569  *
2570  * Also, it is only used when turning caches on/off ("The expected
2571  * usage of the cache maintenance instructions that operate by set/way
2572  * is associated with the cache maintenance instructions associated
2573  * with the powerdown and powerup of caches, if this is required by
2574  * the implementation.").
2575  *
2576  * We use the following policy:
2577  *
2578  * - If we trap a S/W operation, we enable VM trapping to detect
2579  *   caches being turned on/off, and do a full clean.
2580  *
2581  * - We flush the caches on both caches being turned on and off.
2582  *
2583  * - Once the caches are enabled, we stop trapping VM ops.
2584  */
2585 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2586 {
2587         unsigned long hcr = *vcpu_hcr(vcpu);
2588
2589         /*
2590          * If this is the first time we do a S/W operation
2591          * (i.e. HCR_TVM not set) flush the whole memory, and set the
2592          * VM trapping.
2593          *
2594          * Otherwise, rely on the VM trapping to wait for the MMU +
2595          * Caches to be turned off. At that point, we'll be able to
2596          * clean the caches again.
2597          */
2598         if (!(hcr & HCR_TVM)) {
2599                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2600                                         vcpu_has_cache_enabled(vcpu));
2601                 stage2_flush_vm(vcpu->kvm);
2602                 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2603         }
2604 }
2605
2606 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2607 {
2608         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2609
2610         /*
2611          * If switching the MMU+caches on, need to invalidate the caches.
2612          * If switching it off, need to clean the caches.
2613          * Clean + invalidate does the trick always.
2614          */
2615         if (now_enabled != was_enabled)
2616                 stage2_flush_vm(vcpu->kvm);
2617
2618         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2619         if (now_enabled)
2620                 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2621
2622         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2623 }