Merge tag 'x86-mm-2021-04-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension        virt");
47 #endif
48
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62
63 static bool vgic_present;
64
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
67
68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
69 {
70         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
71 }
72
73 int kvm_arch_hardware_setup(void *opaque)
74 {
75         return 0;
76 }
77
78 int kvm_arch_check_processor_compat(void *opaque)
79 {
80         return 0;
81 }
82
83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84                             struct kvm_enable_cap *cap)
85 {
86         int r;
87
88         if (cap->flags)
89                 return -EINVAL;
90
91         switch (cap->cap) {
92         case KVM_CAP_ARM_NISV_TO_USER:
93                 r = 0;
94                 kvm->arch.return_nisv_io_abort_to_user = true;
95                 break;
96         default:
97                 r = -EINVAL;
98                 break;
99         }
100
101         return r;
102 }
103
104 static int kvm_arm_default_max_vcpus(void)
105 {
106         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
107 }
108
109 static void set_default_spectre(struct kvm *kvm)
110 {
111         /*
112          * The default is to expose CSV2 == 1 if the HW isn't affected.
113          * Although this is a per-CPU feature, we make it global because
114          * asymmetric systems are just a nuisance.
115          *
116          * Userspace can override this as long as it doesn't promise
117          * the impossible.
118          */
119         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
120                 kvm->arch.pfr0_csv2 = 1;
121         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
122                 kvm->arch.pfr0_csv3 = 1;
123 }
124
125 /**
126  * kvm_arch_init_vm - initializes a VM data structure
127  * @kvm:        pointer to the KVM struct
128  */
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131         int ret;
132
133         ret = kvm_arm_setup_stage2(kvm, type);
134         if (ret)
135                 return ret;
136
137         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138         if (ret)
139                 return ret;
140
141         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142         if (ret)
143                 goto out_free_stage2_pgd;
144
145         kvm_vgic_early_init(kvm);
146
147         /* The maximum number of VCPUs is limited by the host's GIC model */
148         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149
150         set_default_spectre(kvm);
151
152         return ret;
153 out_free_stage2_pgd:
154         kvm_free_stage2_pgd(&kvm->arch.mmu);
155         return ret;
156 }
157
158 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 {
160         return VM_FAULT_SIGBUS;
161 }
162
163
164 /**
165  * kvm_arch_destroy_vm - destroy the VM data structure
166  * @kvm:        pointer to the KVM struct
167  */
168 void kvm_arch_destroy_vm(struct kvm *kvm)
169 {
170         int i;
171
172         bitmap_free(kvm->arch.pmu_filter);
173
174         kvm_vgic_destroy(kvm);
175
176         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
177                 if (kvm->vcpus[i]) {
178                         kvm_vcpu_destroy(kvm->vcpus[i]);
179                         kvm->vcpus[i] = NULL;
180                 }
181         }
182         atomic_set(&kvm->online_vcpus, 0);
183 }
184
185 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 {
187         int r;
188         switch (ext) {
189         case KVM_CAP_IRQCHIP:
190                 r = vgic_present;
191                 break;
192         case KVM_CAP_IOEVENTFD:
193         case KVM_CAP_DEVICE_CTRL:
194         case KVM_CAP_USER_MEMORY:
195         case KVM_CAP_SYNC_MMU:
196         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
197         case KVM_CAP_ONE_REG:
198         case KVM_CAP_ARM_PSCI:
199         case KVM_CAP_ARM_PSCI_0_2:
200         case KVM_CAP_READONLY_MEM:
201         case KVM_CAP_MP_STATE:
202         case KVM_CAP_IMMEDIATE_EXIT:
203         case KVM_CAP_VCPU_EVENTS:
204         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205         case KVM_CAP_ARM_NISV_TO_USER:
206         case KVM_CAP_ARM_INJECT_EXT_DABT:
207         case KVM_CAP_SET_GUEST_DEBUG:
208         case KVM_CAP_VCPU_ATTRIBUTES:
209                 r = 1;
210                 break;
211         case KVM_CAP_ARM_SET_DEVICE_ADDR:
212                 r = 1;
213                 break;
214         case KVM_CAP_NR_VCPUS:
215                 r = num_online_cpus();
216                 break;
217         case KVM_CAP_MAX_VCPUS:
218         case KVM_CAP_MAX_VCPU_ID:
219                 if (kvm)
220                         r = kvm->arch.max_vcpus;
221                 else
222                         r = kvm_arm_default_max_vcpus();
223                 break;
224         case KVM_CAP_MSI_DEVID:
225                 if (!kvm)
226                         r = -EINVAL;
227                 else
228                         r = kvm->arch.vgic.msis_require_devid;
229                 break;
230         case KVM_CAP_ARM_USER_IRQ:
231                 /*
232                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
233                  * (bump this number if adding more devices)
234                  */
235                 r = 1;
236                 break;
237         case KVM_CAP_STEAL_TIME:
238                 r = kvm_arm_pvtime_supported();
239                 break;
240         case KVM_CAP_ARM_EL1_32BIT:
241                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
242                 break;
243         case KVM_CAP_GUEST_DEBUG_HW_BPS:
244                 r = get_num_brps();
245                 break;
246         case KVM_CAP_GUEST_DEBUG_HW_WPS:
247                 r = get_num_wrps();
248                 break;
249         case KVM_CAP_ARM_PMU_V3:
250                 r = kvm_arm_support_pmu_v3();
251                 break;
252         case KVM_CAP_ARM_INJECT_SERROR_ESR:
253                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
254                 break;
255         case KVM_CAP_ARM_VM_IPA_SIZE:
256                 r = get_kvm_ipa_limit();
257                 break;
258         case KVM_CAP_ARM_SVE:
259                 r = system_supports_sve();
260                 break;
261         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
262         case KVM_CAP_ARM_PTRAUTH_GENERIC:
263                 r = system_has_full_ptr_auth();
264                 break;
265         default:
266                 r = 0;
267         }
268
269         return r;
270 }
271
272 long kvm_arch_dev_ioctl(struct file *filp,
273                         unsigned int ioctl, unsigned long arg)
274 {
275         return -EINVAL;
276 }
277
278 struct kvm *kvm_arch_alloc_vm(void)
279 {
280         if (!has_vhe())
281                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
282
283         return vzalloc(sizeof(struct kvm));
284 }
285
286 void kvm_arch_free_vm(struct kvm *kvm)
287 {
288         if (!has_vhe())
289                 kfree(kvm);
290         else
291                 vfree(kvm);
292 }
293
294 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
295 {
296         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
297                 return -EBUSY;
298
299         if (id >= kvm->arch.max_vcpus)
300                 return -EINVAL;
301
302         return 0;
303 }
304
305 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
306 {
307         int err;
308
309         /* Force users to call KVM_ARM_VCPU_INIT */
310         vcpu->arch.target = -1;
311         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
312
313         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
314
315         /* Set up the timer */
316         kvm_timer_vcpu_init(vcpu);
317
318         kvm_pmu_vcpu_init(vcpu);
319
320         kvm_arm_reset_debug_ptr(vcpu);
321
322         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
323
324         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
325
326         err = kvm_vgic_vcpu_init(vcpu);
327         if (err)
328                 return err;
329
330         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
331 }
332
333 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
334 {
335 }
336
337 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
338 {
339         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
340                 static_branch_dec(&userspace_irqchip_in_use);
341
342         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
343         kvm_timer_vcpu_terminate(vcpu);
344         kvm_pmu_vcpu_destroy(vcpu);
345
346         kvm_arm_vcpu_destroy(vcpu);
347 }
348
349 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
350 {
351         return kvm_timer_is_pending(vcpu);
352 }
353
354 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
355 {
356         /*
357          * If we're about to block (most likely because we've just hit a
358          * WFI), we need to sync back the state of the GIC CPU interface
359          * so that we have the latest PMR and group enables. This ensures
360          * that kvm_arch_vcpu_runnable has up-to-date data to decide
361          * whether we have pending interrupts.
362          *
363          * For the same reason, we want to tell GICv4 that we need
364          * doorbells to be signalled, should an interrupt become pending.
365          */
366         preempt_disable();
367         kvm_vgic_vmcr_sync(vcpu);
368         vgic_v4_put(vcpu, true);
369         preempt_enable();
370 }
371
372 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
373 {
374         preempt_disable();
375         vgic_v4_load(vcpu);
376         preempt_enable();
377 }
378
379 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
380 {
381         struct kvm_s2_mmu *mmu;
382         int *last_ran;
383
384         mmu = vcpu->arch.hw_mmu;
385         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
386
387         /*
388          * We guarantee that both TLBs and I-cache are private to each
389          * vcpu. If detecting that a vcpu from the same VM has
390          * previously run on the same physical CPU, call into the
391          * hypervisor code to nuke the relevant contexts.
392          *
393          * We might get preempted before the vCPU actually runs, but
394          * over-invalidation doesn't affect correctness.
395          */
396         if (*last_ran != vcpu->vcpu_id) {
397                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
398                 *last_ran = vcpu->vcpu_id;
399         }
400
401         vcpu->cpu = cpu;
402
403         kvm_vgic_load(vcpu);
404         kvm_timer_vcpu_load(vcpu);
405         if (has_vhe())
406                 kvm_vcpu_load_sysregs_vhe(vcpu);
407         kvm_arch_vcpu_load_fp(vcpu);
408         kvm_vcpu_pmu_restore_guest(vcpu);
409         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
410                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
411
412         if (single_task_running())
413                 vcpu_clear_wfx_traps(vcpu);
414         else
415                 vcpu_set_wfx_traps(vcpu);
416
417         if (vcpu_has_ptrauth(vcpu))
418                 vcpu_ptrauth_disable(vcpu);
419 }
420
421 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
422 {
423         kvm_arch_vcpu_put_fp(vcpu);
424         if (has_vhe())
425                 kvm_vcpu_put_sysregs_vhe(vcpu);
426         kvm_timer_vcpu_put(vcpu);
427         kvm_vgic_put(vcpu);
428         kvm_vcpu_pmu_restore_host(vcpu);
429
430         vcpu->cpu = -1;
431 }
432
433 static void vcpu_power_off(struct kvm_vcpu *vcpu)
434 {
435         vcpu->arch.power_off = true;
436         kvm_make_request(KVM_REQ_SLEEP, vcpu);
437         kvm_vcpu_kick(vcpu);
438 }
439
440 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
441                                     struct kvm_mp_state *mp_state)
442 {
443         if (vcpu->arch.power_off)
444                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
445         else
446                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
447
448         return 0;
449 }
450
451 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
452                                     struct kvm_mp_state *mp_state)
453 {
454         int ret = 0;
455
456         switch (mp_state->mp_state) {
457         case KVM_MP_STATE_RUNNABLE:
458                 vcpu->arch.power_off = false;
459                 break;
460         case KVM_MP_STATE_STOPPED:
461                 vcpu_power_off(vcpu);
462                 break;
463         default:
464                 ret = -EINVAL;
465         }
466
467         return ret;
468 }
469
470 /**
471  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
472  * @v:          The VCPU pointer
473  *
474  * If the guest CPU is not waiting for interrupts or an interrupt line is
475  * asserted, the CPU is by definition runnable.
476  */
477 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
478 {
479         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
480         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
481                 && !v->arch.power_off && !v->arch.pause);
482 }
483
484 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
485 {
486         return vcpu_mode_priv(vcpu);
487 }
488
489 /* Just ensure a guest exit from a particular CPU */
490 static void exit_vm_noop(void *info)
491 {
492 }
493
494 void force_vm_exit(const cpumask_t *mask)
495 {
496         preempt_disable();
497         smp_call_function_many(mask, exit_vm_noop, NULL, true);
498         preempt_enable();
499 }
500
501 /**
502  * need_new_vmid_gen - check that the VMID is still valid
503  * @vmid: The VMID to check
504  *
505  * return true if there is a new generation of VMIDs being used
506  *
507  * The hardware supports a limited set of values with the value zero reserved
508  * for the host, so we check if an assigned value belongs to a previous
509  * generation, which requires us to assign a new value. If we're the first to
510  * use a VMID for the new generation, we must flush necessary caches and TLBs
511  * on all CPUs.
512  */
513 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
514 {
515         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
516         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
517         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
518 }
519
520 /**
521  * update_vmid - Update the vmid with a valid VMID for the current generation
522  * @vmid: The stage-2 VMID information struct
523  */
524 static void update_vmid(struct kvm_vmid *vmid)
525 {
526         if (!need_new_vmid_gen(vmid))
527                 return;
528
529         spin_lock(&kvm_vmid_lock);
530
531         /*
532          * We need to re-check the vmid_gen here to ensure that if another vcpu
533          * already allocated a valid vmid for this vm, then this vcpu should
534          * use the same vmid.
535          */
536         if (!need_new_vmid_gen(vmid)) {
537                 spin_unlock(&kvm_vmid_lock);
538                 return;
539         }
540
541         /* First user of a new VMID generation? */
542         if (unlikely(kvm_next_vmid == 0)) {
543                 atomic64_inc(&kvm_vmid_gen);
544                 kvm_next_vmid = 1;
545
546                 /*
547                  * On SMP we know no other CPUs can use this CPU's or each
548                  * other's VMID after force_vm_exit returns since the
549                  * kvm_vmid_lock blocks them from reentry to the guest.
550                  */
551                 force_vm_exit(cpu_all_mask);
552                 /*
553                  * Now broadcast TLB + ICACHE invalidation over the inner
554                  * shareable domain to make sure all data structures are
555                  * clean.
556                  */
557                 kvm_call_hyp(__kvm_flush_vm_context);
558         }
559
560         vmid->vmid = kvm_next_vmid;
561         kvm_next_vmid++;
562         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
563
564         smp_wmb();
565         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
566
567         spin_unlock(&kvm_vmid_lock);
568 }
569
570 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
571 {
572         struct kvm *kvm = vcpu->kvm;
573         int ret = 0;
574
575         if (likely(vcpu->arch.has_run_once))
576                 return 0;
577
578         if (!kvm_arm_vcpu_is_finalized(vcpu))
579                 return -EPERM;
580
581         vcpu->arch.has_run_once = true;
582
583         if (likely(irqchip_in_kernel(kvm))) {
584                 /*
585                  * Map the VGIC hardware resources before running a vcpu the
586                  * first time on this VM.
587                  */
588                 ret = kvm_vgic_map_resources(kvm);
589                 if (ret)
590                         return ret;
591         } else {
592                 /*
593                  * Tell the rest of the code that there are userspace irqchip
594                  * VMs in the wild.
595                  */
596                 static_branch_inc(&userspace_irqchip_in_use);
597         }
598
599         ret = kvm_timer_enable(vcpu);
600         if (ret)
601                 return ret;
602
603         ret = kvm_arm_pmu_v3_enable(vcpu);
604
605         return ret;
606 }
607
608 bool kvm_arch_intc_initialized(struct kvm *kvm)
609 {
610         return vgic_initialized(kvm);
611 }
612
613 void kvm_arm_halt_guest(struct kvm *kvm)
614 {
615         int i;
616         struct kvm_vcpu *vcpu;
617
618         kvm_for_each_vcpu(i, vcpu, kvm)
619                 vcpu->arch.pause = true;
620         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
621 }
622
623 void kvm_arm_resume_guest(struct kvm *kvm)
624 {
625         int i;
626         struct kvm_vcpu *vcpu;
627
628         kvm_for_each_vcpu(i, vcpu, kvm) {
629                 vcpu->arch.pause = false;
630                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
631         }
632 }
633
634 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
635 {
636         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
637
638         rcuwait_wait_event(wait,
639                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
640                            TASK_INTERRUPTIBLE);
641
642         if (vcpu->arch.power_off || vcpu->arch.pause) {
643                 /* Awaken to handle a signal, request we sleep again later. */
644                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
645         }
646
647         /*
648          * Make sure we will observe a potential reset request if we've
649          * observed a change to the power state. Pairs with the smp_wmb() in
650          * kvm_psci_vcpu_on().
651          */
652         smp_rmb();
653 }
654
655 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
656 {
657         return vcpu->arch.target >= 0;
658 }
659
660 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
661 {
662         if (kvm_request_pending(vcpu)) {
663                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
664                         vcpu_req_sleep(vcpu);
665
666                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
667                         kvm_reset_vcpu(vcpu);
668
669                 /*
670                  * Clear IRQ_PENDING requests that were made to guarantee
671                  * that a VCPU sees new virtual interrupts.
672                  */
673                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
674
675                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
676                         kvm_update_stolen_time(vcpu);
677
678                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
679                         /* The distributor enable bits were changed */
680                         preempt_disable();
681                         vgic_v4_put(vcpu, false);
682                         vgic_v4_load(vcpu);
683                         preempt_enable();
684                 }
685         }
686 }
687
688 /**
689  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
690  * @vcpu:       The VCPU pointer
691  *
692  * This function is called through the VCPU_RUN ioctl called from user space. It
693  * will execute VM code in a loop until the time slice for the process is used
694  * or some emulation is needed from user space in which case the function will
695  * return with return value 0 and with the kvm_run structure filled in with the
696  * required data for the requested emulation.
697  */
698 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
699 {
700         struct kvm_run *run = vcpu->run;
701         int ret;
702
703         if (unlikely(!kvm_vcpu_initialized(vcpu)))
704                 return -ENOEXEC;
705
706         ret = kvm_vcpu_first_run_init(vcpu);
707         if (ret)
708                 return ret;
709
710         if (run->exit_reason == KVM_EXIT_MMIO) {
711                 ret = kvm_handle_mmio_return(vcpu);
712                 if (ret)
713                         return ret;
714         }
715
716         if (run->immediate_exit)
717                 return -EINTR;
718
719         vcpu_load(vcpu);
720
721         kvm_sigset_activate(vcpu);
722
723         ret = 1;
724         run->exit_reason = KVM_EXIT_UNKNOWN;
725         while (ret > 0) {
726                 /*
727                  * Check conditions before entering the guest
728                  */
729                 cond_resched();
730
731                 update_vmid(&vcpu->arch.hw_mmu->vmid);
732
733                 check_vcpu_requests(vcpu);
734
735                 /*
736                  * Preparing the interrupts to be injected also
737                  * involves poking the GIC, which must be done in a
738                  * non-preemptible context.
739                  */
740                 preempt_disable();
741
742                 kvm_pmu_flush_hwstate(vcpu);
743
744                 local_irq_disable();
745
746                 kvm_vgic_flush_hwstate(vcpu);
747
748                 /*
749                  * Exit if we have a signal pending so that we can deliver the
750                  * signal to user space.
751                  */
752                 if (signal_pending(current)) {
753                         ret = -EINTR;
754                         run->exit_reason = KVM_EXIT_INTR;
755                 }
756
757                 /*
758                  * If we're using a userspace irqchip, then check if we need
759                  * to tell a userspace irqchip about timer or PMU level
760                  * changes and if so, exit to userspace (the actual level
761                  * state gets updated in kvm_timer_update_run and
762                  * kvm_pmu_update_run below).
763                  */
764                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
765                         if (kvm_timer_should_notify_user(vcpu) ||
766                             kvm_pmu_should_notify_user(vcpu)) {
767                                 ret = -EINTR;
768                                 run->exit_reason = KVM_EXIT_INTR;
769                         }
770                 }
771
772                 /*
773                  * Ensure we set mode to IN_GUEST_MODE after we disable
774                  * interrupts and before the final VCPU requests check.
775                  * See the comment in kvm_vcpu_exiting_guest_mode() and
776                  * Documentation/virt/kvm/vcpu-requests.rst
777                  */
778                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
779
780                 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
781                     kvm_request_pending(vcpu)) {
782                         vcpu->mode = OUTSIDE_GUEST_MODE;
783                         isb(); /* Ensure work in x_flush_hwstate is committed */
784                         kvm_pmu_sync_hwstate(vcpu);
785                         if (static_branch_unlikely(&userspace_irqchip_in_use))
786                                 kvm_timer_sync_user(vcpu);
787                         kvm_vgic_sync_hwstate(vcpu);
788                         local_irq_enable();
789                         preempt_enable();
790                         continue;
791                 }
792
793                 kvm_arm_setup_debug(vcpu);
794
795                 /**************************************************************
796                  * Enter the guest
797                  */
798                 trace_kvm_entry(*vcpu_pc(vcpu));
799                 guest_enter_irqoff();
800
801                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
802
803                 vcpu->mode = OUTSIDE_GUEST_MODE;
804                 vcpu->stat.exits++;
805                 /*
806                  * Back from guest
807                  *************************************************************/
808
809                 kvm_arm_clear_debug(vcpu);
810
811                 /*
812                  * We must sync the PMU state before the vgic state so
813                  * that the vgic can properly sample the updated state of the
814                  * interrupt line.
815                  */
816                 kvm_pmu_sync_hwstate(vcpu);
817
818                 /*
819                  * Sync the vgic state before syncing the timer state because
820                  * the timer code needs to know if the virtual timer
821                  * interrupts are active.
822                  */
823                 kvm_vgic_sync_hwstate(vcpu);
824
825                 /*
826                  * Sync the timer hardware state before enabling interrupts as
827                  * we don't want vtimer interrupts to race with syncing the
828                  * timer virtual interrupt state.
829                  */
830                 if (static_branch_unlikely(&userspace_irqchip_in_use))
831                         kvm_timer_sync_user(vcpu);
832
833                 kvm_arch_vcpu_ctxsync_fp(vcpu);
834
835                 /*
836                  * We may have taken a host interrupt in HYP mode (ie
837                  * while executing the guest). This interrupt is still
838                  * pending, as we haven't serviced it yet!
839                  *
840                  * We're now back in SVC mode, with interrupts
841                  * disabled.  Enabling the interrupts now will have
842                  * the effect of taking the interrupt again, in SVC
843                  * mode this time.
844                  */
845                 local_irq_enable();
846
847                 /*
848                  * We do local_irq_enable() before calling guest_exit() so
849                  * that if a timer interrupt hits while running the guest we
850                  * account that tick as being spent in the guest.  We enable
851                  * preemption after calling guest_exit() so that if we get
852                  * preempted we make sure ticks after that is not counted as
853                  * guest time.
854                  */
855                 guest_exit();
856                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
857
858                 /* Exit types that need handling before we can be preempted */
859                 handle_exit_early(vcpu, ret);
860
861                 preempt_enable();
862
863                 /*
864                  * The ARMv8 architecture doesn't give the hypervisor
865                  * a mechanism to prevent a guest from dropping to AArch32 EL0
866                  * if implemented by the CPU. If we spot the guest in such
867                  * state and that we decided it wasn't supposed to do so (like
868                  * with the asymmetric AArch32 case), return to userspace with
869                  * a fatal error.
870                  */
871                 if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
872                         /*
873                          * As we have caught the guest red-handed, decide that
874                          * it isn't fit for purpose anymore by making the vcpu
875                          * invalid. The VMM can try and fix it by issuing  a
876                          * KVM_ARM_VCPU_INIT if it really wants to.
877                          */
878                         vcpu->arch.target = -1;
879                         ret = ARM_EXCEPTION_IL;
880                 }
881
882                 ret = handle_exit(vcpu, ret);
883         }
884
885         /* Tell userspace about in-kernel device output levels */
886         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
887                 kvm_timer_update_run(vcpu);
888                 kvm_pmu_update_run(vcpu);
889         }
890
891         kvm_sigset_deactivate(vcpu);
892
893         vcpu_put(vcpu);
894         return ret;
895 }
896
897 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
898 {
899         int bit_index;
900         bool set;
901         unsigned long *hcr;
902
903         if (number == KVM_ARM_IRQ_CPU_IRQ)
904                 bit_index = __ffs(HCR_VI);
905         else /* KVM_ARM_IRQ_CPU_FIQ */
906                 bit_index = __ffs(HCR_VF);
907
908         hcr = vcpu_hcr(vcpu);
909         if (level)
910                 set = test_and_set_bit(bit_index, hcr);
911         else
912                 set = test_and_clear_bit(bit_index, hcr);
913
914         /*
915          * If we didn't change anything, no need to wake up or kick other CPUs
916          */
917         if (set == level)
918                 return 0;
919
920         /*
921          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
922          * trigger a world-switch round on the running physical CPU to set the
923          * virtual IRQ/FIQ fields in the HCR appropriately.
924          */
925         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
926         kvm_vcpu_kick(vcpu);
927
928         return 0;
929 }
930
931 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
932                           bool line_status)
933 {
934         u32 irq = irq_level->irq;
935         unsigned int irq_type, vcpu_idx, irq_num;
936         int nrcpus = atomic_read(&kvm->online_vcpus);
937         struct kvm_vcpu *vcpu = NULL;
938         bool level = irq_level->level;
939
940         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
941         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
942         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
943         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
944
945         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
946
947         switch (irq_type) {
948         case KVM_ARM_IRQ_TYPE_CPU:
949                 if (irqchip_in_kernel(kvm))
950                         return -ENXIO;
951
952                 if (vcpu_idx >= nrcpus)
953                         return -EINVAL;
954
955                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
956                 if (!vcpu)
957                         return -EINVAL;
958
959                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
960                         return -EINVAL;
961
962                 return vcpu_interrupt_line(vcpu, irq_num, level);
963         case KVM_ARM_IRQ_TYPE_PPI:
964                 if (!irqchip_in_kernel(kvm))
965                         return -ENXIO;
966
967                 if (vcpu_idx >= nrcpus)
968                         return -EINVAL;
969
970                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
971                 if (!vcpu)
972                         return -EINVAL;
973
974                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
975                         return -EINVAL;
976
977                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
978         case KVM_ARM_IRQ_TYPE_SPI:
979                 if (!irqchip_in_kernel(kvm))
980                         return -ENXIO;
981
982                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
983                         return -EINVAL;
984
985                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
986         }
987
988         return -EINVAL;
989 }
990
991 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
992                                const struct kvm_vcpu_init *init)
993 {
994         unsigned int i, ret;
995         int phys_target = kvm_target_cpu();
996
997         if (init->target != phys_target)
998                 return -EINVAL;
999
1000         /*
1001          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1002          * use the same target.
1003          */
1004         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1005                 return -EINVAL;
1006
1007         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1008         for (i = 0; i < sizeof(init->features) * 8; i++) {
1009                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1010
1011                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1012                         return -ENOENT;
1013
1014                 /*
1015                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1016                  * use the same feature set.
1017                  */
1018                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1019                     test_bit(i, vcpu->arch.features) != set)
1020                         return -EINVAL;
1021
1022                 if (set)
1023                         set_bit(i, vcpu->arch.features);
1024         }
1025
1026         vcpu->arch.target = phys_target;
1027
1028         /* Now we know what it is, we can reset it. */
1029         ret = kvm_reset_vcpu(vcpu);
1030         if (ret) {
1031                 vcpu->arch.target = -1;
1032                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1033         }
1034
1035         return ret;
1036 }
1037
1038 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1039                                          struct kvm_vcpu_init *init)
1040 {
1041         int ret;
1042
1043         ret = kvm_vcpu_set_target(vcpu, init);
1044         if (ret)
1045                 return ret;
1046
1047         /*
1048          * Ensure a rebooted VM will fault in RAM pages and detect if the
1049          * guest MMU is turned off and flush the caches as needed.
1050          *
1051          * S2FWB enforces all memory accesses to RAM being cacheable,
1052          * ensuring that the data side is always coherent. We still
1053          * need to invalidate the I-cache though, as FWB does *not*
1054          * imply CTR_EL0.DIC.
1055          */
1056         if (vcpu->arch.has_run_once) {
1057                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1058                         stage2_unmap_vm(vcpu->kvm);
1059                 else
1060                         __flush_icache_all();
1061         }
1062
1063         vcpu_reset_hcr(vcpu);
1064
1065         /*
1066          * Handle the "start in power-off" case.
1067          */
1068         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1069                 vcpu_power_off(vcpu);
1070         else
1071                 vcpu->arch.power_off = false;
1072
1073         return 0;
1074 }
1075
1076 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1077                                  struct kvm_device_attr *attr)
1078 {
1079         int ret = -ENXIO;
1080
1081         switch (attr->group) {
1082         default:
1083                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1084                 break;
1085         }
1086
1087         return ret;
1088 }
1089
1090 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1091                                  struct kvm_device_attr *attr)
1092 {
1093         int ret = -ENXIO;
1094
1095         switch (attr->group) {
1096         default:
1097                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1098                 break;
1099         }
1100
1101         return ret;
1102 }
1103
1104 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1105                                  struct kvm_device_attr *attr)
1106 {
1107         int ret = -ENXIO;
1108
1109         switch (attr->group) {
1110         default:
1111                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1112                 break;
1113         }
1114
1115         return ret;
1116 }
1117
1118 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1119                                    struct kvm_vcpu_events *events)
1120 {
1121         memset(events, 0, sizeof(*events));
1122
1123         return __kvm_arm_vcpu_get_events(vcpu, events);
1124 }
1125
1126 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1127                                    struct kvm_vcpu_events *events)
1128 {
1129         int i;
1130
1131         /* check whether the reserved field is zero */
1132         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1133                 if (events->reserved[i])
1134                         return -EINVAL;
1135
1136         /* check whether the pad field is zero */
1137         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1138                 if (events->exception.pad[i])
1139                         return -EINVAL;
1140
1141         return __kvm_arm_vcpu_set_events(vcpu, events);
1142 }
1143
1144 long kvm_arch_vcpu_ioctl(struct file *filp,
1145                          unsigned int ioctl, unsigned long arg)
1146 {
1147         struct kvm_vcpu *vcpu = filp->private_data;
1148         void __user *argp = (void __user *)arg;
1149         struct kvm_device_attr attr;
1150         long r;
1151
1152         switch (ioctl) {
1153         case KVM_ARM_VCPU_INIT: {
1154                 struct kvm_vcpu_init init;
1155
1156                 r = -EFAULT;
1157                 if (copy_from_user(&init, argp, sizeof(init)))
1158                         break;
1159
1160                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1161                 break;
1162         }
1163         case KVM_SET_ONE_REG:
1164         case KVM_GET_ONE_REG: {
1165                 struct kvm_one_reg reg;
1166
1167                 r = -ENOEXEC;
1168                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1169                         break;
1170
1171                 r = -EFAULT;
1172                 if (copy_from_user(&reg, argp, sizeof(reg)))
1173                         break;
1174
1175                 if (ioctl == KVM_SET_ONE_REG)
1176                         r = kvm_arm_set_reg(vcpu, &reg);
1177                 else
1178                         r = kvm_arm_get_reg(vcpu, &reg);
1179                 break;
1180         }
1181         case KVM_GET_REG_LIST: {
1182                 struct kvm_reg_list __user *user_list = argp;
1183                 struct kvm_reg_list reg_list;
1184                 unsigned n;
1185
1186                 r = -ENOEXEC;
1187                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1188                         break;
1189
1190                 r = -EPERM;
1191                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1192                         break;
1193
1194                 r = -EFAULT;
1195                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1196                         break;
1197                 n = reg_list.n;
1198                 reg_list.n = kvm_arm_num_regs(vcpu);
1199                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1200                         break;
1201                 r = -E2BIG;
1202                 if (n < reg_list.n)
1203                         break;
1204                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1205                 break;
1206         }
1207         case KVM_SET_DEVICE_ATTR: {
1208                 r = -EFAULT;
1209                 if (copy_from_user(&attr, argp, sizeof(attr)))
1210                         break;
1211                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1212                 break;
1213         }
1214         case KVM_GET_DEVICE_ATTR: {
1215                 r = -EFAULT;
1216                 if (copy_from_user(&attr, argp, sizeof(attr)))
1217                         break;
1218                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1219                 break;
1220         }
1221         case KVM_HAS_DEVICE_ATTR: {
1222                 r = -EFAULT;
1223                 if (copy_from_user(&attr, argp, sizeof(attr)))
1224                         break;
1225                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1226                 break;
1227         }
1228         case KVM_GET_VCPU_EVENTS: {
1229                 struct kvm_vcpu_events events;
1230
1231                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1232                         return -EINVAL;
1233
1234                 if (copy_to_user(argp, &events, sizeof(events)))
1235                         return -EFAULT;
1236
1237                 return 0;
1238         }
1239         case KVM_SET_VCPU_EVENTS: {
1240                 struct kvm_vcpu_events events;
1241
1242                 if (copy_from_user(&events, argp, sizeof(events)))
1243                         return -EFAULT;
1244
1245                 return kvm_arm_vcpu_set_events(vcpu, &events);
1246         }
1247         case KVM_ARM_VCPU_FINALIZE: {
1248                 int what;
1249
1250                 if (!kvm_vcpu_initialized(vcpu))
1251                         return -ENOEXEC;
1252
1253                 if (get_user(what, (const int __user *)argp))
1254                         return -EFAULT;
1255
1256                 return kvm_arm_vcpu_finalize(vcpu, what);
1257         }
1258         default:
1259                 r = -EINVAL;
1260         }
1261
1262         return r;
1263 }
1264
1265 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1266 {
1267
1268 }
1269
1270 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1271                                         struct kvm_memory_slot *memslot)
1272 {
1273         kvm_flush_remote_tlbs(kvm);
1274 }
1275
1276 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1277                                         struct kvm_arm_device_addr *dev_addr)
1278 {
1279         unsigned long dev_id, type;
1280
1281         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1282                 KVM_ARM_DEVICE_ID_SHIFT;
1283         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1284                 KVM_ARM_DEVICE_TYPE_SHIFT;
1285
1286         switch (dev_id) {
1287         case KVM_ARM_DEVICE_VGIC_V2:
1288                 if (!vgic_present)
1289                         return -ENXIO;
1290                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1291         default:
1292                 return -ENODEV;
1293         }
1294 }
1295
1296 long kvm_arch_vm_ioctl(struct file *filp,
1297                        unsigned int ioctl, unsigned long arg)
1298 {
1299         struct kvm *kvm = filp->private_data;
1300         void __user *argp = (void __user *)arg;
1301
1302         switch (ioctl) {
1303         case KVM_CREATE_IRQCHIP: {
1304                 int ret;
1305                 if (!vgic_present)
1306                         return -ENXIO;
1307                 mutex_lock(&kvm->lock);
1308                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1309                 mutex_unlock(&kvm->lock);
1310                 return ret;
1311         }
1312         case KVM_ARM_SET_DEVICE_ADDR: {
1313                 struct kvm_arm_device_addr dev_addr;
1314
1315                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1316                         return -EFAULT;
1317                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1318         }
1319         case KVM_ARM_PREFERRED_TARGET: {
1320                 int err;
1321                 struct kvm_vcpu_init init;
1322
1323                 err = kvm_vcpu_preferred_target(&init);
1324                 if (err)
1325                         return err;
1326
1327                 if (copy_to_user(argp, &init, sizeof(init)))
1328                         return -EFAULT;
1329
1330                 return 0;
1331         }
1332         default:
1333                 return -EINVAL;
1334         }
1335 }
1336
1337 static unsigned long nvhe_percpu_size(void)
1338 {
1339         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1340                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1341 }
1342
1343 static unsigned long nvhe_percpu_order(void)
1344 {
1345         unsigned long size = nvhe_percpu_size();
1346
1347         return size ? get_order(size) : 0;
1348 }
1349
1350 /* A lookup table holding the hypervisor VA for each vector slot */
1351 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1352
1353 static int __kvm_vector_slot2idx(enum arm64_hyp_spectre_vector slot)
1354 {
1355         return slot - (slot != HYP_VECTOR_DIRECT);
1356 }
1357
1358 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1359 {
1360         int idx = __kvm_vector_slot2idx(slot);
1361
1362         hyp_spectre_vector_selector[slot] = base + (idx * SZ_2K);
1363 }
1364
1365 static int kvm_init_vector_slots(void)
1366 {
1367         int err;
1368         void *base;
1369
1370         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1371         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1372
1373         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1374         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1375
1376         if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1377                 return 0;
1378
1379         if (!has_vhe()) {
1380                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1381                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1382                 if (err)
1383                         return err;
1384         }
1385
1386         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1387         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1388         return 0;
1389 }
1390
1391 static void cpu_init_hyp_mode(void)
1392 {
1393         struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1394         struct arm_smccc_res res;
1395         unsigned long tcr;
1396
1397         /* Switch from the HYP stub to our own HYP init vector */
1398         __hyp_set_vectors(kvm_get_idmap_vector());
1399
1400         /*
1401          * Calculate the raw per-cpu offset without a translation from the
1402          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1403          * so that we can use adr_l to access per-cpu variables in EL2.
1404          * Also drop the KASAN tag which gets in the way...
1405          */
1406         params->tpidr_el2 = (unsigned long)kasan_reset_tag(this_cpu_ptr_nvhe_sym(__per_cpu_start)) -
1407                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1408
1409         params->mair_el2 = read_sysreg(mair_el1);
1410
1411         /*
1412          * The ID map may be configured to use an extended virtual address
1413          * range. This is only the case if system RAM is out of range for the
1414          * currently configured page size and VA_BITS, in which case we will
1415          * also need the extended virtual range for the HYP ID map, or we won't
1416          * be able to enable the EL2 MMU.
1417          *
1418          * However, at EL2, there is only one TTBR register, and we can't switch
1419          * between translation tables *and* update TCR_EL2.T0SZ at the same
1420          * time. Bottom line: we need to use the extended range with *both* our
1421          * translation tables.
1422          *
1423          * So use the same T0SZ value we use for the ID map.
1424          */
1425         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1426         tcr &= ~TCR_T0SZ_MASK;
1427         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1428         params->tcr_el2 = tcr;
1429
1430         params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
1431         params->pgd_pa = kvm_mmu_get_httbr();
1432
1433         /*
1434          * Flush the init params from the data cache because the struct will
1435          * be read while the MMU is off.
1436          */
1437         kvm_flush_dcache_to_poc(params, sizeof(*params));
1438
1439         /*
1440          * Call initialization code, and switch to the full blown HYP code.
1441          * If the cpucaps haven't been finalized yet, something has gone very
1442          * wrong, and hyp will crash and burn when it uses any
1443          * cpus_have_const_cap() wrapper.
1444          */
1445         BUG_ON(!system_capabilities_finalized());
1446         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1447         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1448
1449         /*
1450          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1451          * at EL2.
1452          */
1453         if (this_cpu_has_cap(ARM64_SSBS) &&
1454             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1455                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1456         }
1457 }
1458
1459 static void cpu_hyp_reset(void)
1460 {
1461         if (!is_kernel_in_hyp_mode())
1462                 __hyp_reset_vectors();
1463 }
1464
1465 /*
1466  * EL2 vectors can be mapped and rerouted in a number of ways,
1467  * depending on the kernel configuration and CPU present:
1468  *
1469  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1470  *   placed in one of the vector slots, which is executed before jumping
1471  *   to the real vectors.
1472  *
1473  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1474  *   containing the hardening sequence is mapped next to the idmap page,
1475  *   and executed before jumping to the real vectors.
1476  *
1477  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1478  *   empty slot is selected, mapped next to the idmap page, and
1479  *   executed before jumping to the real vectors.
1480  *
1481  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1482  * VHE, as we don't have hypervisor-specific mappings. If the system
1483  * is VHE and yet selects this capability, it will be ignored.
1484  */
1485 static void cpu_set_hyp_vector(void)
1486 {
1487         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1488         void *vector = hyp_spectre_vector_selector[data->slot];
1489
1490         *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1491 }
1492
1493 static void cpu_hyp_reinit(void)
1494 {
1495         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1496
1497         cpu_hyp_reset();
1498         cpu_set_hyp_vector();
1499
1500         if (is_kernel_in_hyp_mode())
1501                 kvm_timer_init_vhe();
1502         else
1503                 cpu_init_hyp_mode();
1504
1505         kvm_arm_init_debug();
1506
1507         if (vgic_present)
1508                 kvm_vgic_init_cpu_hardware();
1509 }
1510
1511 static void _kvm_arch_hardware_enable(void *discard)
1512 {
1513         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1514                 cpu_hyp_reinit();
1515                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1516         }
1517 }
1518
1519 int kvm_arch_hardware_enable(void)
1520 {
1521         _kvm_arch_hardware_enable(NULL);
1522         return 0;
1523 }
1524
1525 static void _kvm_arch_hardware_disable(void *discard)
1526 {
1527         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1528                 cpu_hyp_reset();
1529                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1530         }
1531 }
1532
1533 void kvm_arch_hardware_disable(void)
1534 {
1535         if (!is_protected_kvm_enabled())
1536                 _kvm_arch_hardware_disable(NULL);
1537 }
1538
1539 #ifdef CONFIG_CPU_PM
1540 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1541                                     unsigned long cmd,
1542                                     void *v)
1543 {
1544         /*
1545          * kvm_arm_hardware_enabled is left with its old value over
1546          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1547          * re-enable hyp.
1548          */
1549         switch (cmd) {
1550         case CPU_PM_ENTER:
1551                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1552                         /*
1553                          * don't update kvm_arm_hardware_enabled here
1554                          * so that the hardware will be re-enabled
1555                          * when we resume. See below.
1556                          */
1557                         cpu_hyp_reset();
1558
1559                 return NOTIFY_OK;
1560         case CPU_PM_ENTER_FAILED:
1561         case CPU_PM_EXIT:
1562                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1563                         /* The hardware was enabled before suspend. */
1564                         cpu_hyp_reinit();
1565
1566                 return NOTIFY_OK;
1567
1568         default:
1569                 return NOTIFY_DONE;
1570         }
1571 }
1572
1573 static struct notifier_block hyp_init_cpu_pm_nb = {
1574         .notifier_call = hyp_init_cpu_pm_notifier,
1575 };
1576
1577 static void hyp_cpu_pm_init(void)
1578 {
1579         if (!is_protected_kvm_enabled())
1580                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1581 }
1582 static void hyp_cpu_pm_exit(void)
1583 {
1584         if (!is_protected_kvm_enabled())
1585                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1586 }
1587 #else
1588 static inline void hyp_cpu_pm_init(void)
1589 {
1590 }
1591 static inline void hyp_cpu_pm_exit(void)
1592 {
1593 }
1594 #endif
1595
1596 static void init_cpu_logical_map(void)
1597 {
1598         unsigned int cpu;
1599
1600         /*
1601          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1602          * Only copy the set of online CPUs whose features have been chacked
1603          * against the finalized system capabilities. The hypervisor will not
1604          * allow any other CPUs from the `possible` set to boot.
1605          */
1606         for_each_online_cpu(cpu)
1607                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1608 }
1609
1610 #define init_psci_0_1_impl_state(config, what)  \
1611         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1612
1613 static bool init_psci_relay(void)
1614 {
1615         /*
1616          * If PSCI has not been initialized, protected KVM cannot install
1617          * itself on newly booted CPUs.
1618          */
1619         if (!psci_ops.get_version) {
1620                 kvm_err("Cannot initialize protected mode without PSCI\n");
1621                 return false;
1622         }
1623
1624         kvm_host_psci_config.version = psci_ops.get_version();
1625
1626         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1627                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1628                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1629                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1630                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1631                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1632         }
1633         return true;
1634 }
1635
1636 static int init_common_resources(void)
1637 {
1638         return kvm_set_ipa_limit();
1639 }
1640
1641 static int init_subsystems(void)
1642 {
1643         int err = 0;
1644
1645         /*
1646          * Enable hardware so that subsystem initialisation can access EL2.
1647          */
1648         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1649
1650         /*
1651          * Register CPU lower-power notifier
1652          */
1653         hyp_cpu_pm_init();
1654
1655         /*
1656          * Init HYP view of VGIC
1657          */
1658         err = kvm_vgic_hyp_init();
1659         switch (err) {
1660         case 0:
1661                 vgic_present = true;
1662                 break;
1663         case -ENODEV:
1664         case -ENXIO:
1665                 vgic_present = false;
1666                 err = 0;
1667                 break;
1668         default:
1669                 goto out;
1670         }
1671
1672         /*
1673          * Init HYP architected timer support
1674          */
1675         err = kvm_timer_hyp_init(vgic_present);
1676         if (err)
1677                 goto out;
1678
1679         kvm_perf_init();
1680         kvm_sys_reg_table_init();
1681
1682 out:
1683         if (err || !is_protected_kvm_enabled())
1684                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1685
1686         return err;
1687 }
1688
1689 static void teardown_hyp_mode(void)
1690 {
1691         int cpu;
1692
1693         free_hyp_pgds();
1694         for_each_possible_cpu(cpu) {
1695                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1696                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1697         }
1698 }
1699
1700 /**
1701  * Inits Hyp-mode on all online CPUs
1702  */
1703 static int init_hyp_mode(void)
1704 {
1705         int cpu;
1706         int err = 0;
1707
1708         /*
1709          * Allocate Hyp PGD and setup Hyp identity mapping
1710          */
1711         err = kvm_mmu_init();
1712         if (err)
1713                 goto out_err;
1714
1715         /*
1716          * Allocate stack pages for Hypervisor-mode
1717          */
1718         for_each_possible_cpu(cpu) {
1719                 unsigned long stack_page;
1720
1721                 stack_page = __get_free_page(GFP_KERNEL);
1722                 if (!stack_page) {
1723                         err = -ENOMEM;
1724                         goto out_err;
1725                 }
1726
1727                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1728         }
1729
1730         /*
1731          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1732          */
1733         for_each_possible_cpu(cpu) {
1734                 struct page *page;
1735                 void *page_addr;
1736
1737                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1738                 if (!page) {
1739                         err = -ENOMEM;
1740                         goto out_err;
1741                 }
1742
1743                 page_addr = page_address(page);
1744                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1745                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1746         }
1747
1748         /*
1749          * Map the Hyp-code called directly from the host
1750          */
1751         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1752                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1753         if (err) {
1754                 kvm_err("Cannot map world-switch code\n");
1755                 goto out_err;
1756         }
1757
1758         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1759                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1760         if (err) {
1761                 kvm_err("Cannot map .hyp.rodata section\n");
1762                 goto out_err;
1763         }
1764
1765         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1766                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1767         if (err) {
1768                 kvm_err("Cannot map rodata section\n");
1769                 goto out_err;
1770         }
1771
1772         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1773                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1774         if (err) {
1775                 kvm_err("Cannot map bss section\n");
1776                 goto out_err;
1777         }
1778
1779         /*
1780          * Map the Hyp stack pages
1781          */
1782         for_each_possible_cpu(cpu) {
1783                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1784                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1785                                           PAGE_HYP);
1786
1787                 if (err) {
1788                         kvm_err("Cannot map hyp stack\n");
1789                         goto out_err;
1790                 }
1791         }
1792
1793         /*
1794          * Map Hyp percpu pages
1795          */
1796         for_each_possible_cpu(cpu) {
1797                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1798                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1799
1800                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1801
1802                 if (err) {
1803                         kvm_err("Cannot map hyp percpu region\n");
1804                         goto out_err;
1805                 }
1806         }
1807
1808         if (is_protected_kvm_enabled()) {
1809                 init_cpu_logical_map();
1810
1811                 if (!init_psci_relay())
1812                         goto out_err;
1813         }
1814
1815         return 0;
1816
1817 out_err:
1818         teardown_hyp_mode();
1819         kvm_err("error initializing Hyp mode: %d\n", err);
1820         return err;
1821 }
1822
1823 static void check_kvm_target_cpu(void *ret)
1824 {
1825         *(int *)ret = kvm_target_cpu();
1826 }
1827
1828 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1829 {
1830         struct kvm_vcpu *vcpu;
1831         int i;
1832
1833         mpidr &= MPIDR_HWID_BITMASK;
1834         kvm_for_each_vcpu(i, vcpu, kvm) {
1835                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1836                         return vcpu;
1837         }
1838         return NULL;
1839 }
1840
1841 bool kvm_arch_has_irq_bypass(void)
1842 {
1843         return true;
1844 }
1845
1846 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1847                                       struct irq_bypass_producer *prod)
1848 {
1849         struct kvm_kernel_irqfd *irqfd =
1850                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1851
1852         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1853                                           &irqfd->irq_entry);
1854 }
1855 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1856                                       struct irq_bypass_producer *prod)
1857 {
1858         struct kvm_kernel_irqfd *irqfd =
1859                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1860
1861         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1862                                      &irqfd->irq_entry);
1863 }
1864
1865 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1866 {
1867         struct kvm_kernel_irqfd *irqfd =
1868                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1869
1870         kvm_arm_halt_guest(irqfd->kvm);
1871 }
1872
1873 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1874 {
1875         struct kvm_kernel_irqfd *irqfd =
1876                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1877
1878         kvm_arm_resume_guest(irqfd->kvm);
1879 }
1880
1881 /**
1882  * Initialize Hyp-mode and memory mappings on all CPUs.
1883  */
1884 int kvm_arch_init(void *opaque)
1885 {
1886         int err;
1887         int ret, cpu;
1888         bool in_hyp_mode;
1889
1890         if (!is_hyp_mode_available()) {
1891                 kvm_info("HYP mode not available\n");
1892                 return -ENODEV;
1893         }
1894
1895         in_hyp_mode = is_kernel_in_hyp_mode();
1896
1897         if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1898                 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1899                 return -ENODEV;
1900         }
1901
1902         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
1903             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1904                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1905                          "Only trusted guests should be used on this system.\n");
1906
1907         for_each_online_cpu(cpu) {
1908                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1909                 if (ret < 0) {
1910                         kvm_err("Error, CPU %d not supported!\n", cpu);
1911                         return -ENODEV;
1912                 }
1913         }
1914
1915         err = init_common_resources();
1916         if (err)
1917                 return err;
1918
1919         err = kvm_arm_init_sve();
1920         if (err)
1921                 return err;
1922
1923         if (!in_hyp_mode) {
1924                 err = init_hyp_mode();
1925                 if (err)
1926                         goto out_err;
1927         }
1928
1929         err = kvm_init_vector_slots();
1930         if (err) {
1931                 kvm_err("Cannot initialise vector slots\n");
1932                 goto out_err;
1933         }
1934
1935         err = init_subsystems();
1936         if (err)
1937                 goto out_hyp;
1938
1939         if (is_protected_kvm_enabled()) {
1940                 static_branch_enable(&kvm_protected_mode_initialized);
1941                 kvm_info("Protected nVHE mode initialized successfully\n");
1942         } else if (in_hyp_mode) {
1943                 kvm_info("VHE mode initialized successfully\n");
1944         } else {
1945                 kvm_info("Hyp mode initialized successfully\n");
1946         }
1947
1948         return 0;
1949
1950 out_hyp:
1951         hyp_cpu_pm_exit();
1952         if (!in_hyp_mode)
1953                 teardown_hyp_mode();
1954 out_err:
1955         return err;
1956 }
1957
1958 /* NOP: Compiling as a module not supported */
1959 void kvm_arch_exit(void)
1960 {
1961         kvm_perf_teardown();
1962 }
1963
1964 static int __init early_kvm_mode_cfg(char *arg)
1965 {
1966         if (!arg)
1967                 return -EINVAL;
1968
1969         if (strcmp(arg, "protected") == 0) {
1970                 kvm_mode = KVM_MODE_PROTECTED;
1971                 return 0;
1972         }
1973
1974         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
1975                 return 0;
1976
1977         return -EINVAL;
1978 }
1979 early_param("kvm-arm.mode", early_kvm_mode_cfg);
1980
1981 enum kvm_mode kvm_get_mode(void)
1982 {
1983         return kvm_mode;
1984 }
1985
1986 static int arm_init(void)
1987 {
1988         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1989         return rc;
1990 }
1991
1992 module_init(arm_init);