Merge branches 'clk-range', 'clk-uniphier', 'clk-apple' and 'clk-qcom' into clk-next
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 /* The VMID used in the VTTBR */
57 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58 static u32 kvm_next_vmid;
59 static DEFINE_SPINLOCK(kvm_vmid_lock);
60
61 static bool vgic_present;
62
63 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
71 int kvm_arch_hardware_setup(void *opaque)
72 {
73         return 0;
74 }
75
76 int kvm_arch_check_processor_compat(void *opaque)
77 {
78         return 0;
79 }
80
81 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
82                             struct kvm_enable_cap *cap)
83 {
84         int r;
85
86         if (cap->flags)
87                 return -EINVAL;
88
89         switch (cap->cap) {
90         case KVM_CAP_ARM_NISV_TO_USER:
91                 r = 0;
92                 kvm->arch.return_nisv_io_abort_to_user = true;
93                 break;
94         case KVM_CAP_ARM_MTE:
95                 mutex_lock(&kvm->lock);
96                 if (!system_supports_mte() || kvm->created_vcpus) {
97                         r = -EINVAL;
98                 } else {
99                         r = 0;
100                         kvm->arch.mte_enabled = true;
101                 }
102                 mutex_unlock(&kvm->lock);
103                 break;
104         default:
105                 r = -EINVAL;
106                 break;
107         }
108
109         return r;
110 }
111
112 static int kvm_arm_default_max_vcpus(void)
113 {
114         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116
117 static void set_default_spectre(struct kvm *kvm)
118 {
119         /*
120          * The default is to expose CSV2 == 1 if the HW isn't affected.
121          * Although this is a per-CPU feature, we make it global because
122          * asymmetric systems are just a nuisance.
123          *
124          * Userspace can override this as long as it doesn't promise
125          * the impossible.
126          */
127         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128                 kvm->arch.pfr0_csv2 = 1;
129         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130                 kvm->arch.pfr0_csv3 = 1;
131 }
132
133 /**
134  * kvm_arch_init_vm - initializes a VM data structure
135  * @kvm:        pointer to the KVM struct
136  */
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139         int ret;
140
141         ret = kvm_arm_setup_stage2(kvm, type);
142         if (ret)
143                 return ret;
144
145         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146         if (ret)
147                 return ret;
148
149         ret = kvm_share_hyp(kvm, kvm + 1);
150         if (ret)
151                 goto out_free_stage2_pgd;
152
153         kvm_vgic_early_init(kvm);
154
155         /* The maximum number of VCPUs is limited by the host's GIC model */
156         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157
158         set_default_spectre(kvm);
159
160         return ret;
161 out_free_stage2_pgd:
162         kvm_free_stage2_pgd(&kvm->arch.mmu);
163         return ret;
164 }
165
166 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         bitmap_free(kvm->arch.pmu_filter);
179
180         kvm_vgic_destroy(kvm);
181
182         kvm_destroy_vcpus(kvm);
183
184         kvm_unshare_hyp(kvm, kvm + 1);
185 }
186
187 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
188 {
189         int r;
190         switch (ext) {
191         case KVM_CAP_IRQCHIP:
192                 r = vgic_present;
193                 break;
194         case KVM_CAP_IOEVENTFD:
195         case KVM_CAP_DEVICE_CTRL:
196         case KVM_CAP_USER_MEMORY:
197         case KVM_CAP_SYNC_MMU:
198         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
199         case KVM_CAP_ONE_REG:
200         case KVM_CAP_ARM_PSCI:
201         case KVM_CAP_ARM_PSCI_0_2:
202         case KVM_CAP_READONLY_MEM:
203         case KVM_CAP_MP_STATE:
204         case KVM_CAP_IMMEDIATE_EXIT:
205         case KVM_CAP_VCPU_EVENTS:
206         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
207         case KVM_CAP_ARM_NISV_TO_USER:
208         case KVM_CAP_ARM_INJECT_EXT_DABT:
209         case KVM_CAP_SET_GUEST_DEBUG:
210         case KVM_CAP_VCPU_ATTRIBUTES:
211         case KVM_CAP_PTP_KVM:
212                 r = 1;
213                 break;
214         case KVM_CAP_SET_GUEST_DEBUG2:
215                 return KVM_GUESTDBG_VALID_MASK;
216         case KVM_CAP_ARM_SET_DEVICE_ADDR:
217                 r = 1;
218                 break;
219         case KVM_CAP_NR_VCPUS:
220                 /*
221                  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
222                  * architectures, as it does not always bound it to
223                  * KVM_CAP_MAX_VCPUS. It should not matter much because
224                  * this is just an advisory value.
225                  */
226                 r = min_t(unsigned int, num_online_cpus(),
227                           kvm_arm_default_max_vcpus());
228                 break;
229         case KVM_CAP_MAX_VCPUS:
230         case KVM_CAP_MAX_VCPU_ID:
231                 if (kvm)
232                         r = kvm->arch.max_vcpus;
233                 else
234                         r = kvm_arm_default_max_vcpus();
235                 break;
236         case KVM_CAP_MSI_DEVID:
237                 if (!kvm)
238                         r = -EINVAL;
239                 else
240                         r = kvm->arch.vgic.msis_require_devid;
241                 break;
242         case KVM_CAP_ARM_USER_IRQ:
243                 /*
244                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
245                  * (bump this number if adding more devices)
246                  */
247                 r = 1;
248                 break;
249         case KVM_CAP_ARM_MTE:
250                 r = system_supports_mte();
251                 break;
252         case KVM_CAP_STEAL_TIME:
253                 r = kvm_arm_pvtime_supported();
254                 break;
255         case KVM_CAP_ARM_EL1_32BIT:
256                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
257                 break;
258         case KVM_CAP_GUEST_DEBUG_HW_BPS:
259                 r = get_num_brps();
260                 break;
261         case KVM_CAP_GUEST_DEBUG_HW_WPS:
262                 r = get_num_wrps();
263                 break;
264         case KVM_CAP_ARM_PMU_V3:
265                 r = kvm_arm_support_pmu_v3();
266                 break;
267         case KVM_CAP_ARM_INJECT_SERROR_ESR:
268                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
269                 break;
270         case KVM_CAP_ARM_VM_IPA_SIZE:
271                 r = get_kvm_ipa_limit();
272                 break;
273         case KVM_CAP_ARM_SVE:
274                 r = system_supports_sve();
275                 break;
276         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
277         case KVM_CAP_ARM_PTRAUTH_GENERIC:
278                 r = system_has_full_ptr_auth();
279                 break;
280         default:
281                 r = 0;
282         }
283
284         return r;
285 }
286
287 long kvm_arch_dev_ioctl(struct file *filp,
288                         unsigned int ioctl, unsigned long arg)
289 {
290         return -EINVAL;
291 }
292
293 struct kvm *kvm_arch_alloc_vm(void)
294 {
295         size_t sz = sizeof(struct kvm);
296
297         if (!has_vhe())
298                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
299
300         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
301 }
302
303 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
304 {
305         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
306                 return -EBUSY;
307
308         if (id >= kvm->arch.max_vcpus)
309                 return -EINVAL;
310
311         return 0;
312 }
313
314 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
315 {
316         int err;
317
318         /* Force users to call KVM_ARM_VCPU_INIT */
319         vcpu->arch.target = -1;
320         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
321
322         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
323
324         /* Set up the timer */
325         kvm_timer_vcpu_init(vcpu);
326
327         kvm_pmu_vcpu_init(vcpu);
328
329         kvm_arm_reset_debug_ptr(vcpu);
330
331         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
332
333         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
334
335         err = kvm_vgic_vcpu_init(vcpu);
336         if (err)
337                 return err;
338
339         return kvm_share_hyp(vcpu, vcpu + 1);
340 }
341
342 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
343 {
344 }
345
346 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
347 {
348         if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
349                 static_branch_dec(&userspace_irqchip_in_use);
350
351         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
352         kvm_timer_vcpu_terminate(vcpu);
353         kvm_pmu_vcpu_destroy(vcpu);
354
355         kvm_arm_vcpu_destroy(vcpu);
356 }
357
358 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
359 {
360         return kvm_timer_is_pending(vcpu);
361 }
362
363 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
364 {
365
366 }
367
368 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
369 {
370
371 }
372
373 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
374 {
375         struct kvm_s2_mmu *mmu;
376         int *last_ran;
377
378         mmu = vcpu->arch.hw_mmu;
379         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
380
381         /*
382          * We guarantee that both TLBs and I-cache are private to each
383          * vcpu. If detecting that a vcpu from the same VM has
384          * previously run on the same physical CPU, call into the
385          * hypervisor code to nuke the relevant contexts.
386          *
387          * We might get preempted before the vCPU actually runs, but
388          * over-invalidation doesn't affect correctness.
389          */
390         if (*last_ran != vcpu->vcpu_id) {
391                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
392                 *last_ran = vcpu->vcpu_id;
393         }
394
395         vcpu->cpu = cpu;
396
397         kvm_vgic_load(vcpu);
398         kvm_timer_vcpu_load(vcpu);
399         if (has_vhe())
400                 kvm_vcpu_load_sysregs_vhe(vcpu);
401         kvm_arch_vcpu_load_fp(vcpu);
402         kvm_vcpu_pmu_restore_guest(vcpu);
403         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
404                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
405
406         if (single_task_running())
407                 vcpu_clear_wfx_traps(vcpu);
408         else
409                 vcpu_set_wfx_traps(vcpu);
410
411         if (vcpu_has_ptrauth(vcpu))
412                 vcpu_ptrauth_disable(vcpu);
413         kvm_arch_vcpu_load_debug_state_flags(vcpu);
414 }
415
416 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
417 {
418         kvm_arch_vcpu_put_debug_state_flags(vcpu);
419         kvm_arch_vcpu_put_fp(vcpu);
420         if (has_vhe())
421                 kvm_vcpu_put_sysregs_vhe(vcpu);
422         kvm_timer_vcpu_put(vcpu);
423         kvm_vgic_put(vcpu);
424         kvm_vcpu_pmu_restore_host(vcpu);
425
426         vcpu->cpu = -1;
427 }
428
429 static void vcpu_power_off(struct kvm_vcpu *vcpu)
430 {
431         vcpu->arch.power_off = true;
432         kvm_make_request(KVM_REQ_SLEEP, vcpu);
433         kvm_vcpu_kick(vcpu);
434 }
435
436 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
437                                     struct kvm_mp_state *mp_state)
438 {
439         if (vcpu->arch.power_off)
440                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
441         else
442                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
443
444         return 0;
445 }
446
447 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
448                                     struct kvm_mp_state *mp_state)
449 {
450         int ret = 0;
451
452         switch (mp_state->mp_state) {
453         case KVM_MP_STATE_RUNNABLE:
454                 vcpu->arch.power_off = false;
455                 break;
456         case KVM_MP_STATE_STOPPED:
457                 vcpu_power_off(vcpu);
458                 break;
459         default:
460                 ret = -EINVAL;
461         }
462
463         return ret;
464 }
465
466 /**
467  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
468  * @v:          The VCPU pointer
469  *
470  * If the guest CPU is not waiting for interrupts or an interrupt line is
471  * asserted, the CPU is by definition runnable.
472  */
473 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
474 {
475         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
476         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
477                 && !v->arch.power_off && !v->arch.pause);
478 }
479
480 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
481 {
482         return vcpu_mode_priv(vcpu);
483 }
484
485 #ifdef CONFIG_GUEST_PERF_EVENTS
486 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
487 {
488         return *vcpu_pc(vcpu);
489 }
490 #endif
491
492 /* Just ensure a guest exit from a particular CPU */
493 static void exit_vm_noop(void *info)
494 {
495 }
496
497 void force_vm_exit(const cpumask_t *mask)
498 {
499         preempt_disable();
500         smp_call_function_many(mask, exit_vm_noop, NULL, true);
501         preempt_enable();
502 }
503
504 /**
505  * need_new_vmid_gen - check that the VMID is still valid
506  * @vmid: The VMID to check
507  *
508  * return true if there is a new generation of VMIDs being used
509  *
510  * The hardware supports a limited set of values with the value zero reserved
511  * for the host, so we check if an assigned value belongs to a previous
512  * generation, which requires us to assign a new value. If we're the first to
513  * use a VMID for the new generation, we must flush necessary caches and TLBs
514  * on all CPUs.
515  */
516 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
517 {
518         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
519         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
520         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
521 }
522
523 /**
524  * update_vmid - Update the vmid with a valid VMID for the current generation
525  * @vmid: The stage-2 VMID information struct
526  */
527 static void update_vmid(struct kvm_vmid *vmid)
528 {
529         if (!need_new_vmid_gen(vmid))
530                 return;
531
532         spin_lock(&kvm_vmid_lock);
533
534         /*
535          * We need to re-check the vmid_gen here to ensure that if another vcpu
536          * already allocated a valid vmid for this vm, then this vcpu should
537          * use the same vmid.
538          */
539         if (!need_new_vmid_gen(vmid)) {
540                 spin_unlock(&kvm_vmid_lock);
541                 return;
542         }
543
544         /* First user of a new VMID generation? */
545         if (unlikely(kvm_next_vmid == 0)) {
546                 atomic64_inc(&kvm_vmid_gen);
547                 kvm_next_vmid = 1;
548
549                 /*
550                  * On SMP we know no other CPUs can use this CPU's or each
551                  * other's VMID after force_vm_exit returns since the
552                  * kvm_vmid_lock blocks them from reentry to the guest.
553                  */
554                 force_vm_exit(cpu_all_mask);
555                 /*
556                  * Now broadcast TLB + ICACHE invalidation over the inner
557                  * shareable domain to make sure all data structures are
558                  * clean.
559                  */
560                 kvm_call_hyp(__kvm_flush_vm_context);
561         }
562
563         WRITE_ONCE(vmid->vmid, kvm_next_vmid);
564         kvm_next_vmid++;
565         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
566
567         smp_wmb();
568         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
569
570         spin_unlock(&kvm_vmid_lock);
571 }
572
573 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
574 {
575         return vcpu->arch.target >= 0;
576 }
577
578 /*
579  * Handle both the initialisation that is being done when the vcpu is
580  * run for the first time, as well as the updates that must be
581  * performed each time we get a new thread dealing with this vcpu.
582  */
583 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
584 {
585         struct kvm *kvm = vcpu->kvm;
586         int ret;
587
588         if (!kvm_vcpu_initialized(vcpu))
589                 return -ENOEXEC;
590
591         if (!kvm_arm_vcpu_is_finalized(vcpu))
592                 return -EPERM;
593
594         ret = kvm_arch_vcpu_run_map_fp(vcpu);
595         if (ret)
596                 return ret;
597
598         if (likely(vcpu_has_run_once(vcpu)))
599                 return 0;
600
601         kvm_arm_vcpu_init_debug(vcpu);
602
603         if (likely(irqchip_in_kernel(kvm))) {
604                 /*
605                  * Map the VGIC hardware resources before running a vcpu the
606                  * first time on this VM.
607                  */
608                 ret = kvm_vgic_map_resources(kvm);
609                 if (ret)
610                         return ret;
611         }
612
613         ret = kvm_timer_enable(vcpu);
614         if (ret)
615                 return ret;
616
617         ret = kvm_arm_pmu_v3_enable(vcpu);
618         if (ret)
619                 return ret;
620
621         if (!irqchip_in_kernel(kvm)) {
622                 /*
623                  * Tell the rest of the code that there are userspace irqchip
624                  * VMs in the wild.
625                  */
626                 static_branch_inc(&userspace_irqchip_in_use);
627         }
628
629         /*
630          * Initialize traps for protected VMs.
631          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
632          * the code is in place for first run initialization at EL2.
633          */
634         if (kvm_vm_is_protected(kvm))
635                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
636
637         return ret;
638 }
639
640 bool kvm_arch_intc_initialized(struct kvm *kvm)
641 {
642         return vgic_initialized(kvm);
643 }
644
645 void kvm_arm_halt_guest(struct kvm *kvm)
646 {
647         unsigned long i;
648         struct kvm_vcpu *vcpu;
649
650         kvm_for_each_vcpu(i, vcpu, kvm)
651                 vcpu->arch.pause = true;
652         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
653 }
654
655 void kvm_arm_resume_guest(struct kvm *kvm)
656 {
657         unsigned long i;
658         struct kvm_vcpu *vcpu;
659
660         kvm_for_each_vcpu(i, vcpu, kvm) {
661                 vcpu->arch.pause = false;
662                 __kvm_vcpu_wake_up(vcpu);
663         }
664 }
665
666 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
667 {
668         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
669
670         rcuwait_wait_event(wait,
671                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
672                            TASK_INTERRUPTIBLE);
673
674         if (vcpu->arch.power_off || vcpu->arch.pause) {
675                 /* Awaken to handle a signal, request we sleep again later. */
676                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
677         }
678
679         /*
680          * Make sure we will observe a potential reset request if we've
681          * observed a change to the power state. Pairs with the smp_wmb() in
682          * kvm_psci_vcpu_on().
683          */
684         smp_rmb();
685 }
686
687 /**
688  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
689  * @vcpu:       The VCPU pointer
690  *
691  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
692  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
693  * on when a wake event arrives, e.g. there may already be a pending wake event.
694  */
695 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
696 {
697         /*
698          * Sync back the state of the GIC CPU interface so that we have
699          * the latest PMR and group enables. This ensures that
700          * kvm_arch_vcpu_runnable has up-to-date data to decide whether
701          * we have pending interrupts, e.g. when determining if the
702          * vCPU should block.
703          *
704          * For the same reason, we want to tell GICv4 that we need
705          * doorbells to be signalled, should an interrupt become pending.
706          */
707         preempt_disable();
708         kvm_vgic_vmcr_sync(vcpu);
709         vgic_v4_put(vcpu, true);
710         preempt_enable();
711
712         kvm_vcpu_halt(vcpu);
713         kvm_clear_request(KVM_REQ_UNHALT, vcpu);
714
715         preempt_disable();
716         vgic_v4_load(vcpu);
717         preempt_enable();
718 }
719
720 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
721 {
722         if (kvm_request_pending(vcpu)) {
723                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
724                         vcpu_req_sleep(vcpu);
725
726                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
727                         kvm_reset_vcpu(vcpu);
728
729                 /*
730                  * Clear IRQ_PENDING requests that were made to guarantee
731                  * that a VCPU sees new virtual interrupts.
732                  */
733                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
734
735                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
736                         kvm_update_stolen_time(vcpu);
737
738                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
739                         /* The distributor enable bits were changed */
740                         preempt_disable();
741                         vgic_v4_put(vcpu, false);
742                         vgic_v4_load(vcpu);
743                         preempt_enable();
744                 }
745
746                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
747                         kvm_pmu_handle_pmcr(vcpu,
748                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
749         }
750 }
751
752 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
753 {
754         if (likely(!vcpu_mode_is_32bit(vcpu)))
755                 return false;
756
757         return !system_supports_32bit_el0() ||
758                 static_branch_unlikely(&arm64_mismatched_32bit_el0);
759 }
760
761 /**
762  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
763  * @vcpu:       The VCPU pointer
764  * @ret:        Pointer to write optional return code
765  *
766  * Returns: true if the VCPU needs to return to a preemptible + interruptible
767  *          and skip guest entry.
768  *
769  * This function disambiguates between two different types of exits: exits to a
770  * preemptible + interruptible kernel context and exits to userspace. For an
771  * exit to userspace, this function will write the return code to ret and return
772  * true. For an exit to preemptible + interruptible kernel context (i.e. check
773  * for pending work and re-enter), return true without writing to ret.
774  */
775 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
776 {
777         struct kvm_run *run = vcpu->run;
778
779         /*
780          * If we're using a userspace irqchip, then check if we need
781          * to tell a userspace irqchip about timer or PMU level
782          * changes and if so, exit to userspace (the actual level
783          * state gets updated in kvm_timer_update_run and
784          * kvm_pmu_update_run below).
785          */
786         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
787                 if (kvm_timer_should_notify_user(vcpu) ||
788                     kvm_pmu_should_notify_user(vcpu)) {
789                         *ret = -EINTR;
790                         run->exit_reason = KVM_EXIT_INTR;
791                         return true;
792                 }
793         }
794
795         return kvm_request_pending(vcpu) ||
796                         need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
797                         xfer_to_guest_mode_work_pending();
798 }
799
800 /*
801  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
802  * the vCPU is running.
803  *
804  * This must be noinstr as instrumentation may make use of RCU, and this is not
805  * safe during the EQS.
806  */
807 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
808 {
809         int ret;
810
811         guest_state_enter_irqoff();
812         ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
813         guest_state_exit_irqoff();
814
815         return ret;
816 }
817
818 /**
819  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
820  * @vcpu:       The VCPU pointer
821  *
822  * This function is called through the VCPU_RUN ioctl called from user space. It
823  * will execute VM code in a loop until the time slice for the process is used
824  * or some emulation is needed from user space in which case the function will
825  * return with return value 0 and with the kvm_run structure filled in with the
826  * required data for the requested emulation.
827  */
828 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
829 {
830         struct kvm_run *run = vcpu->run;
831         int ret;
832
833         if (run->exit_reason == KVM_EXIT_MMIO) {
834                 ret = kvm_handle_mmio_return(vcpu);
835                 if (ret)
836                         return ret;
837         }
838
839         vcpu_load(vcpu);
840
841         if (run->immediate_exit) {
842                 ret = -EINTR;
843                 goto out;
844         }
845
846         kvm_sigset_activate(vcpu);
847
848         ret = 1;
849         run->exit_reason = KVM_EXIT_UNKNOWN;
850         while (ret > 0) {
851                 /*
852                  * Check conditions before entering the guest
853                  */
854                 ret = xfer_to_guest_mode_handle_work(vcpu);
855                 if (!ret)
856                         ret = 1;
857
858                 update_vmid(&vcpu->arch.hw_mmu->vmid);
859
860                 check_vcpu_requests(vcpu);
861
862                 /*
863                  * Preparing the interrupts to be injected also
864                  * involves poking the GIC, which must be done in a
865                  * non-preemptible context.
866                  */
867                 preempt_disable();
868
869                 kvm_pmu_flush_hwstate(vcpu);
870
871                 local_irq_disable();
872
873                 kvm_vgic_flush_hwstate(vcpu);
874
875                 /*
876                  * Ensure we set mode to IN_GUEST_MODE after we disable
877                  * interrupts and before the final VCPU requests check.
878                  * See the comment in kvm_vcpu_exiting_guest_mode() and
879                  * Documentation/virt/kvm/vcpu-requests.rst
880                  */
881                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
882
883                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
884                         vcpu->mode = OUTSIDE_GUEST_MODE;
885                         isb(); /* Ensure work in x_flush_hwstate is committed */
886                         kvm_pmu_sync_hwstate(vcpu);
887                         if (static_branch_unlikely(&userspace_irqchip_in_use))
888                                 kvm_timer_sync_user(vcpu);
889                         kvm_vgic_sync_hwstate(vcpu);
890                         local_irq_enable();
891                         preempt_enable();
892                         continue;
893                 }
894
895                 kvm_arm_setup_debug(vcpu);
896                 kvm_arch_vcpu_ctxflush_fp(vcpu);
897
898                 /**************************************************************
899                  * Enter the guest
900                  */
901                 trace_kvm_entry(*vcpu_pc(vcpu));
902                 guest_timing_enter_irqoff();
903
904                 ret = kvm_arm_vcpu_enter_exit(vcpu);
905
906                 vcpu->mode = OUTSIDE_GUEST_MODE;
907                 vcpu->stat.exits++;
908                 /*
909                  * Back from guest
910                  *************************************************************/
911
912                 kvm_arm_clear_debug(vcpu);
913
914                 /*
915                  * We must sync the PMU state before the vgic state so
916                  * that the vgic can properly sample the updated state of the
917                  * interrupt line.
918                  */
919                 kvm_pmu_sync_hwstate(vcpu);
920
921                 /*
922                  * Sync the vgic state before syncing the timer state because
923                  * the timer code needs to know if the virtual timer
924                  * interrupts are active.
925                  */
926                 kvm_vgic_sync_hwstate(vcpu);
927
928                 /*
929                  * Sync the timer hardware state before enabling interrupts as
930                  * we don't want vtimer interrupts to race with syncing the
931                  * timer virtual interrupt state.
932                  */
933                 if (static_branch_unlikely(&userspace_irqchip_in_use))
934                         kvm_timer_sync_user(vcpu);
935
936                 kvm_arch_vcpu_ctxsync_fp(vcpu);
937
938                 /*
939                  * We must ensure that any pending interrupts are taken before
940                  * we exit guest timing so that timer ticks are accounted as
941                  * guest time. Transiently unmask interrupts so that any
942                  * pending interrupts are taken.
943                  *
944                  * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
945                  * context synchronization event) is necessary to ensure that
946                  * pending interrupts are taken.
947                  */
948                 local_irq_enable();
949                 isb();
950                 local_irq_disable();
951
952                 guest_timing_exit_irqoff();
953
954                 local_irq_enable();
955
956                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
957
958                 /* Exit types that need handling before we can be preempted */
959                 handle_exit_early(vcpu, ret);
960
961                 preempt_enable();
962
963                 /*
964                  * The ARMv8 architecture doesn't give the hypervisor
965                  * a mechanism to prevent a guest from dropping to AArch32 EL0
966                  * if implemented by the CPU. If we spot the guest in such
967                  * state and that we decided it wasn't supposed to do so (like
968                  * with the asymmetric AArch32 case), return to userspace with
969                  * a fatal error.
970                  */
971                 if (vcpu_mode_is_bad_32bit(vcpu)) {
972                         /*
973                          * As we have caught the guest red-handed, decide that
974                          * it isn't fit for purpose anymore by making the vcpu
975                          * invalid. The VMM can try and fix it by issuing  a
976                          * KVM_ARM_VCPU_INIT if it really wants to.
977                          */
978                         vcpu->arch.target = -1;
979                         ret = ARM_EXCEPTION_IL;
980                 }
981
982                 ret = handle_exit(vcpu, ret);
983         }
984
985         /* Tell userspace about in-kernel device output levels */
986         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
987                 kvm_timer_update_run(vcpu);
988                 kvm_pmu_update_run(vcpu);
989         }
990
991         kvm_sigset_deactivate(vcpu);
992
993 out:
994         /*
995          * In the unlikely event that we are returning to userspace
996          * with pending exceptions or PC adjustment, commit these
997          * adjustments in order to give userspace a consistent view of
998          * the vcpu state. Note that this relies on __kvm_adjust_pc()
999          * being preempt-safe on VHE.
1000          */
1001         if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
1002                                          KVM_ARM64_INCREMENT_PC)))
1003                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1004
1005         vcpu_put(vcpu);
1006         return ret;
1007 }
1008
1009 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1010 {
1011         int bit_index;
1012         bool set;
1013         unsigned long *hcr;
1014
1015         if (number == KVM_ARM_IRQ_CPU_IRQ)
1016                 bit_index = __ffs(HCR_VI);
1017         else /* KVM_ARM_IRQ_CPU_FIQ */
1018                 bit_index = __ffs(HCR_VF);
1019
1020         hcr = vcpu_hcr(vcpu);
1021         if (level)
1022                 set = test_and_set_bit(bit_index, hcr);
1023         else
1024                 set = test_and_clear_bit(bit_index, hcr);
1025
1026         /*
1027          * If we didn't change anything, no need to wake up or kick other CPUs
1028          */
1029         if (set == level)
1030                 return 0;
1031
1032         /*
1033          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1034          * trigger a world-switch round on the running physical CPU to set the
1035          * virtual IRQ/FIQ fields in the HCR appropriately.
1036          */
1037         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1038         kvm_vcpu_kick(vcpu);
1039
1040         return 0;
1041 }
1042
1043 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1044                           bool line_status)
1045 {
1046         u32 irq = irq_level->irq;
1047         unsigned int irq_type, vcpu_idx, irq_num;
1048         int nrcpus = atomic_read(&kvm->online_vcpus);
1049         struct kvm_vcpu *vcpu = NULL;
1050         bool level = irq_level->level;
1051
1052         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1053         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1054         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1055         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1056
1057         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1058
1059         switch (irq_type) {
1060         case KVM_ARM_IRQ_TYPE_CPU:
1061                 if (irqchip_in_kernel(kvm))
1062                         return -ENXIO;
1063
1064                 if (vcpu_idx >= nrcpus)
1065                         return -EINVAL;
1066
1067                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1068                 if (!vcpu)
1069                         return -EINVAL;
1070
1071                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1072                         return -EINVAL;
1073
1074                 return vcpu_interrupt_line(vcpu, irq_num, level);
1075         case KVM_ARM_IRQ_TYPE_PPI:
1076                 if (!irqchip_in_kernel(kvm))
1077                         return -ENXIO;
1078
1079                 if (vcpu_idx >= nrcpus)
1080                         return -EINVAL;
1081
1082                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1083                 if (!vcpu)
1084                         return -EINVAL;
1085
1086                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1087                         return -EINVAL;
1088
1089                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1090         case KVM_ARM_IRQ_TYPE_SPI:
1091                 if (!irqchip_in_kernel(kvm))
1092                         return -ENXIO;
1093
1094                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1095                         return -EINVAL;
1096
1097                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1098         }
1099
1100         return -EINVAL;
1101 }
1102
1103 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1104                                const struct kvm_vcpu_init *init)
1105 {
1106         unsigned int i, ret;
1107         u32 phys_target = kvm_target_cpu();
1108
1109         if (init->target != phys_target)
1110                 return -EINVAL;
1111
1112         /*
1113          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1114          * use the same target.
1115          */
1116         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1117                 return -EINVAL;
1118
1119         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1120         for (i = 0; i < sizeof(init->features) * 8; i++) {
1121                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1122
1123                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1124                         return -ENOENT;
1125
1126                 /*
1127                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1128                  * use the same feature set.
1129                  */
1130                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1131                     test_bit(i, vcpu->arch.features) != set)
1132                         return -EINVAL;
1133
1134                 if (set)
1135                         set_bit(i, vcpu->arch.features);
1136         }
1137
1138         vcpu->arch.target = phys_target;
1139
1140         /* Now we know what it is, we can reset it. */
1141         ret = kvm_reset_vcpu(vcpu);
1142         if (ret) {
1143                 vcpu->arch.target = -1;
1144                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1145         }
1146
1147         return ret;
1148 }
1149
1150 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1151                                          struct kvm_vcpu_init *init)
1152 {
1153         int ret;
1154
1155         ret = kvm_vcpu_set_target(vcpu, init);
1156         if (ret)
1157                 return ret;
1158
1159         /*
1160          * Ensure a rebooted VM will fault in RAM pages and detect if the
1161          * guest MMU is turned off and flush the caches as needed.
1162          *
1163          * S2FWB enforces all memory accesses to RAM being cacheable,
1164          * ensuring that the data side is always coherent. We still
1165          * need to invalidate the I-cache though, as FWB does *not*
1166          * imply CTR_EL0.DIC.
1167          */
1168         if (vcpu_has_run_once(vcpu)) {
1169                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1170                         stage2_unmap_vm(vcpu->kvm);
1171                 else
1172                         icache_inval_all_pou();
1173         }
1174
1175         vcpu_reset_hcr(vcpu);
1176         vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1177
1178         /*
1179          * Handle the "start in power-off" case.
1180          */
1181         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1182                 vcpu_power_off(vcpu);
1183         else
1184                 vcpu->arch.power_off = false;
1185
1186         return 0;
1187 }
1188
1189 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1190                                  struct kvm_device_attr *attr)
1191 {
1192         int ret = -ENXIO;
1193
1194         switch (attr->group) {
1195         default:
1196                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1197                 break;
1198         }
1199
1200         return ret;
1201 }
1202
1203 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1204                                  struct kvm_device_attr *attr)
1205 {
1206         int ret = -ENXIO;
1207
1208         switch (attr->group) {
1209         default:
1210                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1211                 break;
1212         }
1213
1214         return ret;
1215 }
1216
1217 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1218                                  struct kvm_device_attr *attr)
1219 {
1220         int ret = -ENXIO;
1221
1222         switch (attr->group) {
1223         default:
1224                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1225                 break;
1226         }
1227
1228         return ret;
1229 }
1230
1231 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1232                                    struct kvm_vcpu_events *events)
1233 {
1234         memset(events, 0, sizeof(*events));
1235
1236         return __kvm_arm_vcpu_get_events(vcpu, events);
1237 }
1238
1239 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1240                                    struct kvm_vcpu_events *events)
1241 {
1242         int i;
1243
1244         /* check whether the reserved field is zero */
1245         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1246                 if (events->reserved[i])
1247                         return -EINVAL;
1248
1249         /* check whether the pad field is zero */
1250         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1251                 if (events->exception.pad[i])
1252                         return -EINVAL;
1253
1254         return __kvm_arm_vcpu_set_events(vcpu, events);
1255 }
1256
1257 long kvm_arch_vcpu_ioctl(struct file *filp,
1258                          unsigned int ioctl, unsigned long arg)
1259 {
1260         struct kvm_vcpu *vcpu = filp->private_data;
1261         void __user *argp = (void __user *)arg;
1262         struct kvm_device_attr attr;
1263         long r;
1264
1265         switch (ioctl) {
1266         case KVM_ARM_VCPU_INIT: {
1267                 struct kvm_vcpu_init init;
1268
1269                 r = -EFAULT;
1270                 if (copy_from_user(&init, argp, sizeof(init)))
1271                         break;
1272
1273                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1274                 break;
1275         }
1276         case KVM_SET_ONE_REG:
1277         case KVM_GET_ONE_REG: {
1278                 struct kvm_one_reg reg;
1279
1280                 r = -ENOEXEC;
1281                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1282                         break;
1283
1284                 r = -EFAULT;
1285                 if (copy_from_user(&reg, argp, sizeof(reg)))
1286                         break;
1287
1288                 /*
1289                  * We could owe a reset due to PSCI. Handle the pending reset
1290                  * here to ensure userspace register accesses are ordered after
1291                  * the reset.
1292                  */
1293                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1294                         kvm_reset_vcpu(vcpu);
1295
1296                 if (ioctl == KVM_SET_ONE_REG)
1297                         r = kvm_arm_set_reg(vcpu, &reg);
1298                 else
1299                         r = kvm_arm_get_reg(vcpu, &reg);
1300                 break;
1301         }
1302         case KVM_GET_REG_LIST: {
1303                 struct kvm_reg_list __user *user_list = argp;
1304                 struct kvm_reg_list reg_list;
1305                 unsigned n;
1306
1307                 r = -ENOEXEC;
1308                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1309                         break;
1310
1311                 r = -EPERM;
1312                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1313                         break;
1314
1315                 r = -EFAULT;
1316                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1317                         break;
1318                 n = reg_list.n;
1319                 reg_list.n = kvm_arm_num_regs(vcpu);
1320                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1321                         break;
1322                 r = -E2BIG;
1323                 if (n < reg_list.n)
1324                         break;
1325                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1326                 break;
1327         }
1328         case KVM_SET_DEVICE_ATTR: {
1329                 r = -EFAULT;
1330                 if (copy_from_user(&attr, argp, sizeof(attr)))
1331                         break;
1332                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1333                 break;
1334         }
1335         case KVM_GET_DEVICE_ATTR: {
1336                 r = -EFAULT;
1337                 if (copy_from_user(&attr, argp, sizeof(attr)))
1338                         break;
1339                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1340                 break;
1341         }
1342         case KVM_HAS_DEVICE_ATTR: {
1343                 r = -EFAULT;
1344                 if (copy_from_user(&attr, argp, sizeof(attr)))
1345                         break;
1346                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1347                 break;
1348         }
1349         case KVM_GET_VCPU_EVENTS: {
1350                 struct kvm_vcpu_events events;
1351
1352                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1353                         return -EINVAL;
1354
1355                 if (copy_to_user(argp, &events, sizeof(events)))
1356                         return -EFAULT;
1357
1358                 return 0;
1359         }
1360         case KVM_SET_VCPU_EVENTS: {
1361                 struct kvm_vcpu_events events;
1362
1363                 if (copy_from_user(&events, argp, sizeof(events)))
1364                         return -EFAULT;
1365
1366                 return kvm_arm_vcpu_set_events(vcpu, &events);
1367         }
1368         case KVM_ARM_VCPU_FINALIZE: {
1369                 int what;
1370
1371                 if (!kvm_vcpu_initialized(vcpu))
1372                         return -ENOEXEC;
1373
1374                 if (get_user(what, (const int __user *)argp))
1375                         return -EFAULT;
1376
1377                 return kvm_arm_vcpu_finalize(vcpu, what);
1378         }
1379         default:
1380                 r = -EINVAL;
1381         }
1382
1383         return r;
1384 }
1385
1386 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1387 {
1388
1389 }
1390
1391 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1392                                         const struct kvm_memory_slot *memslot)
1393 {
1394         kvm_flush_remote_tlbs(kvm);
1395 }
1396
1397 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1398                                         struct kvm_arm_device_addr *dev_addr)
1399 {
1400         unsigned long dev_id, type;
1401
1402         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1403                 KVM_ARM_DEVICE_ID_SHIFT;
1404         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1405                 KVM_ARM_DEVICE_TYPE_SHIFT;
1406
1407         switch (dev_id) {
1408         case KVM_ARM_DEVICE_VGIC_V2:
1409                 if (!vgic_present)
1410                         return -ENXIO;
1411                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1412         default:
1413                 return -ENODEV;
1414         }
1415 }
1416
1417 long kvm_arch_vm_ioctl(struct file *filp,
1418                        unsigned int ioctl, unsigned long arg)
1419 {
1420         struct kvm *kvm = filp->private_data;
1421         void __user *argp = (void __user *)arg;
1422
1423         switch (ioctl) {
1424         case KVM_CREATE_IRQCHIP: {
1425                 int ret;
1426                 if (!vgic_present)
1427                         return -ENXIO;
1428                 mutex_lock(&kvm->lock);
1429                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1430                 mutex_unlock(&kvm->lock);
1431                 return ret;
1432         }
1433         case KVM_ARM_SET_DEVICE_ADDR: {
1434                 struct kvm_arm_device_addr dev_addr;
1435
1436                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1437                         return -EFAULT;
1438                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1439         }
1440         case KVM_ARM_PREFERRED_TARGET: {
1441                 struct kvm_vcpu_init init;
1442
1443                 kvm_vcpu_preferred_target(&init);
1444
1445                 if (copy_to_user(argp, &init, sizeof(init)))
1446                         return -EFAULT;
1447
1448                 return 0;
1449         }
1450         case KVM_ARM_MTE_COPY_TAGS: {
1451                 struct kvm_arm_copy_mte_tags copy_tags;
1452
1453                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1454                         return -EFAULT;
1455                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1456         }
1457         default:
1458                 return -EINVAL;
1459         }
1460 }
1461
1462 static unsigned long nvhe_percpu_size(void)
1463 {
1464         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1465                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1466 }
1467
1468 static unsigned long nvhe_percpu_order(void)
1469 {
1470         unsigned long size = nvhe_percpu_size();
1471
1472         return size ? get_order(size) : 0;
1473 }
1474
1475 /* A lookup table holding the hypervisor VA for each vector slot */
1476 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1477
1478 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1479 {
1480         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1481 }
1482
1483 static int kvm_init_vector_slots(void)
1484 {
1485         int err;
1486         void *base;
1487
1488         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1489         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1490
1491         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1492         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1493
1494         if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1495                 return 0;
1496
1497         if (!has_vhe()) {
1498                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1499                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1500                 if (err)
1501                         return err;
1502         }
1503
1504         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1505         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1506         return 0;
1507 }
1508
1509 static void cpu_prepare_hyp_mode(int cpu)
1510 {
1511         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1512         unsigned long tcr;
1513
1514         /*
1515          * Calculate the raw per-cpu offset without a translation from the
1516          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1517          * so that we can use adr_l to access per-cpu variables in EL2.
1518          * Also drop the KASAN tag which gets in the way...
1519          */
1520         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1521                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1522
1523         params->mair_el2 = read_sysreg(mair_el1);
1524
1525         /*
1526          * The ID map may be configured to use an extended virtual address
1527          * range. This is only the case if system RAM is out of range for the
1528          * currently configured page size and VA_BITS, in which case we will
1529          * also need the extended virtual range for the HYP ID map, or we won't
1530          * be able to enable the EL2 MMU.
1531          *
1532          * However, at EL2, there is only one TTBR register, and we can't switch
1533          * between translation tables *and* update TCR_EL2.T0SZ at the same
1534          * time. Bottom line: we need to use the extended range with *both* our
1535          * translation tables.
1536          *
1537          * So use the same T0SZ value we use for the ID map.
1538          */
1539         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1540         tcr &= ~TCR_T0SZ_MASK;
1541         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1542         params->tcr_el2 = tcr;
1543
1544         params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1545         params->pgd_pa = kvm_mmu_get_httbr();
1546         if (is_protected_kvm_enabled())
1547                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1548         else
1549                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1550         params->vttbr = params->vtcr = 0;
1551
1552         /*
1553          * Flush the init params from the data cache because the struct will
1554          * be read while the MMU is off.
1555          */
1556         kvm_flush_dcache_to_poc(params, sizeof(*params));
1557 }
1558
1559 static void hyp_install_host_vector(void)
1560 {
1561         struct kvm_nvhe_init_params *params;
1562         struct arm_smccc_res res;
1563
1564         /* Switch from the HYP stub to our own HYP init vector */
1565         __hyp_set_vectors(kvm_get_idmap_vector());
1566
1567         /*
1568          * Call initialization code, and switch to the full blown HYP code.
1569          * If the cpucaps haven't been finalized yet, something has gone very
1570          * wrong, and hyp will crash and burn when it uses any
1571          * cpus_have_const_cap() wrapper.
1572          */
1573         BUG_ON(!system_capabilities_finalized());
1574         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1575         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1576         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1577 }
1578
1579 static void cpu_init_hyp_mode(void)
1580 {
1581         hyp_install_host_vector();
1582
1583         /*
1584          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1585          * at EL2.
1586          */
1587         if (this_cpu_has_cap(ARM64_SSBS) &&
1588             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1589                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1590         }
1591 }
1592
1593 static void cpu_hyp_reset(void)
1594 {
1595         if (!is_kernel_in_hyp_mode())
1596                 __hyp_reset_vectors();
1597 }
1598
1599 /*
1600  * EL2 vectors can be mapped and rerouted in a number of ways,
1601  * depending on the kernel configuration and CPU present:
1602  *
1603  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1604  *   placed in one of the vector slots, which is executed before jumping
1605  *   to the real vectors.
1606  *
1607  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1608  *   containing the hardening sequence is mapped next to the idmap page,
1609  *   and executed before jumping to the real vectors.
1610  *
1611  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1612  *   empty slot is selected, mapped next to the idmap page, and
1613  *   executed before jumping to the real vectors.
1614  *
1615  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1616  * VHE, as we don't have hypervisor-specific mappings. If the system
1617  * is VHE and yet selects this capability, it will be ignored.
1618  */
1619 static void cpu_set_hyp_vector(void)
1620 {
1621         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1622         void *vector = hyp_spectre_vector_selector[data->slot];
1623
1624         if (!is_protected_kvm_enabled())
1625                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1626         else
1627                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1628 }
1629
1630 static void cpu_hyp_init_context(void)
1631 {
1632         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1633
1634         if (!is_kernel_in_hyp_mode())
1635                 cpu_init_hyp_mode();
1636 }
1637
1638 static void cpu_hyp_init_features(void)
1639 {
1640         cpu_set_hyp_vector();
1641         kvm_arm_init_debug();
1642
1643         if (is_kernel_in_hyp_mode())
1644                 kvm_timer_init_vhe();
1645
1646         if (vgic_present)
1647                 kvm_vgic_init_cpu_hardware();
1648 }
1649
1650 static void cpu_hyp_reinit(void)
1651 {
1652         cpu_hyp_reset();
1653         cpu_hyp_init_context();
1654         cpu_hyp_init_features();
1655 }
1656
1657 static void _kvm_arch_hardware_enable(void *discard)
1658 {
1659         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1660                 cpu_hyp_reinit();
1661                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1662         }
1663 }
1664
1665 int kvm_arch_hardware_enable(void)
1666 {
1667         _kvm_arch_hardware_enable(NULL);
1668         return 0;
1669 }
1670
1671 static void _kvm_arch_hardware_disable(void *discard)
1672 {
1673         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1674                 cpu_hyp_reset();
1675                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1676         }
1677 }
1678
1679 void kvm_arch_hardware_disable(void)
1680 {
1681         if (!is_protected_kvm_enabled())
1682                 _kvm_arch_hardware_disable(NULL);
1683 }
1684
1685 #ifdef CONFIG_CPU_PM
1686 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1687                                     unsigned long cmd,
1688                                     void *v)
1689 {
1690         /*
1691          * kvm_arm_hardware_enabled is left with its old value over
1692          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1693          * re-enable hyp.
1694          */
1695         switch (cmd) {
1696         case CPU_PM_ENTER:
1697                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1698                         /*
1699                          * don't update kvm_arm_hardware_enabled here
1700                          * so that the hardware will be re-enabled
1701                          * when we resume. See below.
1702                          */
1703                         cpu_hyp_reset();
1704
1705                 return NOTIFY_OK;
1706         case CPU_PM_ENTER_FAILED:
1707         case CPU_PM_EXIT:
1708                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1709                         /* The hardware was enabled before suspend. */
1710                         cpu_hyp_reinit();
1711
1712                 return NOTIFY_OK;
1713
1714         default:
1715                 return NOTIFY_DONE;
1716         }
1717 }
1718
1719 static struct notifier_block hyp_init_cpu_pm_nb = {
1720         .notifier_call = hyp_init_cpu_pm_notifier,
1721 };
1722
1723 static void hyp_cpu_pm_init(void)
1724 {
1725         if (!is_protected_kvm_enabled())
1726                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1727 }
1728 static void hyp_cpu_pm_exit(void)
1729 {
1730         if (!is_protected_kvm_enabled())
1731                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1732 }
1733 #else
1734 static inline void hyp_cpu_pm_init(void)
1735 {
1736 }
1737 static inline void hyp_cpu_pm_exit(void)
1738 {
1739 }
1740 #endif
1741
1742 static void init_cpu_logical_map(void)
1743 {
1744         unsigned int cpu;
1745
1746         /*
1747          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1748          * Only copy the set of online CPUs whose features have been chacked
1749          * against the finalized system capabilities. The hypervisor will not
1750          * allow any other CPUs from the `possible` set to boot.
1751          */
1752         for_each_online_cpu(cpu)
1753                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1754 }
1755
1756 #define init_psci_0_1_impl_state(config, what)  \
1757         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1758
1759 static bool init_psci_relay(void)
1760 {
1761         /*
1762          * If PSCI has not been initialized, protected KVM cannot install
1763          * itself on newly booted CPUs.
1764          */
1765         if (!psci_ops.get_version) {
1766                 kvm_err("Cannot initialize protected mode without PSCI\n");
1767                 return false;
1768         }
1769
1770         kvm_host_psci_config.version = psci_ops.get_version();
1771
1772         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1773                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1774                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1775                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1776                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1777                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1778         }
1779         return true;
1780 }
1781
1782 static int init_subsystems(void)
1783 {
1784         int err = 0;
1785
1786         /*
1787          * Enable hardware so that subsystem initialisation can access EL2.
1788          */
1789         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1790
1791         /*
1792          * Register CPU lower-power notifier
1793          */
1794         hyp_cpu_pm_init();
1795
1796         /*
1797          * Init HYP view of VGIC
1798          */
1799         err = kvm_vgic_hyp_init();
1800         switch (err) {
1801         case 0:
1802                 vgic_present = true;
1803                 break;
1804         case -ENODEV:
1805         case -ENXIO:
1806                 vgic_present = false;
1807                 err = 0;
1808                 break;
1809         default:
1810                 goto out;
1811         }
1812
1813         /*
1814          * Init HYP architected timer support
1815          */
1816         err = kvm_timer_hyp_init(vgic_present);
1817         if (err)
1818                 goto out;
1819
1820         kvm_register_perf_callbacks(NULL);
1821
1822         kvm_sys_reg_table_init();
1823
1824 out:
1825         if (err || !is_protected_kvm_enabled())
1826                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1827
1828         return err;
1829 }
1830
1831 static void teardown_hyp_mode(void)
1832 {
1833         int cpu;
1834
1835         free_hyp_pgds();
1836         for_each_possible_cpu(cpu) {
1837                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1838                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1839         }
1840 }
1841
1842 static int do_pkvm_init(u32 hyp_va_bits)
1843 {
1844         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1845         int ret;
1846
1847         preempt_disable();
1848         cpu_hyp_init_context();
1849         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1850                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1851                                 hyp_va_bits);
1852         cpu_hyp_init_features();
1853
1854         /*
1855          * The stub hypercalls are now disabled, so set our local flag to
1856          * prevent a later re-init attempt in kvm_arch_hardware_enable().
1857          */
1858         __this_cpu_write(kvm_arm_hardware_enabled, 1);
1859         preempt_enable();
1860
1861         return ret;
1862 }
1863
1864 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1865 {
1866         void *addr = phys_to_virt(hyp_mem_base);
1867         int ret;
1868
1869         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1870         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1871         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1872         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1873         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1874         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1875         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1876
1877         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1878         if (ret)
1879                 return ret;
1880
1881         ret = do_pkvm_init(hyp_va_bits);
1882         if (ret)
1883                 return ret;
1884
1885         free_hyp_pgds();
1886
1887         return 0;
1888 }
1889
1890 /**
1891  * Inits Hyp-mode on all online CPUs
1892  */
1893 static int init_hyp_mode(void)
1894 {
1895         u32 hyp_va_bits;
1896         int cpu;
1897         int err = -ENOMEM;
1898
1899         /*
1900          * The protected Hyp-mode cannot be initialized if the memory pool
1901          * allocation has failed.
1902          */
1903         if (is_protected_kvm_enabled() && !hyp_mem_base)
1904                 goto out_err;
1905
1906         /*
1907          * Allocate Hyp PGD and setup Hyp identity mapping
1908          */
1909         err = kvm_mmu_init(&hyp_va_bits);
1910         if (err)
1911                 goto out_err;
1912
1913         /*
1914          * Allocate stack pages for Hypervisor-mode
1915          */
1916         for_each_possible_cpu(cpu) {
1917                 unsigned long stack_page;
1918
1919                 stack_page = __get_free_page(GFP_KERNEL);
1920                 if (!stack_page) {
1921                         err = -ENOMEM;
1922                         goto out_err;
1923                 }
1924
1925                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1926         }
1927
1928         /*
1929          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1930          */
1931         for_each_possible_cpu(cpu) {
1932                 struct page *page;
1933                 void *page_addr;
1934
1935                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1936                 if (!page) {
1937                         err = -ENOMEM;
1938                         goto out_err;
1939                 }
1940
1941                 page_addr = page_address(page);
1942                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1943                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1944         }
1945
1946         /*
1947          * Map the Hyp-code called directly from the host
1948          */
1949         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1950                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1951         if (err) {
1952                 kvm_err("Cannot map world-switch code\n");
1953                 goto out_err;
1954         }
1955
1956         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1957                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1958         if (err) {
1959                 kvm_err("Cannot map .hyp.rodata section\n");
1960                 goto out_err;
1961         }
1962
1963         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1964                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1965         if (err) {
1966                 kvm_err("Cannot map rodata section\n");
1967                 goto out_err;
1968         }
1969
1970         /*
1971          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1972          * section thanks to an assertion in the linker script. Map it RW and
1973          * the rest of .bss RO.
1974          */
1975         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1976                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1977         if (err) {
1978                 kvm_err("Cannot map hyp bss section: %d\n", err);
1979                 goto out_err;
1980         }
1981
1982         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1983                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1984         if (err) {
1985                 kvm_err("Cannot map bss section\n");
1986                 goto out_err;
1987         }
1988
1989         /*
1990          * Map the Hyp stack pages
1991          */
1992         for_each_possible_cpu(cpu) {
1993                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1994                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1995                                           PAGE_HYP);
1996
1997                 if (err) {
1998                         kvm_err("Cannot map hyp stack\n");
1999                         goto out_err;
2000                 }
2001         }
2002
2003         for_each_possible_cpu(cpu) {
2004                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
2005                 char *percpu_end = percpu_begin + nvhe_percpu_size();
2006
2007                 /* Map Hyp percpu pages */
2008                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2009                 if (err) {
2010                         kvm_err("Cannot map hyp percpu region\n");
2011                         goto out_err;
2012                 }
2013
2014                 /* Prepare the CPU initialization parameters */
2015                 cpu_prepare_hyp_mode(cpu);
2016         }
2017
2018         if (is_protected_kvm_enabled()) {
2019                 init_cpu_logical_map();
2020
2021                 if (!init_psci_relay()) {
2022                         err = -ENODEV;
2023                         goto out_err;
2024                 }
2025         }
2026
2027         if (is_protected_kvm_enabled()) {
2028                 err = kvm_hyp_init_protection(hyp_va_bits);
2029                 if (err) {
2030                         kvm_err("Failed to init hyp memory protection\n");
2031                         goto out_err;
2032                 }
2033         }
2034
2035         return 0;
2036
2037 out_err:
2038         teardown_hyp_mode();
2039         kvm_err("error initializing Hyp mode: %d\n", err);
2040         return err;
2041 }
2042
2043 static void _kvm_host_prot_finalize(void *arg)
2044 {
2045         int *err = arg;
2046
2047         if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2048                 WRITE_ONCE(*err, -EINVAL);
2049 }
2050
2051 static int pkvm_drop_host_privileges(void)
2052 {
2053         int ret = 0;
2054
2055         /*
2056          * Flip the static key upfront as that may no longer be possible
2057          * once the host stage 2 is installed.
2058          */
2059         static_branch_enable(&kvm_protected_mode_initialized);
2060         on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2061         return ret;
2062 }
2063
2064 static int finalize_hyp_mode(void)
2065 {
2066         if (!is_protected_kvm_enabled())
2067                 return 0;
2068
2069         /*
2070          * Exclude HYP BSS from kmemleak so that it doesn't get peeked
2071          * at, which would end badly once the section is inaccessible.
2072          * None of other sections should ever be introspected.
2073          */
2074         kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2075         return pkvm_drop_host_privileges();
2076 }
2077
2078 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2079 {
2080         struct kvm_vcpu *vcpu;
2081         unsigned long i;
2082
2083         mpidr &= MPIDR_HWID_BITMASK;
2084         kvm_for_each_vcpu(i, vcpu, kvm) {
2085                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2086                         return vcpu;
2087         }
2088         return NULL;
2089 }
2090
2091 bool kvm_arch_has_irq_bypass(void)
2092 {
2093         return true;
2094 }
2095
2096 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2097                                       struct irq_bypass_producer *prod)
2098 {
2099         struct kvm_kernel_irqfd *irqfd =
2100                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2101
2102         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2103                                           &irqfd->irq_entry);
2104 }
2105 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2106                                       struct irq_bypass_producer *prod)
2107 {
2108         struct kvm_kernel_irqfd *irqfd =
2109                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2110
2111         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2112                                      &irqfd->irq_entry);
2113 }
2114
2115 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2116 {
2117         struct kvm_kernel_irqfd *irqfd =
2118                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2119
2120         kvm_arm_halt_guest(irqfd->kvm);
2121 }
2122
2123 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2124 {
2125         struct kvm_kernel_irqfd *irqfd =
2126                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2127
2128         kvm_arm_resume_guest(irqfd->kvm);
2129 }
2130
2131 /**
2132  * Initialize Hyp-mode and memory mappings on all CPUs.
2133  */
2134 int kvm_arch_init(void *opaque)
2135 {
2136         int err;
2137         bool in_hyp_mode;
2138
2139         if (!is_hyp_mode_available()) {
2140                 kvm_info("HYP mode not available\n");
2141                 return -ENODEV;
2142         }
2143
2144         if (kvm_get_mode() == KVM_MODE_NONE) {
2145                 kvm_info("KVM disabled from command line\n");
2146                 return -ENODEV;
2147         }
2148
2149         in_hyp_mode = is_kernel_in_hyp_mode();
2150
2151         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2152             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2153                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2154                          "Only trusted guests should be used on this system.\n");
2155
2156         err = kvm_set_ipa_limit();
2157         if (err)
2158                 return err;
2159
2160         err = kvm_arm_init_sve();
2161         if (err)
2162                 return err;
2163
2164         if (!in_hyp_mode) {
2165                 err = init_hyp_mode();
2166                 if (err)
2167                         goto out_err;
2168         }
2169
2170         err = kvm_init_vector_slots();
2171         if (err) {
2172                 kvm_err("Cannot initialise vector slots\n");
2173                 goto out_err;
2174         }
2175
2176         err = init_subsystems();
2177         if (err)
2178                 goto out_hyp;
2179
2180         if (!in_hyp_mode) {
2181                 err = finalize_hyp_mode();
2182                 if (err) {
2183                         kvm_err("Failed to finalize Hyp protection\n");
2184                         goto out_hyp;
2185                 }
2186         }
2187
2188         if (is_protected_kvm_enabled()) {
2189                 kvm_info("Protected nVHE mode initialized successfully\n");
2190         } else if (in_hyp_mode) {
2191                 kvm_info("VHE mode initialized successfully\n");
2192         } else {
2193                 kvm_info("Hyp mode initialized successfully\n");
2194         }
2195
2196         return 0;
2197
2198 out_hyp:
2199         hyp_cpu_pm_exit();
2200         if (!in_hyp_mode)
2201                 teardown_hyp_mode();
2202 out_err:
2203         return err;
2204 }
2205
2206 /* NOP: Compiling as a module not supported */
2207 void kvm_arch_exit(void)
2208 {
2209         kvm_unregister_perf_callbacks();
2210 }
2211
2212 static int __init early_kvm_mode_cfg(char *arg)
2213 {
2214         if (!arg)
2215                 return -EINVAL;
2216
2217         if (strcmp(arg, "protected") == 0) {
2218                 kvm_mode = KVM_MODE_PROTECTED;
2219                 return 0;
2220         }
2221
2222         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2223                 kvm_mode = KVM_MODE_DEFAULT;
2224                 return 0;
2225         }
2226
2227         if (strcmp(arg, "none") == 0) {
2228                 kvm_mode = KVM_MODE_NONE;
2229                 return 0;
2230         }
2231
2232         return -EINVAL;
2233 }
2234 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2235
2236 enum kvm_mode kvm_get_mode(void)
2237 {
2238         return kvm_mode;
2239 }
2240
2241 static int arm_init(void)
2242 {
2243         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2244         return rc;
2245 }
2246
2247 module_init(arm_init);