Merge tag 'mmc-v5.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension        virt");
47 #endif
48
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62
63 static bool vgic_present;
64
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
67
68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
69 {
70         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
71 }
72
73 int kvm_arch_hardware_setup(void *opaque)
74 {
75         return 0;
76 }
77
78 int kvm_arch_check_processor_compat(void *opaque)
79 {
80         return 0;
81 }
82
83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84                             struct kvm_enable_cap *cap)
85 {
86         int r;
87
88         if (cap->flags)
89                 return -EINVAL;
90
91         switch (cap->cap) {
92         case KVM_CAP_ARM_NISV_TO_USER:
93                 r = 0;
94                 kvm->arch.return_nisv_io_abort_to_user = true;
95                 break;
96         default:
97                 r = -EINVAL;
98                 break;
99         }
100
101         return r;
102 }
103
104 static int kvm_arm_default_max_vcpus(void)
105 {
106         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
107 }
108
109 static void set_default_spectre(struct kvm *kvm)
110 {
111         /*
112          * The default is to expose CSV2 == 1 if the HW isn't affected.
113          * Although this is a per-CPU feature, we make it global because
114          * asymmetric systems are just a nuisance.
115          *
116          * Userspace can override this as long as it doesn't promise
117          * the impossible.
118          */
119         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
120                 kvm->arch.pfr0_csv2 = 1;
121         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
122                 kvm->arch.pfr0_csv3 = 1;
123 }
124
125 /**
126  * kvm_arch_init_vm - initializes a VM data structure
127  * @kvm:        pointer to the KVM struct
128  */
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131         int ret;
132
133         ret = kvm_arm_setup_stage2(kvm, type);
134         if (ret)
135                 return ret;
136
137         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138         if (ret)
139                 return ret;
140
141         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142         if (ret)
143                 goto out_free_stage2_pgd;
144
145         kvm_vgic_early_init(kvm);
146
147         /* The maximum number of VCPUs is limited by the host's GIC model */
148         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149
150         set_default_spectre(kvm);
151
152         return ret;
153 out_free_stage2_pgd:
154         kvm_free_stage2_pgd(&kvm->arch.mmu);
155         return ret;
156 }
157
158 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 {
160         return VM_FAULT_SIGBUS;
161 }
162
163
164 /**
165  * kvm_arch_destroy_vm - destroy the VM data structure
166  * @kvm:        pointer to the KVM struct
167  */
168 void kvm_arch_destroy_vm(struct kvm *kvm)
169 {
170         int i;
171
172         bitmap_free(kvm->arch.pmu_filter);
173
174         kvm_vgic_destroy(kvm);
175
176         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
177                 if (kvm->vcpus[i]) {
178                         kvm_vcpu_destroy(kvm->vcpus[i]);
179                         kvm->vcpus[i] = NULL;
180                 }
181         }
182         atomic_set(&kvm->online_vcpus, 0);
183 }
184
185 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 {
187         int r;
188         switch (ext) {
189         case KVM_CAP_IRQCHIP:
190                 r = vgic_present;
191                 break;
192         case KVM_CAP_IOEVENTFD:
193         case KVM_CAP_DEVICE_CTRL:
194         case KVM_CAP_USER_MEMORY:
195         case KVM_CAP_SYNC_MMU:
196         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
197         case KVM_CAP_ONE_REG:
198         case KVM_CAP_ARM_PSCI:
199         case KVM_CAP_ARM_PSCI_0_2:
200         case KVM_CAP_READONLY_MEM:
201         case KVM_CAP_MP_STATE:
202         case KVM_CAP_IMMEDIATE_EXIT:
203         case KVM_CAP_VCPU_EVENTS:
204         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205         case KVM_CAP_ARM_NISV_TO_USER:
206         case KVM_CAP_ARM_INJECT_EXT_DABT:
207         case KVM_CAP_SET_GUEST_DEBUG:
208         case KVM_CAP_VCPU_ATTRIBUTES:
209                 r = 1;
210                 break;
211         case KVM_CAP_ARM_SET_DEVICE_ADDR:
212                 r = 1;
213                 break;
214         case KVM_CAP_NR_VCPUS:
215                 r = num_online_cpus();
216                 break;
217         case KVM_CAP_MAX_VCPUS:
218         case KVM_CAP_MAX_VCPU_ID:
219                 if (kvm)
220                         r = kvm->arch.max_vcpus;
221                 else
222                         r = kvm_arm_default_max_vcpus();
223                 break;
224         case KVM_CAP_MSI_DEVID:
225                 if (!kvm)
226                         r = -EINVAL;
227                 else
228                         r = kvm->arch.vgic.msis_require_devid;
229                 break;
230         case KVM_CAP_ARM_USER_IRQ:
231                 /*
232                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
233                  * (bump this number if adding more devices)
234                  */
235                 r = 1;
236                 break;
237         case KVM_CAP_STEAL_TIME:
238                 r = kvm_arm_pvtime_supported();
239                 break;
240         case KVM_CAP_ARM_EL1_32BIT:
241                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
242                 break;
243         case KVM_CAP_GUEST_DEBUG_HW_BPS:
244                 r = get_num_brps();
245                 break;
246         case KVM_CAP_GUEST_DEBUG_HW_WPS:
247                 r = get_num_wrps();
248                 break;
249         case KVM_CAP_ARM_PMU_V3:
250                 r = kvm_arm_support_pmu_v3();
251                 break;
252         case KVM_CAP_ARM_INJECT_SERROR_ESR:
253                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
254                 break;
255         case KVM_CAP_ARM_VM_IPA_SIZE:
256                 r = get_kvm_ipa_limit();
257                 break;
258         case KVM_CAP_ARM_SVE:
259                 r = system_supports_sve();
260                 break;
261         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
262         case KVM_CAP_ARM_PTRAUTH_GENERIC:
263                 r = system_has_full_ptr_auth();
264                 break;
265         default:
266                 r = 0;
267         }
268
269         return r;
270 }
271
272 long kvm_arch_dev_ioctl(struct file *filp,
273                         unsigned int ioctl, unsigned long arg)
274 {
275         return -EINVAL;
276 }
277
278 struct kvm *kvm_arch_alloc_vm(void)
279 {
280         if (!has_vhe())
281                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
282
283         return vzalloc(sizeof(struct kvm));
284 }
285
286 void kvm_arch_free_vm(struct kvm *kvm)
287 {
288         if (!has_vhe())
289                 kfree(kvm);
290         else
291                 vfree(kvm);
292 }
293
294 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
295 {
296         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
297                 return -EBUSY;
298
299         if (id >= kvm->arch.max_vcpus)
300                 return -EINVAL;
301
302         return 0;
303 }
304
305 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
306 {
307         int err;
308
309         /* Force users to call KVM_ARM_VCPU_INIT */
310         vcpu->arch.target = -1;
311         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
312
313         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
314
315         /* Set up the timer */
316         kvm_timer_vcpu_init(vcpu);
317
318         kvm_pmu_vcpu_init(vcpu);
319
320         kvm_arm_reset_debug_ptr(vcpu);
321
322         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
323
324         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
325
326         err = kvm_vgic_vcpu_init(vcpu);
327         if (err)
328                 return err;
329
330         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
331 }
332
333 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
334 {
335 }
336
337 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
338 {
339         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
340                 static_branch_dec(&userspace_irqchip_in_use);
341
342         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
343         kvm_timer_vcpu_terminate(vcpu);
344         kvm_pmu_vcpu_destroy(vcpu);
345
346         kvm_arm_vcpu_destroy(vcpu);
347 }
348
349 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
350 {
351         return kvm_timer_is_pending(vcpu);
352 }
353
354 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
355 {
356         /*
357          * If we're about to block (most likely because we've just hit a
358          * WFI), we need to sync back the state of the GIC CPU interface
359          * so that we have the latest PMR and group enables. This ensures
360          * that kvm_arch_vcpu_runnable has up-to-date data to decide
361          * whether we have pending interrupts.
362          *
363          * For the same reason, we want to tell GICv4 that we need
364          * doorbells to be signalled, should an interrupt become pending.
365          */
366         preempt_disable();
367         kvm_vgic_vmcr_sync(vcpu);
368         vgic_v4_put(vcpu, true);
369         preempt_enable();
370 }
371
372 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
373 {
374         preempt_disable();
375         vgic_v4_load(vcpu);
376         preempt_enable();
377 }
378
379 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
380 {
381         struct kvm_s2_mmu *mmu;
382         int *last_ran;
383
384         mmu = vcpu->arch.hw_mmu;
385         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
386
387         /*
388          * We might get preempted before the vCPU actually runs, but
389          * over-invalidation doesn't affect correctness.
390          */
391         if (*last_ran != vcpu->vcpu_id) {
392                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
393                 *last_ran = vcpu->vcpu_id;
394         }
395
396         vcpu->cpu = cpu;
397
398         kvm_vgic_load(vcpu);
399         kvm_timer_vcpu_load(vcpu);
400         if (has_vhe())
401                 kvm_vcpu_load_sysregs_vhe(vcpu);
402         kvm_arch_vcpu_load_fp(vcpu);
403         kvm_vcpu_pmu_restore_guest(vcpu);
404         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
405                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
406
407         if (single_task_running())
408                 vcpu_clear_wfx_traps(vcpu);
409         else
410                 vcpu_set_wfx_traps(vcpu);
411
412         if (vcpu_has_ptrauth(vcpu))
413                 vcpu_ptrauth_disable(vcpu);
414 }
415
416 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
417 {
418         kvm_arch_vcpu_put_fp(vcpu);
419         if (has_vhe())
420                 kvm_vcpu_put_sysregs_vhe(vcpu);
421         kvm_timer_vcpu_put(vcpu);
422         kvm_vgic_put(vcpu);
423         kvm_vcpu_pmu_restore_host(vcpu);
424
425         vcpu->cpu = -1;
426 }
427
428 static void vcpu_power_off(struct kvm_vcpu *vcpu)
429 {
430         vcpu->arch.power_off = true;
431         kvm_make_request(KVM_REQ_SLEEP, vcpu);
432         kvm_vcpu_kick(vcpu);
433 }
434
435 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
436                                     struct kvm_mp_state *mp_state)
437 {
438         if (vcpu->arch.power_off)
439                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
440         else
441                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
442
443         return 0;
444 }
445
446 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
447                                     struct kvm_mp_state *mp_state)
448 {
449         int ret = 0;
450
451         switch (mp_state->mp_state) {
452         case KVM_MP_STATE_RUNNABLE:
453                 vcpu->arch.power_off = false;
454                 break;
455         case KVM_MP_STATE_STOPPED:
456                 vcpu_power_off(vcpu);
457                 break;
458         default:
459                 ret = -EINVAL;
460         }
461
462         return ret;
463 }
464
465 /**
466  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
467  * @v:          The VCPU pointer
468  *
469  * If the guest CPU is not waiting for interrupts or an interrupt line is
470  * asserted, the CPU is by definition runnable.
471  */
472 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
473 {
474         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
475         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
476                 && !v->arch.power_off && !v->arch.pause);
477 }
478
479 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
480 {
481         return vcpu_mode_priv(vcpu);
482 }
483
484 /* Just ensure a guest exit from a particular CPU */
485 static void exit_vm_noop(void *info)
486 {
487 }
488
489 void force_vm_exit(const cpumask_t *mask)
490 {
491         preempt_disable();
492         smp_call_function_many(mask, exit_vm_noop, NULL, true);
493         preempt_enable();
494 }
495
496 /**
497  * need_new_vmid_gen - check that the VMID is still valid
498  * @vmid: The VMID to check
499  *
500  * return true if there is a new generation of VMIDs being used
501  *
502  * The hardware supports a limited set of values with the value zero reserved
503  * for the host, so we check if an assigned value belongs to a previous
504  * generation, which requires us to assign a new value. If we're the first to
505  * use a VMID for the new generation, we must flush necessary caches and TLBs
506  * on all CPUs.
507  */
508 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
509 {
510         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
511         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
512         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
513 }
514
515 /**
516  * update_vmid - Update the vmid with a valid VMID for the current generation
517  * @vmid: The stage-2 VMID information struct
518  */
519 static void update_vmid(struct kvm_vmid *vmid)
520 {
521         if (!need_new_vmid_gen(vmid))
522                 return;
523
524         spin_lock(&kvm_vmid_lock);
525
526         /*
527          * We need to re-check the vmid_gen here to ensure that if another vcpu
528          * already allocated a valid vmid for this vm, then this vcpu should
529          * use the same vmid.
530          */
531         if (!need_new_vmid_gen(vmid)) {
532                 spin_unlock(&kvm_vmid_lock);
533                 return;
534         }
535
536         /* First user of a new VMID generation? */
537         if (unlikely(kvm_next_vmid == 0)) {
538                 atomic64_inc(&kvm_vmid_gen);
539                 kvm_next_vmid = 1;
540
541                 /*
542                  * On SMP we know no other CPUs can use this CPU's or each
543                  * other's VMID after force_vm_exit returns since the
544                  * kvm_vmid_lock blocks them from reentry to the guest.
545                  */
546                 force_vm_exit(cpu_all_mask);
547                 /*
548                  * Now broadcast TLB + ICACHE invalidation over the inner
549                  * shareable domain to make sure all data structures are
550                  * clean.
551                  */
552                 kvm_call_hyp(__kvm_flush_vm_context);
553         }
554
555         vmid->vmid = kvm_next_vmid;
556         kvm_next_vmid++;
557         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
558
559         smp_wmb();
560         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
561
562         spin_unlock(&kvm_vmid_lock);
563 }
564
565 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
566 {
567         struct kvm *kvm = vcpu->kvm;
568         int ret = 0;
569
570         if (likely(vcpu->arch.has_run_once))
571                 return 0;
572
573         if (!kvm_arm_vcpu_is_finalized(vcpu))
574                 return -EPERM;
575
576         vcpu->arch.has_run_once = true;
577
578         if (likely(irqchip_in_kernel(kvm))) {
579                 /*
580                  * Map the VGIC hardware resources before running a vcpu the
581                  * first time on this VM.
582                  */
583                 ret = kvm_vgic_map_resources(kvm);
584                 if (ret)
585                         return ret;
586         } else {
587                 /*
588                  * Tell the rest of the code that there are userspace irqchip
589                  * VMs in the wild.
590                  */
591                 static_branch_inc(&userspace_irqchip_in_use);
592         }
593
594         ret = kvm_timer_enable(vcpu);
595         if (ret)
596                 return ret;
597
598         ret = kvm_arm_pmu_v3_enable(vcpu);
599
600         return ret;
601 }
602
603 bool kvm_arch_intc_initialized(struct kvm *kvm)
604 {
605         return vgic_initialized(kvm);
606 }
607
608 void kvm_arm_halt_guest(struct kvm *kvm)
609 {
610         int i;
611         struct kvm_vcpu *vcpu;
612
613         kvm_for_each_vcpu(i, vcpu, kvm)
614                 vcpu->arch.pause = true;
615         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
616 }
617
618 void kvm_arm_resume_guest(struct kvm *kvm)
619 {
620         int i;
621         struct kvm_vcpu *vcpu;
622
623         kvm_for_each_vcpu(i, vcpu, kvm) {
624                 vcpu->arch.pause = false;
625                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
626         }
627 }
628
629 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
630 {
631         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
632
633         rcuwait_wait_event(wait,
634                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
635                            TASK_INTERRUPTIBLE);
636
637         if (vcpu->arch.power_off || vcpu->arch.pause) {
638                 /* Awaken to handle a signal, request we sleep again later. */
639                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
640         }
641
642         /*
643          * Make sure we will observe a potential reset request if we've
644          * observed a change to the power state. Pairs with the smp_wmb() in
645          * kvm_psci_vcpu_on().
646          */
647         smp_rmb();
648 }
649
650 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
651 {
652         return vcpu->arch.target >= 0;
653 }
654
655 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
656 {
657         if (kvm_request_pending(vcpu)) {
658                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
659                         vcpu_req_sleep(vcpu);
660
661                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
662                         kvm_reset_vcpu(vcpu);
663
664                 /*
665                  * Clear IRQ_PENDING requests that were made to guarantee
666                  * that a VCPU sees new virtual interrupts.
667                  */
668                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
669
670                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
671                         kvm_update_stolen_time(vcpu);
672
673                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
674                         /* The distributor enable bits were changed */
675                         preempt_disable();
676                         vgic_v4_put(vcpu, false);
677                         vgic_v4_load(vcpu);
678                         preempt_enable();
679                 }
680         }
681 }
682
683 /**
684  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
685  * @vcpu:       The VCPU pointer
686  *
687  * This function is called through the VCPU_RUN ioctl called from user space. It
688  * will execute VM code in a loop until the time slice for the process is used
689  * or some emulation is needed from user space in which case the function will
690  * return with return value 0 and with the kvm_run structure filled in with the
691  * required data for the requested emulation.
692  */
693 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
694 {
695         struct kvm_run *run = vcpu->run;
696         int ret;
697
698         if (unlikely(!kvm_vcpu_initialized(vcpu)))
699                 return -ENOEXEC;
700
701         ret = kvm_vcpu_first_run_init(vcpu);
702         if (ret)
703                 return ret;
704
705         if (run->exit_reason == KVM_EXIT_MMIO) {
706                 ret = kvm_handle_mmio_return(vcpu);
707                 if (ret)
708                         return ret;
709         }
710
711         if (run->immediate_exit)
712                 return -EINTR;
713
714         vcpu_load(vcpu);
715
716         kvm_sigset_activate(vcpu);
717
718         ret = 1;
719         run->exit_reason = KVM_EXIT_UNKNOWN;
720         while (ret > 0) {
721                 /*
722                  * Check conditions before entering the guest
723                  */
724                 cond_resched();
725
726                 update_vmid(&vcpu->arch.hw_mmu->vmid);
727
728                 check_vcpu_requests(vcpu);
729
730                 /*
731                  * Preparing the interrupts to be injected also
732                  * involves poking the GIC, which must be done in a
733                  * non-preemptible context.
734                  */
735                 preempt_disable();
736
737                 kvm_pmu_flush_hwstate(vcpu);
738
739                 local_irq_disable();
740
741                 kvm_vgic_flush_hwstate(vcpu);
742
743                 /*
744                  * Exit if we have a signal pending so that we can deliver the
745                  * signal to user space.
746                  */
747                 if (signal_pending(current)) {
748                         ret = -EINTR;
749                         run->exit_reason = KVM_EXIT_INTR;
750                 }
751
752                 /*
753                  * If we're using a userspace irqchip, then check if we need
754                  * to tell a userspace irqchip about timer or PMU level
755                  * changes and if so, exit to userspace (the actual level
756                  * state gets updated in kvm_timer_update_run and
757                  * kvm_pmu_update_run below).
758                  */
759                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
760                         if (kvm_timer_should_notify_user(vcpu) ||
761                             kvm_pmu_should_notify_user(vcpu)) {
762                                 ret = -EINTR;
763                                 run->exit_reason = KVM_EXIT_INTR;
764                         }
765                 }
766
767                 /*
768                  * Ensure we set mode to IN_GUEST_MODE after we disable
769                  * interrupts and before the final VCPU requests check.
770                  * See the comment in kvm_vcpu_exiting_guest_mode() and
771                  * Documentation/virt/kvm/vcpu-requests.rst
772                  */
773                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
774
775                 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
776                     kvm_request_pending(vcpu)) {
777                         vcpu->mode = OUTSIDE_GUEST_MODE;
778                         isb(); /* Ensure work in x_flush_hwstate is committed */
779                         kvm_pmu_sync_hwstate(vcpu);
780                         if (static_branch_unlikely(&userspace_irqchip_in_use))
781                                 kvm_timer_sync_user(vcpu);
782                         kvm_vgic_sync_hwstate(vcpu);
783                         local_irq_enable();
784                         preempt_enable();
785                         continue;
786                 }
787
788                 kvm_arm_setup_debug(vcpu);
789
790                 /**************************************************************
791                  * Enter the guest
792                  */
793                 trace_kvm_entry(*vcpu_pc(vcpu));
794                 guest_enter_irqoff();
795
796                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
797
798                 vcpu->mode = OUTSIDE_GUEST_MODE;
799                 vcpu->stat.exits++;
800                 /*
801                  * Back from guest
802                  *************************************************************/
803
804                 kvm_arm_clear_debug(vcpu);
805
806                 /*
807                  * We must sync the PMU state before the vgic state so
808                  * that the vgic can properly sample the updated state of the
809                  * interrupt line.
810                  */
811                 kvm_pmu_sync_hwstate(vcpu);
812
813                 /*
814                  * Sync the vgic state before syncing the timer state because
815                  * the timer code needs to know if the virtual timer
816                  * interrupts are active.
817                  */
818                 kvm_vgic_sync_hwstate(vcpu);
819
820                 /*
821                  * Sync the timer hardware state before enabling interrupts as
822                  * we don't want vtimer interrupts to race with syncing the
823                  * timer virtual interrupt state.
824                  */
825                 if (static_branch_unlikely(&userspace_irqchip_in_use))
826                         kvm_timer_sync_user(vcpu);
827
828                 kvm_arch_vcpu_ctxsync_fp(vcpu);
829
830                 /*
831                  * We may have taken a host interrupt in HYP mode (ie
832                  * while executing the guest). This interrupt is still
833                  * pending, as we haven't serviced it yet!
834                  *
835                  * We're now back in SVC mode, with interrupts
836                  * disabled.  Enabling the interrupts now will have
837                  * the effect of taking the interrupt again, in SVC
838                  * mode this time.
839                  */
840                 local_irq_enable();
841
842                 /*
843                  * We do local_irq_enable() before calling guest_exit() so
844                  * that if a timer interrupt hits while running the guest we
845                  * account that tick as being spent in the guest.  We enable
846                  * preemption after calling guest_exit() so that if we get
847                  * preempted we make sure ticks after that is not counted as
848                  * guest time.
849                  */
850                 guest_exit();
851                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
852
853                 /* Exit types that need handling before we can be preempted */
854                 handle_exit_early(vcpu, ret);
855
856                 preempt_enable();
857
858                 /*
859                  * The ARMv8 architecture doesn't give the hypervisor
860                  * a mechanism to prevent a guest from dropping to AArch32 EL0
861                  * if implemented by the CPU. If we spot the guest in such
862                  * state and that we decided it wasn't supposed to do so (like
863                  * with the asymmetric AArch32 case), return to userspace with
864                  * a fatal error.
865                  */
866                 if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
867                         /*
868                          * As we have caught the guest red-handed, decide that
869                          * it isn't fit for purpose anymore by making the vcpu
870                          * invalid. The VMM can try and fix it by issuing  a
871                          * KVM_ARM_VCPU_INIT if it really wants to.
872                          */
873                         vcpu->arch.target = -1;
874                         ret = ARM_EXCEPTION_IL;
875                 }
876
877                 ret = handle_exit(vcpu, ret);
878         }
879
880         /* Tell userspace about in-kernel device output levels */
881         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
882                 kvm_timer_update_run(vcpu);
883                 kvm_pmu_update_run(vcpu);
884         }
885
886         kvm_sigset_deactivate(vcpu);
887
888         vcpu_put(vcpu);
889         return ret;
890 }
891
892 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
893 {
894         int bit_index;
895         bool set;
896         unsigned long *hcr;
897
898         if (number == KVM_ARM_IRQ_CPU_IRQ)
899                 bit_index = __ffs(HCR_VI);
900         else /* KVM_ARM_IRQ_CPU_FIQ */
901                 bit_index = __ffs(HCR_VF);
902
903         hcr = vcpu_hcr(vcpu);
904         if (level)
905                 set = test_and_set_bit(bit_index, hcr);
906         else
907                 set = test_and_clear_bit(bit_index, hcr);
908
909         /*
910          * If we didn't change anything, no need to wake up or kick other CPUs
911          */
912         if (set == level)
913                 return 0;
914
915         /*
916          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
917          * trigger a world-switch round on the running physical CPU to set the
918          * virtual IRQ/FIQ fields in the HCR appropriately.
919          */
920         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
921         kvm_vcpu_kick(vcpu);
922
923         return 0;
924 }
925
926 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
927                           bool line_status)
928 {
929         u32 irq = irq_level->irq;
930         unsigned int irq_type, vcpu_idx, irq_num;
931         int nrcpus = atomic_read(&kvm->online_vcpus);
932         struct kvm_vcpu *vcpu = NULL;
933         bool level = irq_level->level;
934
935         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
936         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
937         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
938         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
939
940         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
941
942         switch (irq_type) {
943         case KVM_ARM_IRQ_TYPE_CPU:
944                 if (irqchip_in_kernel(kvm))
945                         return -ENXIO;
946
947                 if (vcpu_idx >= nrcpus)
948                         return -EINVAL;
949
950                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
951                 if (!vcpu)
952                         return -EINVAL;
953
954                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
955                         return -EINVAL;
956
957                 return vcpu_interrupt_line(vcpu, irq_num, level);
958         case KVM_ARM_IRQ_TYPE_PPI:
959                 if (!irqchip_in_kernel(kvm))
960                         return -ENXIO;
961
962                 if (vcpu_idx >= nrcpus)
963                         return -EINVAL;
964
965                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
966                 if (!vcpu)
967                         return -EINVAL;
968
969                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
970                         return -EINVAL;
971
972                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
973         case KVM_ARM_IRQ_TYPE_SPI:
974                 if (!irqchip_in_kernel(kvm))
975                         return -ENXIO;
976
977                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
978                         return -EINVAL;
979
980                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
981         }
982
983         return -EINVAL;
984 }
985
986 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
987                                const struct kvm_vcpu_init *init)
988 {
989         unsigned int i, ret;
990         int phys_target = kvm_target_cpu();
991
992         if (init->target != phys_target)
993                 return -EINVAL;
994
995         /*
996          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
997          * use the same target.
998          */
999         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1000                 return -EINVAL;
1001
1002         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1003         for (i = 0; i < sizeof(init->features) * 8; i++) {
1004                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1005
1006                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1007                         return -ENOENT;
1008
1009                 /*
1010                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1011                  * use the same feature set.
1012                  */
1013                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1014                     test_bit(i, vcpu->arch.features) != set)
1015                         return -EINVAL;
1016
1017                 if (set)
1018                         set_bit(i, vcpu->arch.features);
1019         }
1020
1021         vcpu->arch.target = phys_target;
1022
1023         /* Now we know what it is, we can reset it. */
1024         ret = kvm_reset_vcpu(vcpu);
1025         if (ret) {
1026                 vcpu->arch.target = -1;
1027                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1028         }
1029
1030         return ret;
1031 }
1032
1033 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1034                                          struct kvm_vcpu_init *init)
1035 {
1036         int ret;
1037
1038         ret = kvm_vcpu_set_target(vcpu, init);
1039         if (ret)
1040                 return ret;
1041
1042         /*
1043          * Ensure a rebooted VM will fault in RAM pages and detect if the
1044          * guest MMU is turned off and flush the caches as needed.
1045          *
1046          * S2FWB enforces all memory accesses to RAM being cacheable,
1047          * ensuring that the data side is always coherent. We still
1048          * need to invalidate the I-cache though, as FWB does *not*
1049          * imply CTR_EL0.DIC.
1050          */
1051         if (vcpu->arch.has_run_once) {
1052                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1053                         stage2_unmap_vm(vcpu->kvm);
1054                 else
1055                         __flush_icache_all();
1056         }
1057
1058         vcpu_reset_hcr(vcpu);
1059
1060         /*
1061          * Handle the "start in power-off" case.
1062          */
1063         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1064                 vcpu_power_off(vcpu);
1065         else
1066                 vcpu->arch.power_off = false;
1067
1068         return 0;
1069 }
1070
1071 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1072                                  struct kvm_device_attr *attr)
1073 {
1074         int ret = -ENXIO;
1075
1076         switch (attr->group) {
1077         default:
1078                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1079                 break;
1080         }
1081
1082         return ret;
1083 }
1084
1085 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1086                                  struct kvm_device_attr *attr)
1087 {
1088         int ret = -ENXIO;
1089
1090         switch (attr->group) {
1091         default:
1092                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1093                 break;
1094         }
1095
1096         return ret;
1097 }
1098
1099 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1100                                  struct kvm_device_attr *attr)
1101 {
1102         int ret = -ENXIO;
1103
1104         switch (attr->group) {
1105         default:
1106                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1107                 break;
1108         }
1109
1110         return ret;
1111 }
1112
1113 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1114                                    struct kvm_vcpu_events *events)
1115 {
1116         memset(events, 0, sizeof(*events));
1117
1118         return __kvm_arm_vcpu_get_events(vcpu, events);
1119 }
1120
1121 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1122                                    struct kvm_vcpu_events *events)
1123 {
1124         int i;
1125
1126         /* check whether the reserved field is zero */
1127         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1128                 if (events->reserved[i])
1129                         return -EINVAL;
1130
1131         /* check whether the pad field is zero */
1132         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1133                 if (events->exception.pad[i])
1134                         return -EINVAL;
1135
1136         return __kvm_arm_vcpu_set_events(vcpu, events);
1137 }
1138
1139 long kvm_arch_vcpu_ioctl(struct file *filp,
1140                          unsigned int ioctl, unsigned long arg)
1141 {
1142         struct kvm_vcpu *vcpu = filp->private_data;
1143         void __user *argp = (void __user *)arg;
1144         struct kvm_device_attr attr;
1145         long r;
1146
1147         switch (ioctl) {
1148         case KVM_ARM_VCPU_INIT: {
1149                 struct kvm_vcpu_init init;
1150
1151                 r = -EFAULT;
1152                 if (copy_from_user(&init, argp, sizeof(init)))
1153                         break;
1154
1155                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1156                 break;
1157         }
1158         case KVM_SET_ONE_REG:
1159         case KVM_GET_ONE_REG: {
1160                 struct kvm_one_reg reg;
1161
1162                 r = -ENOEXEC;
1163                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1164                         break;
1165
1166                 r = -EFAULT;
1167                 if (copy_from_user(&reg, argp, sizeof(reg)))
1168                         break;
1169
1170                 if (ioctl == KVM_SET_ONE_REG)
1171                         r = kvm_arm_set_reg(vcpu, &reg);
1172                 else
1173                         r = kvm_arm_get_reg(vcpu, &reg);
1174                 break;
1175         }
1176         case KVM_GET_REG_LIST: {
1177                 struct kvm_reg_list __user *user_list = argp;
1178                 struct kvm_reg_list reg_list;
1179                 unsigned n;
1180
1181                 r = -ENOEXEC;
1182                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1183                         break;
1184
1185                 r = -EPERM;
1186                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1187                         break;
1188
1189                 r = -EFAULT;
1190                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1191                         break;
1192                 n = reg_list.n;
1193                 reg_list.n = kvm_arm_num_regs(vcpu);
1194                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1195                         break;
1196                 r = -E2BIG;
1197                 if (n < reg_list.n)
1198                         break;
1199                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1200                 break;
1201         }
1202         case KVM_SET_DEVICE_ATTR: {
1203                 r = -EFAULT;
1204                 if (copy_from_user(&attr, argp, sizeof(attr)))
1205                         break;
1206                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1207                 break;
1208         }
1209         case KVM_GET_DEVICE_ATTR: {
1210                 r = -EFAULT;
1211                 if (copy_from_user(&attr, argp, sizeof(attr)))
1212                         break;
1213                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1214                 break;
1215         }
1216         case KVM_HAS_DEVICE_ATTR: {
1217                 r = -EFAULT;
1218                 if (copy_from_user(&attr, argp, sizeof(attr)))
1219                         break;
1220                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1221                 break;
1222         }
1223         case KVM_GET_VCPU_EVENTS: {
1224                 struct kvm_vcpu_events events;
1225
1226                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1227                         return -EINVAL;
1228
1229                 if (copy_to_user(argp, &events, sizeof(events)))
1230                         return -EFAULT;
1231
1232                 return 0;
1233         }
1234         case KVM_SET_VCPU_EVENTS: {
1235                 struct kvm_vcpu_events events;
1236
1237                 if (copy_from_user(&events, argp, sizeof(events)))
1238                         return -EFAULT;
1239
1240                 return kvm_arm_vcpu_set_events(vcpu, &events);
1241         }
1242         case KVM_ARM_VCPU_FINALIZE: {
1243                 int what;
1244
1245                 if (!kvm_vcpu_initialized(vcpu))
1246                         return -ENOEXEC;
1247
1248                 if (get_user(what, (const int __user *)argp))
1249                         return -EFAULT;
1250
1251                 return kvm_arm_vcpu_finalize(vcpu, what);
1252         }
1253         default:
1254                 r = -EINVAL;
1255         }
1256
1257         return r;
1258 }
1259
1260 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1261 {
1262
1263 }
1264
1265 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1266                                         struct kvm_memory_slot *memslot)
1267 {
1268         kvm_flush_remote_tlbs(kvm);
1269 }
1270
1271 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1272                                         struct kvm_arm_device_addr *dev_addr)
1273 {
1274         unsigned long dev_id, type;
1275
1276         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1277                 KVM_ARM_DEVICE_ID_SHIFT;
1278         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1279                 KVM_ARM_DEVICE_TYPE_SHIFT;
1280
1281         switch (dev_id) {
1282         case KVM_ARM_DEVICE_VGIC_V2:
1283                 if (!vgic_present)
1284                         return -ENXIO;
1285                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1286         default:
1287                 return -ENODEV;
1288         }
1289 }
1290
1291 long kvm_arch_vm_ioctl(struct file *filp,
1292                        unsigned int ioctl, unsigned long arg)
1293 {
1294         struct kvm *kvm = filp->private_data;
1295         void __user *argp = (void __user *)arg;
1296
1297         switch (ioctl) {
1298         case KVM_CREATE_IRQCHIP: {
1299                 int ret;
1300                 if (!vgic_present)
1301                         return -ENXIO;
1302                 mutex_lock(&kvm->lock);
1303                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1304                 mutex_unlock(&kvm->lock);
1305                 return ret;
1306         }
1307         case KVM_ARM_SET_DEVICE_ADDR: {
1308                 struct kvm_arm_device_addr dev_addr;
1309
1310                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1311                         return -EFAULT;
1312                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1313         }
1314         case KVM_ARM_PREFERRED_TARGET: {
1315                 int err;
1316                 struct kvm_vcpu_init init;
1317
1318                 err = kvm_vcpu_preferred_target(&init);
1319                 if (err)
1320                         return err;
1321
1322                 if (copy_to_user(argp, &init, sizeof(init)))
1323                         return -EFAULT;
1324
1325                 return 0;
1326         }
1327         default:
1328                 return -EINVAL;
1329         }
1330 }
1331
1332 static unsigned long nvhe_percpu_size(void)
1333 {
1334         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1335                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1336 }
1337
1338 static unsigned long nvhe_percpu_order(void)
1339 {
1340         unsigned long size = nvhe_percpu_size();
1341
1342         return size ? get_order(size) : 0;
1343 }
1344
1345 /* A lookup table holding the hypervisor VA for each vector slot */
1346 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1347
1348 static int __kvm_vector_slot2idx(enum arm64_hyp_spectre_vector slot)
1349 {
1350         return slot - (slot != HYP_VECTOR_DIRECT);
1351 }
1352
1353 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1354 {
1355         int idx = __kvm_vector_slot2idx(slot);
1356
1357         hyp_spectre_vector_selector[slot] = base + (idx * SZ_2K);
1358 }
1359
1360 static int kvm_init_vector_slots(void)
1361 {
1362         int err;
1363         void *base;
1364
1365         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1366         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1367
1368         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1369         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1370
1371         if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1372                 return 0;
1373
1374         if (!has_vhe()) {
1375                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1376                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1377                 if (err)
1378                         return err;
1379         }
1380
1381         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1382         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1383         return 0;
1384 }
1385
1386 static void cpu_init_hyp_mode(void)
1387 {
1388         struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1389         struct arm_smccc_res res;
1390         unsigned long tcr;
1391
1392         /* Switch from the HYP stub to our own HYP init vector */
1393         __hyp_set_vectors(kvm_get_idmap_vector());
1394
1395         /*
1396          * Calculate the raw per-cpu offset without a translation from the
1397          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1398          * so that we can use adr_l to access per-cpu variables in EL2.
1399          * Also drop the KASAN tag which gets in the way...
1400          */
1401         params->tpidr_el2 = (unsigned long)kasan_reset_tag(this_cpu_ptr_nvhe_sym(__per_cpu_start)) -
1402                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1403
1404         params->mair_el2 = read_sysreg(mair_el1);
1405
1406         /*
1407          * The ID map may be configured to use an extended virtual address
1408          * range. This is only the case if system RAM is out of range for the
1409          * currently configured page size and VA_BITS, in which case we will
1410          * also need the extended virtual range for the HYP ID map, or we won't
1411          * be able to enable the EL2 MMU.
1412          *
1413          * However, at EL2, there is only one TTBR register, and we can't switch
1414          * between translation tables *and* update TCR_EL2.T0SZ at the same
1415          * time. Bottom line: we need to use the extended range with *both* our
1416          * translation tables.
1417          *
1418          * So use the same T0SZ value we use for the ID map.
1419          */
1420         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1421         tcr &= ~TCR_T0SZ_MASK;
1422         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1423         params->tcr_el2 = tcr;
1424
1425         params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
1426         params->pgd_pa = kvm_mmu_get_httbr();
1427
1428         /*
1429          * Flush the init params from the data cache because the struct will
1430          * be read while the MMU is off.
1431          */
1432         kvm_flush_dcache_to_poc(params, sizeof(*params));
1433
1434         /*
1435          * Call initialization code, and switch to the full blown HYP code.
1436          * If the cpucaps haven't been finalized yet, something has gone very
1437          * wrong, and hyp will crash and burn when it uses any
1438          * cpus_have_const_cap() wrapper.
1439          */
1440         BUG_ON(!system_capabilities_finalized());
1441         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1442         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1443
1444         /*
1445          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1446          * at EL2.
1447          */
1448         if (this_cpu_has_cap(ARM64_SSBS) &&
1449             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1450                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1451         }
1452 }
1453
1454 static void cpu_hyp_reset(void)
1455 {
1456         if (!is_kernel_in_hyp_mode())
1457                 __hyp_reset_vectors();
1458 }
1459
1460 /*
1461  * EL2 vectors can be mapped and rerouted in a number of ways,
1462  * depending on the kernel configuration and CPU present:
1463  *
1464  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1465  *   placed in one of the vector slots, which is executed before jumping
1466  *   to the real vectors.
1467  *
1468  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1469  *   containing the hardening sequence is mapped next to the idmap page,
1470  *   and executed before jumping to the real vectors.
1471  *
1472  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1473  *   empty slot is selected, mapped next to the idmap page, and
1474  *   executed before jumping to the real vectors.
1475  *
1476  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1477  * VHE, as we don't have hypervisor-specific mappings. If the system
1478  * is VHE and yet selects this capability, it will be ignored.
1479  */
1480 static void cpu_set_hyp_vector(void)
1481 {
1482         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1483         void *vector = hyp_spectre_vector_selector[data->slot];
1484
1485         *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1486 }
1487
1488 static void cpu_hyp_reinit(void)
1489 {
1490         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1491
1492         cpu_hyp_reset();
1493         cpu_set_hyp_vector();
1494
1495         if (is_kernel_in_hyp_mode())
1496                 kvm_timer_init_vhe();
1497         else
1498                 cpu_init_hyp_mode();
1499
1500         kvm_arm_init_debug();
1501
1502         if (vgic_present)
1503                 kvm_vgic_init_cpu_hardware();
1504 }
1505
1506 static void _kvm_arch_hardware_enable(void *discard)
1507 {
1508         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1509                 cpu_hyp_reinit();
1510                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1511         }
1512 }
1513
1514 int kvm_arch_hardware_enable(void)
1515 {
1516         _kvm_arch_hardware_enable(NULL);
1517         return 0;
1518 }
1519
1520 static void _kvm_arch_hardware_disable(void *discard)
1521 {
1522         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1523                 cpu_hyp_reset();
1524                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1525         }
1526 }
1527
1528 void kvm_arch_hardware_disable(void)
1529 {
1530         if (!is_protected_kvm_enabled())
1531                 _kvm_arch_hardware_disable(NULL);
1532 }
1533
1534 #ifdef CONFIG_CPU_PM
1535 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1536                                     unsigned long cmd,
1537                                     void *v)
1538 {
1539         /*
1540          * kvm_arm_hardware_enabled is left with its old value over
1541          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1542          * re-enable hyp.
1543          */
1544         switch (cmd) {
1545         case CPU_PM_ENTER:
1546                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1547                         /*
1548                          * don't update kvm_arm_hardware_enabled here
1549                          * so that the hardware will be re-enabled
1550                          * when we resume. See below.
1551                          */
1552                         cpu_hyp_reset();
1553
1554                 return NOTIFY_OK;
1555         case CPU_PM_ENTER_FAILED:
1556         case CPU_PM_EXIT:
1557                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1558                         /* The hardware was enabled before suspend. */
1559                         cpu_hyp_reinit();
1560
1561                 return NOTIFY_OK;
1562
1563         default:
1564                 return NOTIFY_DONE;
1565         }
1566 }
1567
1568 static struct notifier_block hyp_init_cpu_pm_nb = {
1569         .notifier_call = hyp_init_cpu_pm_notifier,
1570 };
1571
1572 static void hyp_cpu_pm_init(void)
1573 {
1574         if (!is_protected_kvm_enabled())
1575                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1576 }
1577 static void hyp_cpu_pm_exit(void)
1578 {
1579         if (!is_protected_kvm_enabled())
1580                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1581 }
1582 #else
1583 static inline void hyp_cpu_pm_init(void)
1584 {
1585 }
1586 static inline void hyp_cpu_pm_exit(void)
1587 {
1588 }
1589 #endif
1590
1591 static void init_cpu_logical_map(void)
1592 {
1593         unsigned int cpu;
1594
1595         /*
1596          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1597          * Only copy the set of online CPUs whose features have been chacked
1598          * against the finalized system capabilities. The hypervisor will not
1599          * allow any other CPUs from the `possible` set to boot.
1600          */
1601         for_each_online_cpu(cpu)
1602                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1603 }
1604
1605 #define init_psci_0_1_impl_state(config, what)  \
1606         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1607
1608 static bool init_psci_relay(void)
1609 {
1610         /*
1611          * If PSCI has not been initialized, protected KVM cannot install
1612          * itself on newly booted CPUs.
1613          */
1614         if (!psci_ops.get_version) {
1615                 kvm_err("Cannot initialize protected mode without PSCI\n");
1616                 return false;
1617         }
1618
1619         kvm_host_psci_config.version = psci_ops.get_version();
1620
1621         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1622                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1623                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1624                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1625                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1626                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1627         }
1628         return true;
1629 }
1630
1631 static int init_common_resources(void)
1632 {
1633         return kvm_set_ipa_limit();
1634 }
1635
1636 static int init_subsystems(void)
1637 {
1638         int err = 0;
1639
1640         /*
1641          * Enable hardware so that subsystem initialisation can access EL2.
1642          */
1643         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1644
1645         /*
1646          * Register CPU lower-power notifier
1647          */
1648         hyp_cpu_pm_init();
1649
1650         /*
1651          * Init HYP view of VGIC
1652          */
1653         err = kvm_vgic_hyp_init();
1654         switch (err) {
1655         case 0:
1656                 vgic_present = true;
1657                 break;
1658         case -ENODEV:
1659         case -ENXIO:
1660                 vgic_present = false;
1661                 err = 0;
1662                 break;
1663         default:
1664                 goto out;
1665         }
1666
1667         /*
1668          * Init HYP architected timer support
1669          */
1670         err = kvm_timer_hyp_init(vgic_present);
1671         if (err)
1672                 goto out;
1673
1674         kvm_perf_init();
1675         kvm_sys_reg_table_init();
1676
1677 out:
1678         if (err || !is_protected_kvm_enabled())
1679                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1680
1681         return err;
1682 }
1683
1684 static void teardown_hyp_mode(void)
1685 {
1686         int cpu;
1687
1688         free_hyp_pgds();
1689         for_each_possible_cpu(cpu) {
1690                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1691                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1692         }
1693 }
1694
1695 /**
1696  * Inits Hyp-mode on all online CPUs
1697  */
1698 static int init_hyp_mode(void)
1699 {
1700         int cpu;
1701         int err = 0;
1702
1703         /*
1704          * Allocate Hyp PGD and setup Hyp identity mapping
1705          */
1706         err = kvm_mmu_init();
1707         if (err)
1708                 goto out_err;
1709
1710         /*
1711          * Allocate stack pages for Hypervisor-mode
1712          */
1713         for_each_possible_cpu(cpu) {
1714                 unsigned long stack_page;
1715
1716                 stack_page = __get_free_page(GFP_KERNEL);
1717                 if (!stack_page) {
1718                         err = -ENOMEM;
1719                         goto out_err;
1720                 }
1721
1722                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1723         }
1724
1725         /*
1726          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1727          */
1728         for_each_possible_cpu(cpu) {
1729                 struct page *page;
1730                 void *page_addr;
1731
1732                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1733                 if (!page) {
1734                         err = -ENOMEM;
1735                         goto out_err;
1736                 }
1737
1738                 page_addr = page_address(page);
1739                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1740                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1741         }
1742
1743         /*
1744          * Map the Hyp-code called directly from the host
1745          */
1746         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1747                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1748         if (err) {
1749                 kvm_err("Cannot map world-switch code\n");
1750                 goto out_err;
1751         }
1752
1753         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1754                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1755         if (err) {
1756                 kvm_err("Cannot map .hyp.rodata section\n");
1757                 goto out_err;
1758         }
1759
1760         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1761                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1762         if (err) {
1763                 kvm_err("Cannot map rodata section\n");
1764                 goto out_err;
1765         }
1766
1767         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1768                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1769         if (err) {
1770                 kvm_err("Cannot map bss section\n");
1771                 goto out_err;
1772         }
1773
1774         /*
1775          * Map the Hyp stack pages
1776          */
1777         for_each_possible_cpu(cpu) {
1778                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1779                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1780                                           PAGE_HYP);
1781
1782                 if (err) {
1783                         kvm_err("Cannot map hyp stack\n");
1784                         goto out_err;
1785                 }
1786         }
1787
1788         /*
1789          * Map Hyp percpu pages
1790          */
1791         for_each_possible_cpu(cpu) {
1792                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1793                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1794
1795                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1796
1797                 if (err) {
1798                         kvm_err("Cannot map hyp percpu region\n");
1799                         goto out_err;
1800                 }
1801         }
1802
1803         if (is_protected_kvm_enabled()) {
1804                 init_cpu_logical_map();
1805
1806                 if (!init_psci_relay())
1807                         goto out_err;
1808         }
1809
1810         return 0;
1811
1812 out_err:
1813         teardown_hyp_mode();
1814         kvm_err("error initializing Hyp mode: %d\n", err);
1815         return err;
1816 }
1817
1818 static void check_kvm_target_cpu(void *ret)
1819 {
1820         *(int *)ret = kvm_target_cpu();
1821 }
1822
1823 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1824 {
1825         struct kvm_vcpu *vcpu;
1826         int i;
1827
1828         mpidr &= MPIDR_HWID_BITMASK;
1829         kvm_for_each_vcpu(i, vcpu, kvm) {
1830                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1831                         return vcpu;
1832         }
1833         return NULL;
1834 }
1835
1836 bool kvm_arch_has_irq_bypass(void)
1837 {
1838         return true;
1839 }
1840
1841 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1842                                       struct irq_bypass_producer *prod)
1843 {
1844         struct kvm_kernel_irqfd *irqfd =
1845                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1846
1847         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1848                                           &irqfd->irq_entry);
1849 }
1850 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1851                                       struct irq_bypass_producer *prod)
1852 {
1853         struct kvm_kernel_irqfd *irqfd =
1854                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1855
1856         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1857                                      &irqfd->irq_entry);
1858 }
1859
1860 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1861 {
1862         struct kvm_kernel_irqfd *irqfd =
1863                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1864
1865         kvm_arm_halt_guest(irqfd->kvm);
1866 }
1867
1868 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1869 {
1870         struct kvm_kernel_irqfd *irqfd =
1871                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1872
1873         kvm_arm_resume_guest(irqfd->kvm);
1874 }
1875
1876 /**
1877  * Initialize Hyp-mode and memory mappings on all CPUs.
1878  */
1879 int kvm_arch_init(void *opaque)
1880 {
1881         int err;
1882         int ret, cpu;
1883         bool in_hyp_mode;
1884
1885         if (!is_hyp_mode_available()) {
1886                 kvm_info("HYP mode not available\n");
1887                 return -ENODEV;
1888         }
1889
1890         in_hyp_mode = is_kernel_in_hyp_mode();
1891
1892         if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1893                 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1894                 return -ENODEV;
1895         }
1896
1897         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
1898             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1899                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1900                          "Only trusted guests should be used on this system.\n");
1901
1902         for_each_online_cpu(cpu) {
1903                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1904                 if (ret < 0) {
1905                         kvm_err("Error, CPU %d not supported!\n", cpu);
1906                         return -ENODEV;
1907                 }
1908         }
1909
1910         err = init_common_resources();
1911         if (err)
1912                 return err;
1913
1914         err = kvm_arm_init_sve();
1915         if (err)
1916                 return err;
1917
1918         if (!in_hyp_mode) {
1919                 err = init_hyp_mode();
1920                 if (err)
1921                         goto out_err;
1922         }
1923
1924         err = kvm_init_vector_slots();
1925         if (err) {
1926                 kvm_err("Cannot initialise vector slots\n");
1927                 goto out_err;
1928         }
1929
1930         err = init_subsystems();
1931         if (err)
1932                 goto out_hyp;
1933
1934         if (is_protected_kvm_enabled()) {
1935                 static_branch_enable(&kvm_protected_mode_initialized);
1936                 kvm_info("Protected nVHE mode initialized successfully\n");
1937         } else if (in_hyp_mode) {
1938                 kvm_info("VHE mode initialized successfully\n");
1939         } else {
1940                 kvm_info("Hyp mode initialized successfully\n");
1941         }
1942
1943         return 0;
1944
1945 out_hyp:
1946         hyp_cpu_pm_exit();
1947         if (!in_hyp_mode)
1948                 teardown_hyp_mode();
1949 out_err:
1950         return err;
1951 }
1952
1953 /* NOP: Compiling as a module not supported */
1954 void kvm_arch_exit(void)
1955 {
1956         kvm_perf_teardown();
1957 }
1958
1959 static int __init early_kvm_mode_cfg(char *arg)
1960 {
1961         if (!arg)
1962                 return -EINVAL;
1963
1964         if (strcmp(arg, "protected") == 0) {
1965                 kvm_mode = KVM_MODE_PROTECTED;
1966                 return 0;
1967         }
1968
1969         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
1970                 return 0;
1971
1972         return -EINVAL;
1973 }
1974 early_param("kvm-arm.mode", early_kvm_mode_cfg);
1975
1976 enum kvm_mode kvm_get_mode(void)
1977 {
1978         return kvm_mode;
1979 }
1980
1981 static int arm_init(void)
1982 {
1983         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1984         return rc;
1985 }
1986
1987 module_init(arm_init);