Merge tag 'nfsd-6.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[linux-2.6-microblaze.git] / arch / arm64 / kvm / hyp / pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13
14
15 #define KVM_PTE_TYPE                    BIT(1)
16 #define KVM_PTE_TYPE_BLOCK              0
17 #define KVM_PTE_TYPE_PAGE               1
18 #define KVM_PTE_TYPE_TABLE              1
19
20 #define KVM_PTE_LEAF_ATTR_LO            GENMASK(11, 2)
21
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP      GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO           \
25         ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
26 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW           \
27         ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
28 #define KVM_PTE_LEAF_ATTR_LO_S1_SH      GENMASK(9, 8)
29 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS   3
30 #define KVM_PTE_LEAF_ATTR_LO_S1_AF      BIT(10)
31
32 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R  BIT(6)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W  BIT(7)
35 #define KVM_PTE_LEAF_ATTR_LO_S2_SH      GENMASK(9, 8)
36 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS   3
37 #define KVM_PTE_LEAF_ATTR_LO_S2_AF      BIT(10)
38
39 #define KVM_PTE_LEAF_ATTR_HI            GENMASK(63, 50)
40
41 #define KVM_PTE_LEAF_ATTR_HI_SW         GENMASK(58, 55)
42
43 #define KVM_PTE_LEAF_ATTR_HI_S1_XN      BIT(54)
44
45 #define KVM_PTE_LEAF_ATTR_HI_S2_XN      BIT(54)
46
47 #define KVM_PTE_LEAF_ATTR_HI_S1_GP      BIT(50)
48
49 #define KVM_PTE_LEAF_ATTR_S2_PERMS      (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
50                                          KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
51                                          KVM_PTE_LEAF_ATTR_HI_S2_XN)
52
53 #define KVM_INVALID_PTE_OWNER_MASK      GENMASK(9, 2)
54 #define KVM_MAX_OWNER_ID                1
55
56 /*
57  * Used to indicate a pte for which a 'break-before-make' sequence is in
58  * progress.
59  */
60 #define KVM_INVALID_PTE_LOCKED          BIT(10)
61
62 struct kvm_pgtable_walk_data {
63         struct kvm_pgtable_walker       *walker;
64
65         const u64                       start;
66         u64                             addr;
67         const u64                       end;
68 };
69
70 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
71 {
72         return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
73 }
74
75 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
76 {
77         return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
78 }
79
80 static bool kvm_phys_is_valid(u64 phys)
81 {
82         return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
83 }
84
85 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
86 {
87         u64 granule = kvm_granule_size(ctx->level);
88
89         if (!kvm_level_supports_block_mapping(ctx->level))
90                 return false;
91
92         if (granule > (ctx->end - ctx->addr))
93                 return false;
94
95         if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
96                 return false;
97
98         return IS_ALIGNED(ctx->addr, granule);
99 }
100
101 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
102 {
103         u64 shift = kvm_granule_shift(level);
104         u64 mask = BIT(PAGE_SHIFT - 3) - 1;
105
106         return (data->addr >> shift) & mask;
107 }
108
109 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
110 {
111         u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
112         u64 mask = BIT(pgt->ia_bits) - 1;
113
114         return (addr & mask) >> shift;
115 }
116
117 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
118 {
119         struct kvm_pgtable pgt = {
120                 .ia_bits        = ia_bits,
121                 .start_level    = start_level,
122         };
123
124         return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
125 }
126
127 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
128 {
129         if (level == KVM_PGTABLE_MAX_LEVELS - 1)
130                 return false;
131
132         if (!kvm_pte_valid(pte))
133                 return false;
134
135         return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
136 }
137
138 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
139 {
140         return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
141 }
142
143 static void kvm_clear_pte(kvm_pte_t *ptep)
144 {
145         WRITE_ONCE(*ptep, 0);
146 }
147
148 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
149 {
150         kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
151
152         pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
153         pte |= KVM_PTE_VALID;
154         return pte;
155 }
156
157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
158 {
159         kvm_pte_t pte = kvm_phys_to_pte(pa);
160         u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
161                                                            KVM_PTE_TYPE_BLOCK;
162
163         pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
164         pte |= FIELD_PREP(KVM_PTE_TYPE, type);
165         pte |= KVM_PTE_VALID;
166
167         return pte;
168 }
169
170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
171 {
172         return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
173 }
174
175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
176                                   const struct kvm_pgtable_visit_ctx *ctx,
177                                   enum kvm_pgtable_walk_flags visit)
178 {
179         struct kvm_pgtable_walker *walker = data->walker;
180
181         /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
182         WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
183         return walker->cb(ctx, visit);
184 }
185
186 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
187                                       int r)
188 {
189         /*
190          * Visitor callbacks return EAGAIN when the conditions that led to a
191          * fault are no longer reflected in the page tables due to a race to
192          * update a PTE. In the context of a fault handler this is interpreted
193          * as a signal to retry guest execution.
194          *
195          * Ignore the return code altogether for walkers outside a fault handler
196          * (e.g. write protecting a range of memory) and chug along with the
197          * page table walk.
198          */
199         if (r == -EAGAIN)
200                 return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
201
202         return !r;
203 }
204
205 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
206                               struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level);
207
208 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
209                                       struct kvm_pgtable_mm_ops *mm_ops,
210                                       kvm_pteref_t pteref, u32 level)
211 {
212         enum kvm_pgtable_walk_flags flags = data->walker->flags;
213         kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
214         struct kvm_pgtable_visit_ctx ctx = {
215                 .ptep   = ptep,
216                 .old    = READ_ONCE(*ptep),
217                 .arg    = data->walker->arg,
218                 .mm_ops = mm_ops,
219                 .start  = data->start,
220                 .addr   = data->addr,
221                 .end    = data->end,
222                 .level  = level,
223                 .flags  = flags,
224         };
225         int ret = 0;
226         bool reload = false;
227         kvm_pteref_t childp;
228         bool table = kvm_pte_table(ctx.old, level);
229
230         if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
231                 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
232                 reload = true;
233         }
234
235         if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
236                 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
237                 reload = true;
238         }
239
240         /*
241          * Reload the page table after invoking the walker callback for leaf
242          * entries or after pre-order traversal, to allow the walker to descend
243          * into a newly installed or replaced table.
244          */
245         if (reload) {
246                 ctx.old = READ_ONCE(*ptep);
247                 table = kvm_pte_table(ctx.old, level);
248         }
249
250         if (!kvm_pgtable_walk_continue(data->walker, ret))
251                 goto out;
252
253         if (!table) {
254                 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
255                 data->addr += kvm_granule_size(level);
256                 goto out;
257         }
258
259         childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
260         ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
261         if (!kvm_pgtable_walk_continue(data->walker, ret))
262                 goto out;
263
264         if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
265                 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
266
267 out:
268         if (kvm_pgtable_walk_continue(data->walker, ret))
269                 return 0;
270
271         return ret;
272 }
273
274 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
275                               struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level)
276 {
277         u32 idx;
278         int ret = 0;
279
280         if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
281                 return -EINVAL;
282
283         for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
284                 kvm_pteref_t pteref = &pgtable[idx];
285
286                 if (data->addr >= data->end)
287                         break;
288
289                 ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
290                 if (ret)
291                         break;
292         }
293
294         return ret;
295 }
296
297 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
298 {
299         u32 idx;
300         int ret = 0;
301         u64 limit = BIT(pgt->ia_bits);
302
303         if (data->addr > limit || data->end > limit)
304                 return -ERANGE;
305
306         if (!pgt->pgd)
307                 return -EINVAL;
308
309         for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
310                 kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
311
312                 ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
313                 if (ret)
314                         break;
315         }
316
317         return ret;
318 }
319
320 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
321                      struct kvm_pgtable_walker *walker)
322 {
323         struct kvm_pgtable_walk_data walk_data = {
324                 .start  = ALIGN_DOWN(addr, PAGE_SIZE),
325                 .addr   = ALIGN_DOWN(addr, PAGE_SIZE),
326                 .end    = PAGE_ALIGN(walk_data.addr + size),
327                 .walker = walker,
328         };
329         int r;
330
331         r = kvm_pgtable_walk_begin(walker);
332         if (r)
333                 return r;
334
335         r = _kvm_pgtable_walk(pgt, &walk_data);
336         kvm_pgtable_walk_end(walker);
337
338         return r;
339 }
340
341 struct leaf_walk_data {
342         kvm_pte_t       pte;
343         u32             level;
344 };
345
346 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
347                        enum kvm_pgtable_walk_flags visit)
348 {
349         struct leaf_walk_data *data = ctx->arg;
350
351         data->pte   = ctx->old;
352         data->level = ctx->level;
353
354         return 0;
355 }
356
357 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
358                          kvm_pte_t *ptep, u32 *level)
359 {
360         struct leaf_walk_data data;
361         struct kvm_pgtable_walker walker = {
362                 .cb     = leaf_walker,
363                 .flags  = KVM_PGTABLE_WALK_LEAF,
364                 .arg    = &data,
365         };
366         int ret;
367
368         ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
369                                PAGE_SIZE, &walker);
370         if (!ret) {
371                 if (ptep)
372                         *ptep  = data.pte;
373                 if (level)
374                         *level = data.level;
375         }
376
377         return ret;
378 }
379
380 struct hyp_map_data {
381         const u64                       phys;
382         kvm_pte_t                       attr;
383 };
384
385 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
386 {
387         bool device = prot & KVM_PGTABLE_PROT_DEVICE;
388         u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
389         kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
390         u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
391         u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
392                                                KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
393
394         if (!(prot & KVM_PGTABLE_PROT_R))
395                 return -EINVAL;
396
397         if (prot & KVM_PGTABLE_PROT_X) {
398                 if (prot & KVM_PGTABLE_PROT_W)
399                         return -EINVAL;
400
401                 if (device)
402                         return -EINVAL;
403
404                 if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) && system_supports_bti())
405                         attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
406         } else {
407                 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
408         }
409
410         attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
411         attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
412         attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
413         attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
414         *ptep = attr;
415
416         return 0;
417 }
418
419 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
420 {
421         enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
422         u32 ap;
423
424         if (!kvm_pte_valid(pte))
425                 return prot;
426
427         if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
428                 prot |= KVM_PGTABLE_PROT_X;
429
430         ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
431         if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
432                 prot |= KVM_PGTABLE_PROT_R;
433         else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
434                 prot |= KVM_PGTABLE_PROT_RW;
435
436         return prot;
437 }
438
439 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
440                                     struct hyp_map_data *data)
441 {
442         u64 phys = data->phys + (ctx->addr - ctx->start);
443         kvm_pte_t new;
444
445         if (!kvm_block_mapping_supported(ctx, phys))
446                 return false;
447
448         new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
449         if (ctx->old == new)
450                 return true;
451         if (!kvm_pte_valid(ctx->old))
452                 ctx->mm_ops->get_page(ctx->ptep);
453         else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
454                 return false;
455
456         smp_store_release(ctx->ptep, new);
457         return true;
458 }
459
460 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
461                           enum kvm_pgtable_walk_flags visit)
462 {
463         kvm_pte_t *childp, new;
464         struct hyp_map_data *data = ctx->arg;
465         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
466
467         if (hyp_map_walker_try_leaf(ctx, data))
468                 return 0;
469
470         if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
471                 return -EINVAL;
472
473         childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
474         if (!childp)
475                 return -ENOMEM;
476
477         new = kvm_init_table_pte(childp, mm_ops);
478         mm_ops->get_page(ctx->ptep);
479         smp_store_release(ctx->ptep, new);
480
481         return 0;
482 }
483
484 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
485                         enum kvm_pgtable_prot prot)
486 {
487         int ret;
488         struct hyp_map_data map_data = {
489                 .phys   = ALIGN_DOWN(phys, PAGE_SIZE),
490         };
491         struct kvm_pgtable_walker walker = {
492                 .cb     = hyp_map_walker,
493                 .flags  = KVM_PGTABLE_WALK_LEAF,
494                 .arg    = &map_data,
495         };
496
497         ret = hyp_set_prot_attr(prot, &map_data.attr);
498         if (ret)
499                 return ret;
500
501         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
502         dsb(ishst);
503         isb();
504         return ret;
505 }
506
507 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
508                             enum kvm_pgtable_walk_flags visit)
509 {
510         kvm_pte_t *childp = NULL;
511         u64 granule = kvm_granule_size(ctx->level);
512         u64 *unmapped = ctx->arg;
513         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
514
515         if (!kvm_pte_valid(ctx->old))
516                 return -EINVAL;
517
518         if (kvm_pte_table(ctx->old, ctx->level)) {
519                 childp = kvm_pte_follow(ctx->old, mm_ops);
520
521                 if (mm_ops->page_count(childp) != 1)
522                         return 0;
523
524                 kvm_clear_pte(ctx->ptep);
525                 dsb(ishst);
526                 __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
527         } else {
528                 if (ctx->end - ctx->addr < granule)
529                         return -EINVAL;
530
531                 kvm_clear_pte(ctx->ptep);
532                 dsb(ishst);
533                 __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
534                 *unmapped += granule;
535         }
536
537         dsb(ish);
538         isb();
539         mm_ops->put_page(ctx->ptep);
540
541         if (childp)
542                 mm_ops->put_page(childp);
543
544         return 0;
545 }
546
547 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
548 {
549         u64 unmapped = 0;
550         struct kvm_pgtable_walker walker = {
551                 .cb     = hyp_unmap_walker,
552                 .arg    = &unmapped,
553                 .flags  = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
554         };
555
556         if (!pgt->mm_ops->page_count)
557                 return 0;
558
559         kvm_pgtable_walk(pgt, addr, size, &walker);
560         return unmapped;
561 }
562
563 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
564                          struct kvm_pgtable_mm_ops *mm_ops)
565 {
566         u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
567
568         pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
569         if (!pgt->pgd)
570                 return -ENOMEM;
571
572         pgt->ia_bits            = va_bits;
573         pgt->start_level        = KVM_PGTABLE_MAX_LEVELS - levels;
574         pgt->mm_ops             = mm_ops;
575         pgt->mmu                = NULL;
576         pgt->force_pte_cb       = NULL;
577
578         return 0;
579 }
580
581 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
582                            enum kvm_pgtable_walk_flags visit)
583 {
584         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
585
586         if (!kvm_pte_valid(ctx->old))
587                 return 0;
588
589         mm_ops->put_page(ctx->ptep);
590
591         if (kvm_pte_table(ctx->old, ctx->level))
592                 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
593
594         return 0;
595 }
596
597 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
598 {
599         struct kvm_pgtable_walker walker = {
600                 .cb     = hyp_free_walker,
601                 .flags  = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
602         };
603
604         WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
605         pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
606         pgt->pgd = NULL;
607 }
608
609 struct stage2_map_data {
610         const u64                       phys;
611         kvm_pte_t                       attr;
612         u8                              owner_id;
613
614         kvm_pte_t                       *anchor;
615         kvm_pte_t                       *childp;
616
617         struct kvm_s2_mmu               *mmu;
618         void                            *memcache;
619
620         /* Force mappings to page granularity */
621         bool                            force_pte;
622 };
623
624 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
625 {
626         u64 vtcr = VTCR_EL2_FLAGS;
627         u8 lvls;
628
629         vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
630         vtcr |= VTCR_EL2_T0SZ(phys_shift);
631         /*
632          * Use a minimum 2 level page table to prevent splitting
633          * host PMD huge pages at stage2.
634          */
635         lvls = stage2_pgtable_levels(phys_shift);
636         if (lvls < 2)
637                 lvls = 2;
638         vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
639
640 #ifdef CONFIG_ARM64_HW_AFDBM
641         /*
642          * Enable the Hardware Access Flag management, unconditionally
643          * on all CPUs. In systems that have asymmetric support for the feature
644          * this allows KVM to leverage hardware support on the subset of cores
645          * that implement the feature.
646          *
647          * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
648          * hardware) on implementations that do not advertise support for the
649          * feature. As such, setting HA unconditionally is safe, unless you
650          * happen to be running on a design that has unadvertised support for
651          * HAFDBS. Here be dragons.
652          */
653         if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
654                 vtcr |= VTCR_EL2_HA;
655 #endif /* CONFIG_ARM64_HW_AFDBM */
656
657         /* Set the vmid bits */
658         vtcr |= (get_vmid_bits(mmfr1) == 16) ?
659                 VTCR_EL2_VS_16BIT :
660                 VTCR_EL2_VS_8BIT;
661
662         return vtcr;
663 }
664
665 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
666 {
667         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
668                 return false;
669
670         return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
671 }
672
673 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
674                                 phys_addr_t addr, size_t size)
675 {
676         unsigned long pages, inval_pages;
677
678         if (!system_supports_tlb_range()) {
679                 kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
680                 return;
681         }
682
683         pages = size >> PAGE_SHIFT;
684         while (pages > 0) {
685                 inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
686                 kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
687
688                 addr += inval_pages << PAGE_SHIFT;
689                 pages -= inval_pages;
690         }
691 }
692
693 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
694
695 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
696                                 kvm_pte_t *ptep)
697 {
698         bool device = prot & KVM_PGTABLE_PROT_DEVICE;
699         kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
700                             KVM_S2_MEMATTR(pgt, NORMAL);
701         u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
702
703         if (!(prot & KVM_PGTABLE_PROT_X))
704                 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
705         else if (device)
706                 return -EINVAL;
707
708         if (prot & KVM_PGTABLE_PROT_R)
709                 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
710
711         if (prot & KVM_PGTABLE_PROT_W)
712                 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
713
714         attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
715         attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
716         attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
717         *ptep = attr;
718
719         return 0;
720 }
721
722 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
723 {
724         enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
725
726         if (!kvm_pte_valid(pte))
727                 return prot;
728
729         if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
730                 prot |= KVM_PGTABLE_PROT_R;
731         if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
732                 prot |= KVM_PGTABLE_PROT_W;
733         if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
734                 prot |= KVM_PGTABLE_PROT_X;
735
736         return prot;
737 }
738
739 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
740 {
741         if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
742                 return true;
743
744         return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
745 }
746
747 static bool stage2_pte_is_counted(kvm_pte_t pte)
748 {
749         /*
750          * The refcount tracks valid entries as well as invalid entries if they
751          * encode ownership of a page to another entity than the page-table
752          * owner, whose id is 0.
753          */
754         return !!pte;
755 }
756
757 static bool stage2_pte_is_locked(kvm_pte_t pte)
758 {
759         return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
760 }
761
762 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
763 {
764         if (!kvm_pgtable_walk_shared(ctx)) {
765                 WRITE_ONCE(*ctx->ptep, new);
766                 return true;
767         }
768
769         return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
770 }
771
772 /**
773  * stage2_try_break_pte() - Invalidates a pte according to the
774  *                          'break-before-make' requirements of the
775  *                          architecture.
776  *
777  * @ctx: context of the visited pte.
778  * @mmu: stage-2 mmu
779  *
780  * Returns: true if the pte was successfully broken.
781  *
782  * If the removed pte was valid, performs the necessary serialization and TLB
783  * invalidation for the old value. For counted ptes, drops the reference count
784  * on the containing table page.
785  */
786 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
787                                  struct kvm_s2_mmu *mmu)
788 {
789         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
790
791         if (stage2_pte_is_locked(ctx->old)) {
792                 /*
793                  * Should never occur if this walker has exclusive access to the
794                  * page tables.
795                  */
796                 WARN_ON(!kvm_pgtable_walk_shared(ctx));
797                 return false;
798         }
799
800         if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
801                 return false;
802
803         if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
804                 /*
805                  * Perform the appropriate TLB invalidation based on the
806                  * evicted pte value (if any).
807                  */
808                 if (kvm_pte_table(ctx->old, ctx->level))
809                         kvm_tlb_flush_vmid_range(mmu, ctx->addr,
810                                                 kvm_granule_size(ctx->level));
811                 else if (kvm_pte_valid(ctx->old))
812                         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
813                                      ctx->addr, ctx->level);
814         }
815
816         if (stage2_pte_is_counted(ctx->old))
817                 mm_ops->put_page(ctx->ptep);
818
819         return true;
820 }
821
822 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
823 {
824         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
825
826         WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
827
828         if (stage2_pte_is_counted(new))
829                 mm_ops->get_page(ctx->ptep);
830
831         smp_store_release(ctx->ptep, new);
832 }
833
834 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
835 {
836         /*
837          * If FEAT_TLBIRANGE is implemented, defer the individual
838          * TLB invalidations until the entire walk is finished, and
839          * then use the range-based TLBI instructions to do the
840          * invalidations. Condition deferred TLB invalidation on the
841          * system supporting FWB as the optimization is entirely
842          * pointless when the unmap walker needs to perform CMOs.
843          */
844         return system_supports_tlb_range() && stage2_has_fwb(pgt);
845 }
846
847 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
848                                 struct kvm_s2_mmu *mmu,
849                                 struct kvm_pgtable_mm_ops *mm_ops)
850 {
851         struct kvm_pgtable *pgt = ctx->arg;
852
853         /*
854          * Clear the existing PTE, and perform break-before-make if it was
855          * valid. Depending on the system support, defer the TLB maintenance
856          * for the same until the entire unmap walk is completed.
857          */
858         if (kvm_pte_valid(ctx->old)) {
859                 kvm_clear_pte(ctx->ptep);
860
861                 if (!stage2_unmap_defer_tlb_flush(pgt))
862                         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
863                                         ctx->addr, ctx->level);
864         }
865
866         mm_ops->put_page(ctx->ptep);
867 }
868
869 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
870 {
871         u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
872         return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
873 }
874
875 static bool stage2_pte_executable(kvm_pte_t pte)
876 {
877         return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
878 }
879
880 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
881                                        const struct stage2_map_data *data)
882 {
883         u64 phys = data->phys;
884
885         /*
886          * Stage-2 walks to update ownership data are communicated to the map
887          * walker using an invalid PA. Avoid offsetting an already invalid PA,
888          * which could overflow and make the address valid again.
889          */
890         if (!kvm_phys_is_valid(phys))
891                 return phys;
892
893         /*
894          * Otherwise, work out the correct PA based on how far the walk has
895          * gotten.
896          */
897         return phys + (ctx->addr - ctx->start);
898 }
899
900 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
901                                         struct stage2_map_data *data)
902 {
903         u64 phys = stage2_map_walker_phys_addr(ctx, data);
904
905         if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1)))
906                 return false;
907
908         return kvm_block_mapping_supported(ctx, phys);
909 }
910
911 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
912                                       struct stage2_map_data *data)
913 {
914         kvm_pte_t new;
915         u64 phys = stage2_map_walker_phys_addr(ctx, data);
916         u64 granule = kvm_granule_size(ctx->level);
917         struct kvm_pgtable *pgt = data->mmu->pgt;
918         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
919
920         if (!stage2_leaf_mapping_allowed(ctx, data))
921                 return -E2BIG;
922
923         if (kvm_phys_is_valid(phys))
924                 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
925         else
926                 new = kvm_init_invalid_leaf_owner(data->owner_id);
927
928         /*
929          * Skip updating the PTE if we are trying to recreate the exact
930          * same mapping or only change the access permissions. Instead,
931          * the vCPU will exit one more time from guest if still needed
932          * and then go through the path of relaxing permissions.
933          */
934         if (!stage2_pte_needs_update(ctx->old, new))
935                 return -EAGAIN;
936
937         if (!stage2_try_break_pte(ctx, data->mmu))
938                 return -EAGAIN;
939
940         /* Perform CMOs before installation of the guest stage-2 PTE */
941         if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
942             stage2_pte_cacheable(pgt, new))
943                 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
944                                                granule);
945
946         if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
947             stage2_pte_executable(new))
948                 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
949
950         stage2_make_pte(ctx, new);
951
952         return 0;
953 }
954
955 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
956                                      struct stage2_map_data *data)
957 {
958         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
959         kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
960         int ret;
961
962         if (!stage2_leaf_mapping_allowed(ctx, data))
963                 return 0;
964
965         ret = stage2_map_walker_try_leaf(ctx, data);
966         if (ret)
967                 return ret;
968
969         mm_ops->free_unlinked_table(childp, ctx->level);
970         return 0;
971 }
972
973 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
974                                 struct stage2_map_data *data)
975 {
976         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
977         kvm_pte_t *childp, new;
978         int ret;
979
980         ret = stage2_map_walker_try_leaf(ctx, data);
981         if (ret != -E2BIG)
982                 return ret;
983
984         if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
985                 return -EINVAL;
986
987         if (!data->memcache)
988                 return -ENOMEM;
989
990         childp = mm_ops->zalloc_page(data->memcache);
991         if (!childp)
992                 return -ENOMEM;
993
994         if (!stage2_try_break_pte(ctx, data->mmu)) {
995                 mm_ops->put_page(childp);
996                 return -EAGAIN;
997         }
998
999         /*
1000          * If we've run into an existing block mapping then replace it with
1001          * a table. Accesses beyond 'end' that fall within the new table
1002          * will be mapped lazily.
1003          */
1004         new = kvm_init_table_pte(childp, mm_ops);
1005         stage2_make_pte(ctx, new);
1006
1007         return 0;
1008 }
1009
1010 /*
1011  * The TABLE_PRE callback runs for table entries on the way down, looking
1012  * for table entries which we could conceivably replace with a block entry
1013  * for this mapping. If it finds one it replaces the entry and calls
1014  * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1015  *
1016  * Otherwise, the LEAF callback performs the mapping at the existing leaves
1017  * instead.
1018  */
1019 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1020                              enum kvm_pgtable_walk_flags visit)
1021 {
1022         struct stage2_map_data *data = ctx->arg;
1023
1024         switch (visit) {
1025         case KVM_PGTABLE_WALK_TABLE_PRE:
1026                 return stage2_map_walk_table_pre(ctx, data);
1027         case KVM_PGTABLE_WALK_LEAF:
1028                 return stage2_map_walk_leaf(ctx, data);
1029         default:
1030                 return -EINVAL;
1031         }
1032 }
1033
1034 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1035                            u64 phys, enum kvm_pgtable_prot prot,
1036                            void *mc, enum kvm_pgtable_walk_flags flags)
1037 {
1038         int ret;
1039         struct stage2_map_data map_data = {
1040                 .phys           = ALIGN_DOWN(phys, PAGE_SIZE),
1041                 .mmu            = pgt->mmu,
1042                 .memcache       = mc,
1043                 .force_pte      = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1044         };
1045         struct kvm_pgtable_walker walker = {
1046                 .cb             = stage2_map_walker,
1047                 .flags          = flags |
1048                                   KVM_PGTABLE_WALK_TABLE_PRE |
1049                                   KVM_PGTABLE_WALK_LEAF,
1050                 .arg            = &map_data,
1051         };
1052
1053         if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1054                 return -EINVAL;
1055
1056         ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1057         if (ret)
1058                 return ret;
1059
1060         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1061         dsb(ishst);
1062         return ret;
1063 }
1064
1065 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1066                                  void *mc, u8 owner_id)
1067 {
1068         int ret;
1069         struct stage2_map_data map_data = {
1070                 .phys           = KVM_PHYS_INVALID,
1071                 .mmu            = pgt->mmu,
1072                 .memcache       = mc,
1073                 .owner_id       = owner_id,
1074                 .force_pte      = true,
1075         };
1076         struct kvm_pgtable_walker walker = {
1077                 .cb             = stage2_map_walker,
1078                 .flags          = KVM_PGTABLE_WALK_TABLE_PRE |
1079                                   KVM_PGTABLE_WALK_LEAF,
1080                 .arg            = &map_data,
1081         };
1082
1083         if (owner_id > KVM_MAX_OWNER_ID)
1084                 return -EINVAL;
1085
1086         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1087         return ret;
1088 }
1089
1090 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1091                                enum kvm_pgtable_walk_flags visit)
1092 {
1093         struct kvm_pgtable *pgt = ctx->arg;
1094         struct kvm_s2_mmu *mmu = pgt->mmu;
1095         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1096         kvm_pte_t *childp = NULL;
1097         bool need_flush = false;
1098
1099         if (!kvm_pte_valid(ctx->old)) {
1100                 if (stage2_pte_is_counted(ctx->old)) {
1101                         kvm_clear_pte(ctx->ptep);
1102                         mm_ops->put_page(ctx->ptep);
1103                 }
1104                 return 0;
1105         }
1106
1107         if (kvm_pte_table(ctx->old, ctx->level)) {
1108                 childp = kvm_pte_follow(ctx->old, mm_ops);
1109
1110                 if (mm_ops->page_count(childp) != 1)
1111                         return 0;
1112         } else if (stage2_pte_cacheable(pgt, ctx->old)) {
1113                 need_flush = !stage2_has_fwb(pgt);
1114         }
1115
1116         /*
1117          * This is similar to the map() path in that we unmap the entire
1118          * block entry and rely on the remaining portions being faulted
1119          * back lazily.
1120          */
1121         stage2_unmap_put_pte(ctx, mmu, mm_ops);
1122
1123         if (need_flush && mm_ops->dcache_clean_inval_poc)
1124                 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1125                                                kvm_granule_size(ctx->level));
1126
1127         if (childp)
1128                 mm_ops->put_page(childp);
1129
1130         return 0;
1131 }
1132
1133 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1134 {
1135         int ret;
1136         struct kvm_pgtable_walker walker = {
1137                 .cb     = stage2_unmap_walker,
1138                 .arg    = pgt,
1139                 .flags  = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1140         };
1141
1142         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1143         if (stage2_unmap_defer_tlb_flush(pgt))
1144                 /* Perform the deferred TLB invalidations */
1145                 kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1146
1147         return ret;
1148 }
1149
1150 struct stage2_attr_data {
1151         kvm_pte_t                       attr_set;
1152         kvm_pte_t                       attr_clr;
1153         kvm_pte_t                       pte;
1154         u32                             level;
1155 };
1156
1157 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1158                               enum kvm_pgtable_walk_flags visit)
1159 {
1160         kvm_pte_t pte = ctx->old;
1161         struct stage2_attr_data *data = ctx->arg;
1162         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1163
1164         if (!kvm_pte_valid(ctx->old))
1165                 return -EAGAIN;
1166
1167         data->level = ctx->level;
1168         data->pte = pte;
1169         pte &= ~data->attr_clr;
1170         pte |= data->attr_set;
1171
1172         /*
1173          * We may race with the CPU trying to set the access flag here,
1174          * but worst-case the access flag update gets lost and will be
1175          * set on the next access instead.
1176          */
1177         if (data->pte != pte) {
1178                 /*
1179                  * Invalidate instruction cache before updating the guest
1180                  * stage-2 PTE if we are going to add executable permission.
1181                  */
1182                 if (mm_ops->icache_inval_pou &&
1183                     stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1184                         mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1185                                                   kvm_granule_size(ctx->level));
1186
1187                 if (!stage2_try_set_pte(ctx, pte))
1188                         return -EAGAIN;
1189         }
1190
1191         return 0;
1192 }
1193
1194 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1195                                     u64 size, kvm_pte_t attr_set,
1196                                     kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1197                                     u32 *level, enum kvm_pgtable_walk_flags flags)
1198 {
1199         int ret;
1200         kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1201         struct stage2_attr_data data = {
1202                 .attr_set       = attr_set & attr_mask,
1203                 .attr_clr       = attr_clr & attr_mask,
1204         };
1205         struct kvm_pgtable_walker walker = {
1206                 .cb             = stage2_attr_walker,
1207                 .arg            = &data,
1208                 .flags          = flags | KVM_PGTABLE_WALK_LEAF,
1209         };
1210
1211         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1212         if (ret)
1213                 return ret;
1214
1215         if (orig_pte)
1216                 *orig_pte = data.pte;
1217
1218         if (level)
1219                 *level = data.level;
1220         return 0;
1221 }
1222
1223 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1224 {
1225         return stage2_update_leaf_attrs(pgt, addr, size, 0,
1226                                         KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1227                                         NULL, NULL, 0);
1228 }
1229
1230 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1231 {
1232         kvm_pte_t pte = 0;
1233         int ret;
1234
1235         ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1236                                        &pte, NULL,
1237                                        KVM_PGTABLE_WALK_HANDLE_FAULT |
1238                                        KVM_PGTABLE_WALK_SHARED);
1239         if (!ret)
1240                 dsb(ishst);
1241
1242         return pte;
1243 }
1244
1245 struct stage2_age_data {
1246         bool    mkold;
1247         bool    young;
1248 };
1249
1250 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1251                              enum kvm_pgtable_walk_flags visit)
1252 {
1253         kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1254         struct stage2_age_data *data = ctx->arg;
1255
1256         if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1257                 return 0;
1258
1259         data->young = true;
1260
1261         /*
1262          * stage2_age_walker() is always called while holding the MMU lock for
1263          * write, so this will always succeed. Nonetheless, this deliberately
1264          * follows the race detection pattern of the other stage-2 walkers in
1265          * case the locking mechanics of the MMU notifiers is ever changed.
1266          */
1267         if (data->mkold && !stage2_try_set_pte(ctx, new))
1268                 return -EAGAIN;
1269
1270         /*
1271          * "But where's the TLBI?!", you scream.
1272          * "Over in the core code", I sigh.
1273          *
1274          * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1275          */
1276         return 0;
1277 }
1278
1279 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1280                                          u64 size, bool mkold)
1281 {
1282         struct stage2_age_data data = {
1283                 .mkold          = mkold,
1284         };
1285         struct kvm_pgtable_walker walker = {
1286                 .cb             = stage2_age_walker,
1287                 .arg            = &data,
1288                 .flags          = KVM_PGTABLE_WALK_LEAF,
1289         };
1290
1291         WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1292         return data.young;
1293 }
1294
1295 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1296                                    enum kvm_pgtable_prot prot)
1297 {
1298         int ret;
1299         u32 level;
1300         kvm_pte_t set = 0, clr = 0;
1301
1302         if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1303                 return -EINVAL;
1304
1305         if (prot & KVM_PGTABLE_PROT_R)
1306                 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1307
1308         if (prot & KVM_PGTABLE_PROT_W)
1309                 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1310
1311         if (prot & KVM_PGTABLE_PROT_X)
1312                 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1313
1314         ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1315                                        KVM_PGTABLE_WALK_HANDLE_FAULT |
1316                                        KVM_PGTABLE_WALK_SHARED);
1317         if (!ret)
1318                 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1319         return ret;
1320 }
1321
1322 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1323                                enum kvm_pgtable_walk_flags visit)
1324 {
1325         struct kvm_pgtable *pgt = ctx->arg;
1326         struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1327
1328         if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
1329                 return 0;
1330
1331         if (mm_ops->dcache_clean_inval_poc)
1332                 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1333                                                kvm_granule_size(ctx->level));
1334         return 0;
1335 }
1336
1337 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1338 {
1339         struct kvm_pgtable_walker walker = {
1340                 .cb     = stage2_flush_walker,
1341                 .flags  = KVM_PGTABLE_WALK_LEAF,
1342                 .arg    = pgt,
1343         };
1344
1345         if (stage2_has_fwb(pgt))
1346                 return 0;
1347
1348         return kvm_pgtable_walk(pgt, addr, size, &walker);
1349 }
1350
1351 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1352                                               u64 phys, u32 level,
1353                                               enum kvm_pgtable_prot prot,
1354                                               void *mc, bool force_pte)
1355 {
1356         struct stage2_map_data map_data = {
1357                 .phys           = phys,
1358                 .mmu            = pgt->mmu,
1359                 .memcache       = mc,
1360                 .force_pte      = force_pte,
1361         };
1362         struct kvm_pgtable_walker walker = {
1363                 .cb             = stage2_map_walker,
1364                 .flags          = KVM_PGTABLE_WALK_LEAF |
1365                                   KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1366                                   KVM_PGTABLE_WALK_SKIP_CMO,
1367                 .arg            = &map_data,
1368         };
1369         /*
1370          * The input address (.addr) is irrelevant for walking an
1371          * unlinked table. Construct an ambiguous IA range to map
1372          * kvm_granule_size(level) worth of memory.
1373          */
1374         struct kvm_pgtable_walk_data data = {
1375                 .walker = &walker,
1376                 .addr   = 0,
1377                 .end    = kvm_granule_size(level),
1378         };
1379         struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1380         kvm_pte_t *pgtable;
1381         int ret;
1382
1383         if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1384                 return ERR_PTR(-EINVAL);
1385
1386         ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1387         if (ret)
1388                 return ERR_PTR(ret);
1389
1390         pgtable = mm_ops->zalloc_page(mc);
1391         if (!pgtable)
1392                 return ERR_PTR(-ENOMEM);
1393
1394         ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1395                                  level + 1);
1396         if (ret) {
1397                 kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1398                 mm_ops->put_page(pgtable);
1399                 return ERR_PTR(ret);
1400         }
1401
1402         return pgtable;
1403 }
1404
1405 /*
1406  * Get the number of page-tables needed to replace a block with a
1407  * fully populated tree up to the PTE entries. Note that @level is
1408  * interpreted as in "level @level entry".
1409  */
1410 static int stage2_block_get_nr_page_tables(u32 level)
1411 {
1412         switch (level) {
1413         case 1:
1414                 return PTRS_PER_PTE + 1;
1415         case 2:
1416                 return 1;
1417         case 3:
1418                 return 0;
1419         default:
1420                 WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1421                              level >= KVM_PGTABLE_MAX_LEVELS);
1422                 return -EINVAL;
1423         };
1424 }
1425
1426 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1427                                enum kvm_pgtable_walk_flags visit)
1428 {
1429         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1430         struct kvm_mmu_memory_cache *mc = ctx->arg;
1431         struct kvm_s2_mmu *mmu;
1432         kvm_pte_t pte = ctx->old, new, *childp;
1433         enum kvm_pgtable_prot prot;
1434         u32 level = ctx->level;
1435         bool force_pte;
1436         int nr_pages;
1437         u64 phys;
1438
1439         /* No huge-pages exist at the last level */
1440         if (level == KVM_PGTABLE_MAX_LEVELS - 1)
1441                 return 0;
1442
1443         /* We only split valid block mappings */
1444         if (!kvm_pte_valid(pte))
1445                 return 0;
1446
1447         nr_pages = stage2_block_get_nr_page_tables(level);
1448         if (nr_pages < 0)
1449                 return nr_pages;
1450
1451         if (mc->nobjs >= nr_pages) {
1452                 /* Build a tree mapped down to the PTE granularity. */
1453                 force_pte = true;
1454         } else {
1455                 /*
1456                  * Don't force PTEs, so create_unlinked() below does
1457                  * not populate the tree up to the PTE level. The
1458                  * consequence is that the call will require a single
1459                  * page of level 2 entries at level 1, or a single
1460                  * page of PTEs at level 2. If we are at level 1, the
1461                  * PTEs will be created recursively.
1462                  */
1463                 force_pte = false;
1464                 nr_pages = 1;
1465         }
1466
1467         if (mc->nobjs < nr_pages)
1468                 return -ENOMEM;
1469
1470         mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1471         phys = kvm_pte_to_phys(pte);
1472         prot = kvm_pgtable_stage2_pte_prot(pte);
1473
1474         childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1475                                                     level, prot, mc, force_pte);
1476         if (IS_ERR(childp))
1477                 return PTR_ERR(childp);
1478
1479         if (!stage2_try_break_pte(ctx, mmu)) {
1480                 kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1481                 mm_ops->put_page(childp);
1482                 return -EAGAIN;
1483         }
1484
1485         /*
1486          * Note, the contents of the page table are guaranteed to be made
1487          * visible before the new PTE is assigned because stage2_make_pte()
1488          * writes the PTE using smp_store_release().
1489          */
1490         new = kvm_init_table_pte(childp, mm_ops);
1491         stage2_make_pte(ctx, new);
1492         dsb(ishst);
1493         return 0;
1494 }
1495
1496 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1497                              struct kvm_mmu_memory_cache *mc)
1498 {
1499         struct kvm_pgtable_walker walker = {
1500                 .cb     = stage2_split_walker,
1501                 .flags  = KVM_PGTABLE_WALK_LEAF,
1502                 .arg    = mc,
1503         };
1504
1505         return kvm_pgtable_walk(pgt, addr, size, &walker);
1506 }
1507
1508 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1509                               struct kvm_pgtable_mm_ops *mm_ops,
1510                               enum kvm_pgtable_stage2_flags flags,
1511                               kvm_pgtable_force_pte_cb_t force_pte_cb)
1512 {
1513         size_t pgd_sz;
1514         u64 vtcr = mmu->arch->vtcr;
1515         u32 ia_bits = VTCR_EL2_IPA(vtcr);
1516         u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1517         u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1518
1519         pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1520         pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1521         if (!pgt->pgd)
1522                 return -ENOMEM;
1523
1524         pgt->ia_bits            = ia_bits;
1525         pgt->start_level        = start_level;
1526         pgt->mm_ops             = mm_ops;
1527         pgt->mmu                = mmu;
1528         pgt->flags              = flags;
1529         pgt->force_pte_cb       = force_pte_cb;
1530
1531         /* Ensure zeroed PGD pages are visible to the hardware walker */
1532         dsb(ishst);
1533         return 0;
1534 }
1535
1536 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1537 {
1538         u32 ia_bits = VTCR_EL2_IPA(vtcr);
1539         u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1540         u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1541
1542         return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1543 }
1544
1545 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1546                               enum kvm_pgtable_walk_flags visit)
1547 {
1548         struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1549
1550         if (!stage2_pte_is_counted(ctx->old))
1551                 return 0;
1552
1553         mm_ops->put_page(ctx->ptep);
1554
1555         if (kvm_pte_table(ctx->old, ctx->level))
1556                 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1557
1558         return 0;
1559 }
1560
1561 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1562 {
1563         size_t pgd_sz;
1564         struct kvm_pgtable_walker walker = {
1565                 .cb     = stage2_free_walker,
1566                 .flags  = KVM_PGTABLE_WALK_LEAF |
1567                           KVM_PGTABLE_WALK_TABLE_POST,
1568         };
1569
1570         WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1571         pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1572         pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1573         pgt->pgd = NULL;
1574 }
1575
1576 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level)
1577 {
1578         kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1579         struct kvm_pgtable_walker walker = {
1580                 .cb     = stage2_free_walker,
1581                 .flags  = KVM_PGTABLE_WALK_LEAF |
1582                           KVM_PGTABLE_WALK_TABLE_POST,
1583         };
1584         struct kvm_pgtable_walk_data data = {
1585                 .walker = &walker,
1586
1587                 /*
1588                  * At this point the IPA really doesn't matter, as the page
1589                  * table being traversed has already been removed from the stage
1590                  * 2. Set an appropriate range to cover the entire page table.
1591                  */
1592                 .addr   = 0,
1593                 .end    = kvm_granule_size(level),
1594         };
1595
1596         WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1597
1598         WARN_ON(mm_ops->page_count(pgtable) != 1);
1599         mm_ops->put_page(pgtable);
1600 }