KVM: arm64: Drop unused REQUIRES_VIRT
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44
45 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
46 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
47
48 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
49
50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
51 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
52 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
53
54 /* The VMID used in the VTTBR */
55 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
56 static u32 kvm_next_vmid;
57 static DEFINE_SPINLOCK(kvm_vmid_lock);
58
59 static bool vgic_present;
60
61 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
62 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
63
64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
67 }
68
69 int kvm_arch_hardware_setup(void *opaque)
70 {
71         return 0;
72 }
73
74 int kvm_arch_check_processor_compat(void *opaque)
75 {
76         return 0;
77 }
78
79 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
80                             struct kvm_enable_cap *cap)
81 {
82         int r;
83
84         if (cap->flags)
85                 return -EINVAL;
86
87         switch (cap->cap) {
88         case KVM_CAP_ARM_NISV_TO_USER:
89                 r = 0;
90                 kvm->arch.return_nisv_io_abort_to_user = true;
91                 break;
92         case KVM_CAP_ARM_MTE:
93                 if (!system_supports_mte() || kvm->created_vcpus)
94                         return -EINVAL;
95                 r = 0;
96                 kvm->arch.mte_enabled = true;
97                 break;
98         default:
99                 r = -EINVAL;
100                 break;
101         }
102
103         return r;
104 }
105
106 static int kvm_arm_default_max_vcpus(void)
107 {
108         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
109 }
110
111 static void set_default_spectre(struct kvm *kvm)
112 {
113         /*
114          * The default is to expose CSV2 == 1 if the HW isn't affected.
115          * Although this is a per-CPU feature, we make it global because
116          * asymmetric systems are just a nuisance.
117          *
118          * Userspace can override this as long as it doesn't promise
119          * the impossible.
120          */
121         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
122                 kvm->arch.pfr0_csv2 = 1;
123         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
124                 kvm->arch.pfr0_csv3 = 1;
125 }
126
127 /**
128  * kvm_arch_init_vm - initializes a VM data structure
129  * @kvm:        pointer to the KVM struct
130  */
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133         int ret;
134
135         ret = kvm_arm_setup_stage2(kvm, type);
136         if (ret)
137                 return ret;
138
139         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
140         if (ret)
141                 return ret;
142
143         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
144         if (ret)
145                 goto out_free_stage2_pgd;
146
147         kvm_vgic_early_init(kvm);
148
149         /* The maximum number of VCPUs is limited by the host's GIC model */
150         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
151
152         set_default_spectre(kvm);
153
154         return ret;
155 out_free_stage2_pgd:
156         kvm_free_stage2_pgd(&kvm->arch.mmu);
157         return ret;
158 }
159
160 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
161 {
162         return VM_FAULT_SIGBUS;
163 }
164
165
166 /**
167  * kvm_arch_destroy_vm - destroy the VM data structure
168  * @kvm:        pointer to the KVM struct
169  */
170 void kvm_arch_destroy_vm(struct kvm *kvm)
171 {
172         int i;
173
174         bitmap_free(kvm->arch.pmu_filter);
175
176         kvm_vgic_destroy(kvm);
177
178         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
179                 if (kvm->vcpus[i]) {
180                         kvm_vcpu_destroy(kvm->vcpus[i]);
181                         kvm->vcpus[i] = NULL;
182                 }
183         }
184         atomic_set(&kvm->online_vcpus, 0);
185 }
186
187 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
188 {
189         int r;
190         switch (ext) {
191         case KVM_CAP_IRQCHIP:
192                 r = vgic_present;
193                 break;
194         case KVM_CAP_IOEVENTFD:
195         case KVM_CAP_DEVICE_CTRL:
196         case KVM_CAP_USER_MEMORY:
197         case KVM_CAP_SYNC_MMU:
198         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
199         case KVM_CAP_ONE_REG:
200         case KVM_CAP_ARM_PSCI:
201         case KVM_CAP_ARM_PSCI_0_2:
202         case KVM_CAP_READONLY_MEM:
203         case KVM_CAP_MP_STATE:
204         case KVM_CAP_IMMEDIATE_EXIT:
205         case KVM_CAP_VCPU_EVENTS:
206         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
207         case KVM_CAP_ARM_NISV_TO_USER:
208         case KVM_CAP_ARM_INJECT_EXT_DABT:
209         case KVM_CAP_SET_GUEST_DEBUG:
210         case KVM_CAP_VCPU_ATTRIBUTES:
211         case KVM_CAP_PTP_KVM:
212                 r = 1;
213                 break;
214         case KVM_CAP_SET_GUEST_DEBUG2:
215                 return KVM_GUESTDBG_VALID_MASK;
216         case KVM_CAP_ARM_SET_DEVICE_ADDR:
217                 r = 1;
218                 break;
219         case KVM_CAP_NR_VCPUS:
220                 r = num_online_cpus();
221                 break;
222         case KVM_CAP_MAX_VCPUS:
223         case KVM_CAP_MAX_VCPU_ID:
224                 if (kvm)
225                         r = kvm->arch.max_vcpus;
226                 else
227                         r = kvm_arm_default_max_vcpus();
228                 break;
229         case KVM_CAP_MSI_DEVID:
230                 if (!kvm)
231                         r = -EINVAL;
232                 else
233                         r = kvm->arch.vgic.msis_require_devid;
234                 break;
235         case KVM_CAP_ARM_USER_IRQ:
236                 /*
237                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
238                  * (bump this number if adding more devices)
239                  */
240                 r = 1;
241                 break;
242         case KVM_CAP_ARM_MTE:
243                 r = system_supports_mte();
244                 break;
245         case KVM_CAP_STEAL_TIME:
246                 r = kvm_arm_pvtime_supported();
247                 break;
248         case KVM_CAP_ARM_EL1_32BIT:
249                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
250                 break;
251         case KVM_CAP_GUEST_DEBUG_HW_BPS:
252                 r = get_num_brps();
253                 break;
254         case KVM_CAP_GUEST_DEBUG_HW_WPS:
255                 r = get_num_wrps();
256                 break;
257         case KVM_CAP_ARM_PMU_V3:
258                 r = kvm_arm_support_pmu_v3();
259                 break;
260         case KVM_CAP_ARM_INJECT_SERROR_ESR:
261                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
262                 break;
263         case KVM_CAP_ARM_VM_IPA_SIZE:
264                 r = get_kvm_ipa_limit();
265                 break;
266         case KVM_CAP_ARM_SVE:
267                 r = system_supports_sve();
268                 break;
269         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
270         case KVM_CAP_ARM_PTRAUTH_GENERIC:
271                 r = system_has_full_ptr_auth();
272                 break;
273         default:
274                 r = 0;
275         }
276
277         return r;
278 }
279
280 long kvm_arch_dev_ioctl(struct file *filp,
281                         unsigned int ioctl, unsigned long arg)
282 {
283         return -EINVAL;
284 }
285
286 struct kvm *kvm_arch_alloc_vm(void)
287 {
288         if (!has_vhe())
289                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
290
291         return vzalloc(sizeof(struct kvm));
292 }
293
294 void kvm_arch_free_vm(struct kvm *kvm)
295 {
296         if (!has_vhe())
297                 kfree(kvm);
298         else
299                 vfree(kvm);
300 }
301
302 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
303 {
304         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
305                 return -EBUSY;
306
307         if (id >= kvm->arch.max_vcpus)
308                 return -EINVAL;
309
310         return 0;
311 }
312
313 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
314 {
315         int err;
316
317         /* Force users to call KVM_ARM_VCPU_INIT */
318         vcpu->arch.target = -1;
319         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
320
321         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
322
323         /* Set up the timer */
324         kvm_timer_vcpu_init(vcpu);
325
326         kvm_pmu_vcpu_init(vcpu);
327
328         kvm_arm_reset_debug_ptr(vcpu);
329
330         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
331
332         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
333
334         err = kvm_vgic_vcpu_init(vcpu);
335         if (err)
336                 return err;
337
338         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
339 }
340
341 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
342 {
343 }
344
345 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
346 {
347         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
348                 static_branch_dec(&userspace_irqchip_in_use);
349
350         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
351         kvm_timer_vcpu_terminate(vcpu);
352         kvm_pmu_vcpu_destroy(vcpu);
353
354         kvm_arm_vcpu_destroy(vcpu);
355 }
356
357 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
358 {
359         return kvm_timer_is_pending(vcpu);
360 }
361
362 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
363 {
364         /*
365          * If we're about to block (most likely because we've just hit a
366          * WFI), we need to sync back the state of the GIC CPU interface
367          * so that we have the latest PMR and group enables. This ensures
368          * that kvm_arch_vcpu_runnable has up-to-date data to decide
369          * whether we have pending interrupts.
370          *
371          * For the same reason, we want to tell GICv4 that we need
372          * doorbells to be signalled, should an interrupt become pending.
373          */
374         preempt_disable();
375         kvm_vgic_vmcr_sync(vcpu);
376         vgic_v4_put(vcpu, true);
377         preempt_enable();
378 }
379
380 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
381 {
382         preempt_disable();
383         vgic_v4_load(vcpu);
384         preempt_enable();
385 }
386
387 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
388 {
389         struct kvm_s2_mmu *mmu;
390         int *last_ran;
391
392         mmu = vcpu->arch.hw_mmu;
393         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
394
395         /*
396          * We guarantee that both TLBs and I-cache are private to each
397          * vcpu. If detecting that a vcpu from the same VM has
398          * previously run on the same physical CPU, call into the
399          * hypervisor code to nuke the relevant contexts.
400          *
401          * We might get preempted before the vCPU actually runs, but
402          * over-invalidation doesn't affect correctness.
403          */
404         if (*last_ran != vcpu->vcpu_id) {
405                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
406                 *last_ran = vcpu->vcpu_id;
407         }
408
409         vcpu->cpu = cpu;
410
411         kvm_vgic_load(vcpu);
412         kvm_timer_vcpu_load(vcpu);
413         if (has_vhe())
414                 kvm_vcpu_load_sysregs_vhe(vcpu);
415         kvm_arch_vcpu_load_fp(vcpu);
416         kvm_vcpu_pmu_restore_guest(vcpu);
417         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
418                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
419
420         if (single_task_running())
421                 vcpu_clear_wfx_traps(vcpu);
422         else
423                 vcpu_set_wfx_traps(vcpu);
424
425         if (vcpu_has_ptrauth(vcpu))
426                 vcpu_ptrauth_disable(vcpu);
427         kvm_arch_vcpu_load_debug_state_flags(vcpu);
428 }
429
430 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
431 {
432         kvm_arch_vcpu_put_debug_state_flags(vcpu);
433         kvm_arch_vcpu_put_fp(vcpu);
434         if (has_vhe())
435                 kvm_vcpu_put_sysregs_vhe(vcpu);
436         kvm_timer_vcpu_put(vcpu);
437         kvm_vgic_put(vcpu);
438         kvm_vcpu_pmu_restore_host(vcpu);
439
440         vcpu->cpu = -1;
441 }
442
443 static void vcpu_power_off(struct kvm_vcpu *vcpu)
444 {
445         vcpu->arch.power_off = true;
446         kvm_make_request(KVM_REQ_SLEEP, vcpu);
447         kvm_vcpu_kick(vcpu);
448 }
449
450 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
451                                     struct kvm_mp_state *mp_state)
452 {
453         if (vcpu->arch.power_off)
454                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
455         else
456                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
457
458         return 0;
459 }
460
461 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
462                                     struct kvm_mp_state *mp_state)
463 {
464         int ret = 0;
465
466         switch (mp_state->mp_state) {
467         case KVM_MP_STATE_RUNNABLE:
468                 vcpu->arch.power_off = false;
469                 break;
470         case KVM_MP_STATE_STOPPED:
471                 vcpu_power_off(vcpu);
472                 break;
473         default:
474                 ret = -EINVAL;
475         }
476
477         return ret;
478 }
479
480 /**
481  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
482  * @v:          The VCPU pointer
483  *
484  * If the guest CPU is not waiting for interrupts or an interrupt line is
485  * asserted, the CPU is by definition runnable.
486  */
487 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
488 {
489         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
490         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
491                 && !v->arch.power_off && !v->arch.pause);
492 }
493
494 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
495 {
496         return vcpu_mode_priv(vcpu);
497 }
498
499 /* Just ensure a guest exit from a particular CPU */
500 static void exit_vm_noop(void *info)
501 {
502 }
503
504 void force_vm_exit(const cpumask_t *mask)
505 {
506         preempt_disable();
507         smp_call_function_many(mask, exit_vm_noop, NULL, true);
508         preempt_enable();
509 }
510
511 /**
512  * need_new_vmid_gen - check that the VMID is still valid
513  * @vmid: The VMID to check
514  *
515  * return true if there is a new generation of VMIDs being used
516  *
517  * The hardware supports a limited set of values with the value zero reserved
518  * for the host, so we check if an assigned value belongs to a previous
519  * generation, which requires us to assign a new value. If we're the first to
520  * use a VMID for the new generation, we must flush necessary caches and TLBs
521  * on all CPUs.
522  */
523 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
524 {
525         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
526         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
527         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
528 }
529
530 /**
531  * update_vmid - Update the vmid with a valid VMID for the current generation
532  * @vmid: The stage-2 VMID information struct
533  */
534 static void update_vmid(struct kvm_vmid *vmid)
535 {
536         if (!need_new_vmid_gen(vmid))
537                 return;
538
539         spin_lock(&kvm_vmid_lock);
540
541         /*
542          * We need to re-check the vmid_gen here to ensure that if another vcpu
543          * already allocated a valid vmid for this vm, then this vcpu should
544          * use the same vmid.
545          */
546         if (!need_new_vmid_gen(vmid)) {
547                 spin_unlock(&kvm_vmid_lock);
548                 return;
549         }
550
551         /* First user of a new VMID generation? */
552         if (unlikely(kvm_next_vmid == 0)) {
553                 atomic64_inc(&kvm_vmid_gen);
554                 kvm_next_vmid = 1;
555
556                 /*
557                  * On SMP we know no other CPUs can use this CPU's or each
558                  * other's VMID after force_vm_exit returns since the
559                  * kvm_vmid_lock blocks them from reentry to the guest.
560                  */
561                 force_vm_exit(cpu_all_mask);
562                 /*
563                  * Now broadcast TLB + ICACHE invalidation over the inner
564                  * shareable domain to make sure all data structures are
565                  * clean.
566                  */
567                 kvm_call_hyp(__kvm_flush_vm_context);
568         }
569
570         vmid->vmid = kvm_next_vmid;
571         kvm_next_vmid++;
572         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
573
574         smp_wmb();
575         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
576
577         spin_unlock(&kvm_vmid_lock);
578 }
579
580 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
581 {
582         struct kvm *kvm = vcpu->kvm;
583         int ret = 0;
584
585         if (likely(vcpu->arch.has_run_once))
586                 return 0;
587
588         if (!kvm_arm_vcpu_is_finalized(vcpu))
589                 return -EPERM;
590
591         vcpu->arch.has_run_once = true;
592
593         kvm_arm_vcpu_init_debug(vcpu);
594
595         if (likely(irqchip_in_kernel(kvm))) {
596                 /*
597                  * Map the VGIC hardware resources before running a vcpu the
598                  * first time on this VM.
599                  */
600                 ret = kvm_vgic_map_resources(kvm);
601                 if (ret)
602                         return ret;
603         } else {
604                 /*
605                  * Tell the rest of the code that there are userspace irqchip
606                  * VMs in the wild.
607                  */
608                 static_branch_inc(&userspace_irqchip_in_use);
609         }
610
611         ret = kvm_timer_enable(vcpu);
612         if (ret)
613                 return ret;
614
615         ret = kvm_arm_pmu_v3_enable(vcpu);
616
617         return ret;
618 }
619
620 bool kvm_arch_intc_initialized(struct kvm *kvm)
621 {
622         return vgic_initialized(kvm);
623 }
624
625 void kvm_arm_halt_guest(struct kvm *kvm)
626 {
627         int i;
628         struct kvm_vcpu *vcpu;
629
630         kvm_for_each_vcpu(i, vcpu, kvm)
631                 vcpu->arch.pause = true;
632         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
633 }
634
635 void kvm_arm_resume_guest(struct kvm *kvm)
636 {
637         int i;
638         struct kvm_vcpu *vcpu;
639
640         kvm_for_each_vcpu(i, vcpu, kvm) {
641                 vcpu->arch.pause = false;
642                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
643         }
644 }
645
646 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
647 {
648         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
649
650         rcuwait_wait_event(wait,
651                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
652                            TASK_INTERRUPTIBLE);
653
654         if (vcpu->arch.power_off || vcpu->arch.pause) {
655                 /* Awaken to handle a signal, request we sleep again later. */
656                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
657         }
658
659         /*
660          * Make sure we will observe a potential reset request if we've
661          * observed a change to the power state. Pairs with the smp_wmb() in
662          * kvm_psci_vcpu_on().
663          */
664         smp_rmb();
665 }
666
667 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
668 {
669         return vcpu->arch.target >= 0;
670 }
671
672 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
673 {
674         if (kvm_request_pending(vcpu)) {
675                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
676                         vcpu_req_sleep(vcpu);
677
678                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
679                         kvm_reset_vcpu(vcpu);
680
681                 /*
682                  * Clear IRQ_PENDING requests that were made to guarantee
683                  * that a VCPU sees new virtual interrupts.
684                  */
685                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
686
687                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
688                         kvm_update_stolen_time(vcpu);
689
690                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
691                         /* The distributor enable bits were changed */
692                         preempt_disable();
693                         vgic_v4_put(vcpu, false);
694                         vgic_v4_load(vcpu);
695                         preempt_enable();
696                 }
697
698                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
699                         kvm_pmu_handle_pmcr(vcpu,
700                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
701         }
702 }
703
704 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
705 {
706         if (likely(!vcpu_mode_is_32bit(vcpu)))
707                 return false;
708
709         return !system_supports_32bit_el0() ||
710                 static_branch_unlikely(&arm64_mismatched_32bit_el0);
711 }
712
713 /**
714  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
715  * @vcpu:       The VCPU pointer
716  *
717  * This function is called through the VCPU_RUN ioctl called from user space. It
718  * will execute VM code in a loop until the time slice for the process is used
719  * or some emulation is needed from user space in which case the function will
720  * return with return value 0 and with the kvm_run structure filled in with the
721  * required data for the requested emulation.
722  */
723 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
724 {
725         struct kvm_run *run = vcpu->run;
726         int ret;
727
728         if (unlikely(!kvm_vcpu_initialized(vcpu)))
729                 return -ENOEXEC;
730
731         ret = kvm_vcpu_first_run_init(vcpu);
732         if (ret)
733                 return ret;
734
735         if (run->exit_reason == KVM_EXIT_MMIO) {
736                 ret = kvm_handle_mmio_return(vcpu);
737                 if (ret)
738                         return ret;
739         }
740
741         vcpu_load(vcpu);
742
743         if (run->immediate_exit) {
744                 ret = -EINTR;
745                 goto out;
746         }
747
748         kvm_sigset_activate(vcpu);
749
750         ret = 1;
751         run->exit_reason = KVM_EXIT_UNKNOWN;
752         while (ret > 0) {
753                 /*
754                  * Check conditions before entering the guest
755                  */
756                 cond_resched();
757
758                 update_vmid(&vcpu->arch.hw_mmu->vmid);
759
760                 check_vcpu_requests(vcpu);
761
762                 /*
763                  * Preparing the interrupts to be injected also
764                  * involves poking the GIC, which must be done in a
765                  * non-preemptible context.
766                  */
767                 preempt_disable();
768
769                 kvm_pmu_flush_hwstate(vcpu);
770
771                 local_irq_disable();
772
773                 kvm_vgic_flush_hwstate(vcpu);
774
775                 /*
776                  * Exit if we have a signal pending so that we can deliver the
777                  * signal to user space.
778                  */
779                 if (signal_pending(current)) {
780                         ret = -EINTR;
781                         run->exit_reason = KVM_EXIT_INTR;
782                 }
783
784                 /*
785                  * If we're using a userspace irqchip, then check if we need
786                  * to tell a userspace irqchip about timer or PMU level
787                  * changes and if so, exit to userspace (the actual level
788                  * state gets updated in kvm_timer_update_run and
789                  * kvm_pmu_update_run below).
790                  */
791                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
792                         if (kvm_timer_should_notify_user(vcpu) ||
793                             kvm_pmu_should_notify_user(vcpu)) {
794                                 ret = -EINTR;
795                                 run->exit_reason = KVM_EXIT_INTR;
796                         }
797                 }
798
799                 /*
800                  * Ensure we set mode to IN_GUEST_MODE after we disable
801                  * interrupts and before the final VCPU requests check.
802                  * See the comment in kvm_vcpu_exiting_guest_mode() and
803                  * Documentation/virt/kvm/vcpu-requests.rst
804                  */
805                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
806
807                 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
808                     kvm_request_pending(vcpu)) {
809                         vcpu->mode = OUTSIDE_GUEST_MODE;
810                         isb(); /* Ensure work in x_flush_hwstate is committed */
811                         kvm_pmu_sync_hwstate(vcpu);
812                         if (static_branch_unlikely(&userspace_irqchip_in_use))
813                                 kvm_timer_sync_user(vcpu);
814                         kvm_vgic_sync_hwstate(vcpu);
815                         local_irq_enable();
816                         preempt_enable();
817                         continue;
818                 }
819
820                 kvm_arm_setup_debug(vcpu);
821
822                 /**************************************************************
823                  * Enter the guest
824                  */
825                 trace_kvm_entry(*vcpu_pc(vcpu));
826                 guest_enter_irqoff();
827
828                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
829
830                 vcpu->mode = OUTSIDE_GUEST_MODE;
831                 vcpu->stat.exits++;
832                 /*
833                  * Back from guest
834                  *************************************************************/
835
836                 kvm_arm_clear_debug(vcpu);
837
838                 /*
839                  * We must sync the PMU state before the vgic state so
840                  * that the vgic can properly sample the updated state of the
841                  * interrupt line.
842                  */
843                 kvm_pmu_sync_hwstate(vcpu);
844
845                 /*
846                  * Sync the vgic state before syncing the timer state because
847                  * the timer code needs to know if the virtual timer
848                  * interrupts are active.
849                  */
850                 kvm_vgic_sync_hwstate(vcpu);
851
852                 /*
853                  * Sync the timer hardware state before enabling interrupts as
854                  * we don't want vtimer interrupts to race with syncing the
855                  * timer virtual interrupt state.
856                  */
857                 if (static_branch_unlikely(&userspace_irqchip_in_use))
858                         kvm_timer_sync_user(vcpu);
859
860                 kvm_arch_vcpu_ctxsync_fp(vcpu);
861
862                 /*
863                  * We may have taken a host interrupt in HYP mode (ie
864                  * while executing the guest). This interrupt is still
865                  * pending, as we haven't serviced it yet!
866                  *
867                  * We're now back in SVC mode, with interrupts
868                  * disabled.  Enabling the interrupts now will have
869                  * the effect of taking the interrupt again, in SVC
870                  * mode this time.
871                  */
872                 local_irq_enable();
873
874                 /*
875                  * We do local_irq_enable() before calling guest_exit() so
876                  * that if a timer interrupt hits while running the guest we
877                  * account that tick as being spent in the guest.  We enable
878                  * preemption after calling guest_exit() so that if we get
879                  * preempted we make sure ticks after that is not counted as
880                  * guest time.
881                  */
882                 guest_exit();
883                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
884
885                 /* Exit types that need handling before we can be preempted */
886                 handle_exit_early(vcpu, ret);
887
888                 preempt_enable();
889
890                 /*
891                  * The ARMv8 architecture doesn't give the hypervisor
892                  * a mechanism to prevent a guest from dropping to AArch32 EL0
893                  * if implemented by the CPU. If we spot the guest in such
894                  * state and that we decided it wasn't supposed to do so (like
895                  * with the asymmetric AArch32 case), return to userspace with
896                  * a fatal error.
897                  */
898                 if (vcpu_mode_is_bad_32bit(vcpu)) {
899                         /*
900                          * As we have caught the guest red-handed, decide that
901                          * it isn't fit for purpose anymore by making the vcpu
902                          * invalid. The VMM can try and fix it by issuing  a
903                          * KVM_ARM_VCPU_INIT if it really wants to.
904                          */
905                         vcpu->arch.target = -1;
906                         ret = ARM_EXCEPTION_IL;
907                 }
908
909                 ret = handle_exit(vcpu, ret);
910         }
911
912         /* Tell userspace about in-kernel device output levels */
913         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
914                 kvm_timer_update_run(vcpu);
915                 kvm_pmu_update_run(vcpu);
916         }
917
918         kvm_sigset_deactivate(vcpu);
919
920 out:
921         /*
922          * In the unlikely event that we are returning to userspace
923          * with pending exceptions or PC adjustment, commit these
924          * adjustments in order to give userspace a consistent view of
925          * the vcpu state. Note that this relies on __kvm_adjust_pc()
926          * being preempt-safe on VHE.
927          */
928         if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
929                                          KVM_ARM64_INCREMENT_PC)))
930                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
931
932         vcpu_put(vcpu);
933         return ret;
934 }
935
936 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
937 {
938         int bit_index;
939         bool set;
940         unsigned long *hcr;
941
942         if (number == KVM_ARM_IRQ_CPU_IRQ)
943                 bit_index = __ffs(HCR_VI);
944         else /* KVM_ARM_IRQ_CPU_FIQ */
945                 bit_index = __ffs(HCR_VF);
946
947         hcr = vcpu_hcr(vcpu);
948         if (level)
949                 set = test_and_set_bit(bit_index, hcr);
950         else
951                 set = test_and_clear_bit(bit_index, hcr);
952
953         /*
954          * If we didn't change anything, no need to wake up or kick other CPUs
955          */
956         if (set == level)
957                 return 0;
958
959         /*
960          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
961          * trigger a world-switch round on the running physical CPU to set the
962          * virtual IRQ/FIQ fields in the HCR appropriately.
963          */
964         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
965         kvm_vcpu_kick(vcpu);
966
967         return 0;
968 }
969
970 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
971                           bool line_status)
972 {
973         u32 irq = irq_level->irq;
974         unsigned int irq_type, vcpu_idx, irq_num;
975         int nrcpus = atomic_read(&kvm->online_vcpus);
976         struct kvm_vcpu *vcpu = NULL;
977         bool level = irq_level->level;
978
979         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
980         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
981         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
982         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
983
984         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
985
986         switch (irq_type) {
987         case KVM_ARM_IRQ_TYPE_CPU:
988                 if (irqchip_in_kernel(kvm))
989                         return -ENXIO;
990
991                 if (vcpu_idx >= nrcpus)
992                         return -EINVAL;
993
994                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
995                 if (!vcpu)
996                         return -EINVAL;
997
998                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
999                         return -EINVAL;
1000
1001                 return vcpu_interrupt_line(vcpu, irq_num, level);
1002         case KVM_ARM_IRQ_TYPE_PPI:
1003                 if (!irqchip_in_kernel(kvm))
1004                         return -ENXIO;
1005
1006                 if (vcpu_idx >= nrcpus)
1007                         return -EINVAL;
1008
1009                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1010                 if (!vcpu)
1011                         return -EINVAL;
1012
1013                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1014                         return -EINVAL;
1015
1016                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1017         case KVM_ARM_IRQ_TYPE_SPI:
1018                 if (!irqchip_in_kernel(kvm))
1019                         return -ENXIO;
1020
1021                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1022                         return -EINVAL;
1023
1024                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1025         }
1026
1027         return -EINVAL;
1028 }
1029
1030 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1031                                const struct kvm_vcpu_init *init)
1032 {
1033         unsigned int i, ret;
1034         u32 phys_target = kvm_target_cpu();
1035
1036         if (init->target != phys_target)
1037                 return -EINVAL;
1038
1039         /*
1040          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1041          * use the same target.
1042          */
1043         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1044                 return -EINVAL;
1045
1046         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1047         for (i = 0; i < sizeof(init->features) * 8; i++) {
1048                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1049
1050                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1051                         return -ENOENT;
1052
1053                 /*
1054                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1055                  * use the same feature set.
1056                  */
1057                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1058                     test_bit(i, vcpu->arch.features) != set)
1059                         return -EINVAL;
1060
1061                 if (set)
1062                         set_bit(i, vcpu->arch.features);
1063         }
1064
1065         vcpu->arch.target = phys_target;
1066
1067         /* Now we know what it is, we can reset it. */
1068         ret = kvm_reset_vcpu(vcpu);
1069         if (ret) {
1070                 vcpu->arch.target = -1;
1071                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1072         }
1073
1074         return ret;
1075 }
1076
1077 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1078                                          struct kvm_vcpu_init *init)
1079 {
1080         int ret;
1081
1082         ret = kvm_vcpu_set_target(vcpu, init);
1083         if (ret)
1084                 return ret;
1085
1086         /*
1087          * Ensure a rebooted VM will fault in RAM pages and detect if the
1088          * guest MMU is turned off and flush the caches as needed.
1089          *
1090          * S2FWB enforces all memory accesses to RAM being cacheable,
1091          * ensuring that the data side is always coherent. We still
1092          * need to invalidate the I-cache though, as FWB does *not*
1093          * imply CTR_EL0.DIC.
1094          */
1095         if (vcpu->arch.has_run_once) {
1096                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1097                         stage2_unmap_vm(vcpu->kvm);
1098                 else
1099                         icache_inval_all_pou();
1100         }
1101
1102         vcpu_reset_hcr(vcpu);
1103
1104         /*
1105          * Handle the "start in power-off" case.
1106          */
1107         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1108                 vcpu_power_off(vcpu);
1109         else
1110                 vcpu->arch.power_off = false;
1111
1112         return 0;
1113 }
1114
1115 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1116                                  struct kvm_device_attr *attr)
1117 {
1118         int ret = -ENXIO;
1119
1120         switch (attr->group) {
1121         default:
1122                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1123                 break;
1124         }
1125
1126         return ret;
1127 }
1128
1129 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1130                                  struct kvm_device_attr *attr)
1131 {
1132         int ret = -ENXIO;
1133
1134         switch (attr->group) {
1135         default:
1136                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1137                 break;
1138         }
1139
1140         return ret;
1141 }
1142
1143 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1144                                  struct kvm_device_attr *attr)
1145 {
1146         int ret = -ENXIO;
1147
1148         switch (attr->group) {
1149         default:
1150                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1151                 break;
1152         }
1153
1154         return ret;
1155 }
1156
1157 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1158                                    struct kvm_vcpu_events *events)
1159 {
1160         memset(events, 0, sizeof(*events));
1161
1162         return __kvm_arm_vcpu_get_events(vcpu, events);
1163 }
1164
1165 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1166                                    struct kvm_vcpu_events *events)
1167 {
1168         int i;
1169
1170         /* check whether the reserved field is zero */
1171         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1172                 if (events->reserved[i])
1173                         return -EINVAL;
1174
1175         /* check whether the pad field is zero */
1176         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1177                 if (events->exception.pad[i])
1178                         return -EINVAL;
1179
1180         return __kvm_arm_vcpu_set_events(vcpu, events);
1181 }
1182
1183 long kvm_arch_vcpu_ioctl(struct file *filp,
1184                          unsigned int ioctl, unsigned long arg)
1185 {
1186         struct kvm_vcpu *vcpu = filp->private_data;
1187         void __user *argp = (void __user *)arg;
1188         struct kvm_device_attr attr;
1189         long r;
1190
1191         switch (ioctl) {
1192         case KVM_ARM_VCPU_INIT: {
1193                 struct kvm_vcpu_init init;
1194
1195                 r = -EFAULT;
1196                 if (copy_from_user(&init, argp, sizeof(init)))
1197                         break;
1198
1199                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1200                 break;
1201         }
1202         case KVM_SET_ONE_REG:
1203         case KVM_GET_ONE_REG: {
1204                 struct kvm_one_reg reg;
1205
1206                 r = -ENOEXEC;
1207                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1208                         break;
1209
1210                 r = -EFAULT;
1211                 if (copy_from_user(&reg, argp, sizeof(reg)))
1212                         break;
1213
1214                 if (ioctl == KVM_SET_ONE_REG)
1215                         r = kvm_arm_set_reg(vcpu, &reg);
1216                 else
1217                         r = kvm_arm_get_reg(vcpu, &reg);
1218                 break;
1219         }
1220         case KVM_GET_REG_LIST: {
1221                 struct kvm_reg_list __user *user_list = argp;
1222                 struct kvm_reg_list reg_list;
1223                 unsigned n;
1224
1225                 r = -ENOEXEC;
1226                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1227                         break;
1228
1229                 r = -EPERM;
1230                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1231                         break;
1232
1233                 r = -EFAULT;
1234                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1235                         break;
1236                 n = reg_list.n;
1237                 reg_list.n = kvm_arm_num_regs(vcpu);
1238                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1239                         break;
1240                 r = -E2BIG;
1241                 if (n < reg_list.n)
1242                         break;
1243                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1244                 break;
1245         }
1246         case KVM_SET_DEVICE_ATTR: {
1247                 r = -EFAULT;
1248                 if (copy_from_user(&attr, argp, sizeof(attr)))
1249                         break;
1250                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1251                 break;
1252         }
1253         case KVM_GET_DEVICE_ATTR: {
1254                 r = -EFAULT;
1255                 if (copy_from_user(&attr, argp, sizeof(attr)))
1256                         break;
1257                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1258                 break;
1259         }
1260         case KVM_HAS_DEVICE_ATTR: {
1261                 r = -EFAULT;
1262                 if (copy_from_user(&attr, argp, sizeof(attr)))
1263                         break;
1264                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1265                 break;
1266         }
1267         case KVM_GET_VCPU_EVENTS: {
1268                 struct kvm_vcpu_events events;
1269
1270                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1271                         return -EINVAL;
1272
1273                 if (copy_to_user(argp, &events, sizeof(events)))
1274                         return -EFAULT;
1275
1276                 return 0;
1277         }
1278         case KVM_SET_VCPU_EVENTS: {
1279                 struct kvm_vcpu_events events;
1280
1281                 if (copy_from_user(&events, argp, sizeof(events)))
1282                         return -EFAULT;
1283
1284                 return kvm_arm_vcpu_set_events(vcpu, &events);
1285         }
1286         case KVM_ARM_VCPU_FINALIZE: {
1287                 int what;
1288
1289                 if (!kvm_vcpu_initialized(vcpu))
1290                         return -ENOEXEC;
1291
1292                 if (get_user(what, (const int __user *)argp))
1293                         return -EFAULT;
1294
1295                 return kvm_arm_vcpu_finalize(vcpu, what);
1296         }
1297         default:
1298                 r = -EINVAL;
1299         }
1300
1301         return r;
1302 }
1303
1304 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1305 {
1306
1307 }
1308
1309 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1310                                         const struct kvm_memory_slot *memslot)
1311 {
1312         kvm_flush_remote_tlbs(kvm);
1313 }
1314
1315 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1316                                         struct kvm_arm_device_addr *dev_addr)
1317 {
1318         unsigned long dev_id, type;
1319
1320         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1321                 KVM_ARM_DEVICE_ID_SHIFT;
1322         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1323                 KVM_ARM_DEVICE_TYPE_SHIFT;
1324
1325         switch (dev_id) {
1326         case KVM_ARM_DEVICE_VGIC_V2:
1327                 if (!vgic_present)
1328                         return -ENXIO;
1329                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1330         default:
1331                 return -ENODEV;
1332         }
1333 }
1334
1335 long kvm_arch_vm_ioctl(struct file *filp,
1336                        unsigned int ioctl, unsigned long arg)
1337 {
1338         struct kvm *kvm = filp->private_data;
1339         void __user *argp = (void __user *)arg;
1340
1341         switch (ioctl) {
1342         case KVM_CREATE_IRQCHIP: {
1343                 int ret;
1344                 if (!vgic_present)
1345                         return -ENXIO;
1346                 mutex_lock(&kvm->lock);
1347                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1348                 mutex_unlock(&kvm->lock);
1349                 return ret;
1350         }
1351         case KVM_ARM_SET_DEVICE_ADDR: {
1352                 struct kvm_arm_device_addr dev_addr;
1353
1354                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1355                         return -EFAULT;
1356                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1357         }
1358         case KVM_ARM_PREFERRED_TARGET: {
1359                 int err;
1360                 struct kvm_vcpu_init init;
1361
1362                 err = kvm_vcpu_preferred_target(&init);
1363                 if (err)
1364                         return err;
1365
1366                 if (copy_to_user(argp, &init, sizeof(init)))
1367                         return -EFAULT;
1368
1369                 return 0;
1370         }
1371         case KVM_ARM_MTE_COPY_TAGS: {
1372                 struct kvm_arm_copy_mte_tags copy_tags;
1373
1374                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1375                         return -EFAULT;
1376                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1377         }
1378         default:
1379                 return -EINVAL;
1380         }
1381 }
1382
1383 static unsigned long nvhe_percpu_size(void)
1384 {
1385         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1386                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1387 }
1388
1389 static unsigned long nvhe_percpu_order(void)
1390 {
1391         unsigned long size = nvhe_percpu_size();
1392
1393         return size ? get_order(size) : 0;
1394 }
1395
1396 /* A lookup table holding the hypervisor VA for each vector slot */
1397 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1398
1399 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1400 {
1401         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1402 }
1403
1404 static int kvm_init_vector_slots(void)
1405 {
1406         int err;
1407         void *base;
1408
1409         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1410         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1411
1412         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1413         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1414
1415         if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1416                 return 0;
1417
1418         if (!has_vhe()) {
1419                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1420                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1421                 if (err)
1422                         return err;
1423         }
1424
1425         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1426         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1427         return 0;
1428 }
1429
1430 static void cpu_prepare_hyp_mode(int cpu)
1431 {
1432         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1433         unsigned long tcr;
1434
1435         /*
1436          * Calculate the raw per-cpu offset without a translation from the
1437          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1438          * so that we can use adr_l to access per-cpu variables in EL2.
1439          * Also drop the KASAN tag which gets in the way...
1440          */
1441         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1442                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1443
1444         params->mair_el2 = read_sysreg(mair_el1);
1445
1446         /*
1447          * The ID map may be configured to use an extended virtual address
1448          * range. This is only the case if system RAM is out of range for the
1449          * currently configured page size and VA_BITS, in which case we will
1450          * also need the extended virtual range for the HYP ID map, or we won't
1451          * be able to enable the EL2 MMU.
1452          *
1453          * However, at EL2, there is only one TTBR register, and we can't switch
1454          * between translation tables *and* update TCR_EL2.T0SZ at the same
1455          * time. Bottom line: we need to use the extended range with *both* our
1456          * translation tables.
1457          *
1458          * So use the same T0SZ value we use for the ID map.
1459          */
1460         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1461         tcr &= ~TCR_T0SZ_MASK;
1462         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1463         params->tcr_el2 = tcr;
1464
1465         params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1466         params->pgd_pa = kvm_mmu_get_httbr();
1467         if (is_protected_kvm_enabled())
1468                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1469         else
1470                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1471         params->vttbr = params->vtcr = 0;
1472
1473         /*
1474          * Flush the init params from the data cache because the struct will
1475          * be read while the MMU is off.
1476          */
1477         kvm_flush_dcache_to_poc(params, sizeof(*params));
1478 }
1479
1480 static void hyp_install_host_vector(void)
1481 {
1482         struct kvm_nvhe_init_params *params;
1483         struct arm_smccc_res res;
1484
1485         /* Switch from the HYP stub to our own HYP init vector */
1486         __hyp_set_vectors(kvm_get_idmap_vector());
1487
1488         /*
1489          * Call initialization code, and switch to the full blown HYP code.
1490          * If the cpucaps haven't been finalized yet, something has gone very
1491          * wrong, and hyp will crash and burn when it uses any
1492          * cpus_have_const_cap() wrapper.
1493          */
1494         BUG_ON(!system_capabilities_finalized());
1495         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1496         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1497         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1498 }
1499
1500 static void cpu_init_hyp_mode(void)
1501 {
1502         hyp_install_host_vector();
1503
1504         /*
1505          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1506          * at EL2.
1507          */
1508         if (this_cpu_has_cap(ARM64_SSBS) &&
1509             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1510                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1511         }
1512 }
1513
1514 static void cpu_hyp_reset(void)
1515 {
1516         if (!is_kernel_in_hyp_mode())
1517                 __hyp_reset_vectors();
1518 }
1519
1520 /*
1521  * EL2 vectors can be mapped and rerouted in a number of ways,
1522  * depending on the kernel configuration and CPU present:
1523  *
1524  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1525  *   placed in one of the vector slots, which is executed before jumping
1526  *   to the real vectors.
1527  *
1528  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1529  *   containing the hardening sequence is mapped next to the idmap page,
1530  *   and executed before jumping to the real vectors.
1531  *
1532  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1533  *   empty slot is selected, mapped next to the idmap page, and
1534  *   executed before jumping to the real vectors.
1535  *
1536  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1537  * VHE, as we don't have hypervisor-specific mappings. If the system
1538  * is VHE and yet selects this capability, it will be ignored.
1539  */
1540 static void cpu_set_hyp_vector(void)
1541 {
1542         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1543         void *vector = hyp_spectre_vector_selector[data->slot];
1544
1545         if (!is_protected_kvm_enabled())
1546                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1547         else
1548                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1549 }
1550
1551 static void cpu_hyp_reinit(void)
1552 {
1553         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1554
1555         cpu_hyp_reset();
1556
1557         if (is_kernel_in_hyp_mode())
1558                 kvm_timer_init_vhe();
1559         else
1560                 cpu_init_hyp_mode();
1561
1562         cpu_set_hyp_vector();
1563
1564         kvm_arm_init_debug();
1565
1566         if (vgic_present)
1567                 kvm_vgic_init_cpu_hardware();
1568 }
1569
1570 static void _kvm_arch_hardware_enable(void *discard)
1571 {
1572         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1573                 cpu_hyp_reinit();
1574                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1575         }
1576 }
1577
1578 int kvm_arch_hardware_enable(void)
1579 {
1580         _kvm_arch_hardware_enable(NULL);
1581         return 0;
1582 }
1583
1584 static void _kvm_arch_hardware_disable(void *discard)
1585 {
1586         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1587                 cpu_hyp_reset();
1588                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1589         }
1590 }
1591
1592 void kvm_arch_hardware_disable(void)
1593 {
1594         if (!is_protected_kvm_enabled())
1595                 _kvm_arch_hardware_disable(NULL);
1596 }
1597
1598 #ifdef CONFIG_CPU_PM
1599 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1600                                     unsigned long cmd,
1601                                     void *v)
1602 {
1603         /*
1604          * kvm_arm_hardware_enabled is left with its old value over
1605          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1606          * re-enable hyp.
1607          */
1608         switch (cmd) {
1609         case CPU_PM_ENTER:
1610                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1611                         /*
1612                          * don't update kvm_arm_hardware_enabled here
1613                          * so that the hardware will be re-enabled
1614                          * when we resume. See below.
1615                          */
1616                         cpu_hyp_reset();
1617
1618                 return NOTIFY_OK;
1619         case CPU_PM_ENTER_FAILED:
1620         case CPU_PM_EXIT:
1621                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1622                         /* The hardware was enabled before suspend. */
1623                         cpu_hyp_reinit();
1624
1625                 return NOTIFY_OK;
1626
1627         default:
1628                 return NOTIFY_DONE;
1629         }
1630 }
1631
1632 static struct notifier_block hyp_init_cpu_pm_nb = {
1633         .notifier_call = hyp_init_cpu_pm_notifier,
1634 };
1635
1636 static void hyp_cpu_pm_init(void)
1637 {
1638         if (!is_protected_kvm_enabled())
1639                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1640 }
1641 static void hyp_cpu_pm_exit(void)
1642 {
1643         if (!is_protected_kvm_enabled())
1644                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1645 }
1646 #else
1647 static inline void hyp_cpu_pm_init(void)
1648 {
1649 }
1650 static inline void hyp_cpu_pm_exit(void)
1651 {
1652 }
1653 #endif
1654
1655 static void init_cpu_logical_map(void)
1656 {
1657         unsigned int cpu;
1658
1659         /*
1660          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1661          * Only copy the set of online CPUs whose features have been chacked
1662          * against the finalized system capabilities. The hypervisor will not
1663          * allow any other CPUs from the `possible` set to boot.
1664          */
1665         for_each_online_cpu(cpu)
1666                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1667 }
1668
1669 #define init_psci_0_1_impl_state(config, what)  \
1670         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1671
1672 static bool init_psci_relay(void)
1673 {
1674         /*
1675          * If PSCI has not been initialized, protected KVM cannot install
1676          * itself on newly booted CPUs.
1677          */
1678         if (!psci_ops.get_version) {
1679                 kvm_err("Cannot initialize protected mode without PSCI\n");
1680                 return false;
1681         }
1682
1683         kvm_host_psci_config.version = psci_ops.get_version();
1684
1685         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1686                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1687                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1688                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1689                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1690                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1691         }
1692         return true;
1693 }
1694
1695 static int init_subsystems(void)
1696 {
1697         int err = 0;
1698
1699         /*
1700          * Enable hardware so that subsystem initialisation can access EL2.
1701          */
1702         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1703
1704         /*
1705          * Register CPU lower-power notifier
1706          */
1707         hyp_cpu_pm_init();
1708
1709         /*
1710          * Init HYP view of VGIC
1711          */
1712         err = kvm_vgic_hyp_init();
1713         switch (err) {
1714         case 0:
1715                 vgic_present = true;
1716                 break;
1717         case -ENODEV:
1718         case -ENXIO:
1719                 vgic_present = false;
1720                 err = 0;
1721                 break;
1722         default:
1723                 goto out;
1724         }
1725
1726         /*
1727          * Init HYP architected timer support
1728          */
1729         err = kvm_timer_hyp_init(vgic_present);
1730         if (err)
1731                 goto out;
1732
1733         kvm_perf_init();
1734         kvm_sys_reg_table_init();
1735
1736 out:
1737         if (err || !is_protected_kvm_enabled())
1738                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1739
1740         return err;
1741 }
1742
1743 static void teardown_hyp_mode(void)
1744 {
1745         int cpu;
1746
1747         free_hyp_pgds();
1748         for_each_possible_cpu(cpu) {
1749                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1750                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1751         }
1752 }
1753
1754 static int do_pkvm_init(u32 hyp_va_bits)
1755 {
1756         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1757         int ret;
1758
1759         preempt_disable();
1760         hyp_install_host_vector();
1761         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1762                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1763                                 hyp_va_bits);
1764         preempt_enable();
1765
1766         return ret;
1767 }
1768
1769 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1770 {
1771         void *addr = phys_to_virt(hyp_mem_base);
1772         int ret;
1773
1774         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1775         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1776
1777         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1778         if (ret)
1779                 return ret;
1780
1781         ret = do_pkvm_init(hyp_va_bits);
1782         if (ret)
1783                 return ret;
1784
1785         free_hyp_pgds();
1786
1787         return 0;
1788 }
1789
1790 /**
1791  * Inits Hyp-mode on all online CPUs
1792  */
1793 static int init_hyp_mode(void)
1794 {
1795         u32 hyp_va_bits;
1796         int cpu;
1797         int err = -ENOMEM;
1798
1799         /*
1800          * The protected Hyp-mode cannot be initialized if the memory pool
1801          * allocation has failed.
1802          */
1803         if (is_protected_kvm_enabled() && !hyp_mem_base)
1804                 goto out_err;
1805
1806         /*
1807          * Allocate Hyp PGD and setup Hyp identity mapping
1808          */
1809         err = kvm_mmu_init(&hyp_va_bits);
1810         if (err)
1811                 goto out_err;
1812
1813         /*
1814          * Allocate stack pages for Hypervisor-mode
1815          */
1816         for_each_possible_cpu(cpu) {
1817                 unsigned long stack_page;
1818
1819                 stack_page = __get_free_page(GFP_KERNEL);
1820                 if (!stack_page) {
1821                         err = -ENOMEM;
1822                         goto out_err;
1823                 }
1824
1825                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1826         }
1827
1828         /*
1829          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1830          */
1831         for_each_possible_cpu(cpu) {
1832                 struct page *page;
1833                 void *page_addr;
1834
1835                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1836                 if (!page) {
1837                         err = -ENOMEM;
1838                         goto out_err;
1839                 }
1840
1841                 page_addr = page_address(page);
1842                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1843                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1844         }
1845
1846         /*
1847          * Map the Hyp-code called directly from the host
1848          */
1849         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1850                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1851         if (err) {
1852                 kvm_err("Cannot map world-switch code\n");
1853                 goto out_err;
1854         }
1855
1856         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1857                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1858         if (err) {
1859                 kvm_err("Cannot map .hyp.rodata section\n");
1860                 goto out_err;
1861         }
1862
1863         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1864                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1865         if (err) {
1866                 kvm_err("Cannot map rodata section\n");
1867                 goto out_err;
1868         }
1869
1870         /*
1871          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1872          * section thanks to an assertion in the linker script. Map it RW and
1873          * the rest of .bss RO.
1874          */
1875         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1876                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1877         if (err) {
1878                 kvm_err("Cannot map hyp bss section: %d\n", err);
1879                 goto out_err;
1880         }
1881
1882         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1883                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1884         if (err) {
1885                 kvm_err("Cannot map bss section\n");
1886                 goto out_err;
1887         }
1888
1889         /*
1890          * Map the Hyp stack pages
1891          */
1892         for_each_possible_cpu(cpu) {
1893                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1894                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1895                                           PAGE_HYP);
1896
1897                 if (err) {
1898                         kvm_err("Cannot map hyp stack\n");
1899                         goto out_err;
1900                 }
1901         }
1902
1903         for_each_possible_cpu(cpu) {
1904                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1905                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1906
1907                 /* Map Hyp percpu pages */
1908                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1909                 if (err) {
1910                         kvm_err("Cannot map hyp percpu region\n");
1911                         goto out_err;
1912                 }
1913
1914                 /* Prepare the CPU initialization parameters */
1915                 cpu_prepare_hyp_mode(cpu);
1916         }
1917
1918         if (is_protected_kvm_enabled()) {
1919                 init_cpu_logical_map();
1920
1921                 if (!init_psci_relay()) {
1922                         err = -ENODEV;
1923                         goto out_err;
1924                 }
1925         }
1926
1927         if (is_protected_kvm_enabled()) {
1928                 err = kvm_hyp_init_protection(hyp_va_bits);
1929                 if (err) {
1930                         kvm_err("Failed to init hyp memory protection\n");
1931                         goto out_err;
1932                 }
1933         }
1934
1935         return 0;
1936
1937 out_err:
1938         teardown_hyp_mode();
1939         kvm_err("error initializing Hyp mode: %d\n", err);
1940         return err;
1941 }
1942
1943 static void _kvm_host_prot_finalize(void *discard)
1944 {
1945         WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1946 }
1947
1948 static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
1949 {
1950         return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
1951 }
1952
1953 #define pkvm_mark_hyp_section(__section)                \
1954         pkvm_mark_hyp(__pa_symbol(__section##_start),   \
1955                         __pa_symbol(__section##_end))
1956
1957 static int finalize_hyp_mode(void)
1958 {
1959         int cpu, ret;
1960
1961         if (!is_protected_kvm_enabled())
1962                 return 0;
1963
1964         ret = pkvm_mark_hyp_section(__hyp_idmap_text);
1965         if (ret)
1966                 return ret;
1967
1968         ret = pkvm_mark_hyp_section(__hyp_text);
1969         if (ret)
1970                 return ret;
1971
1972         ret = pkvm_mark_hyp_section(__hyp_rodata);
1973         if (ret)
1974                 return ret;
1975
1976         ret = pkvm_mark_hyp_section(__hyp_bss);
1977         if (ret)
1978                 return ret;
1979
1980         ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
1981         if (ret)
1982                 return ret;
1983
1984         for_each_possible_cpu(cpu) {
1985                 phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
1986                 phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());
1987
1988                 ret = pkvm_mark_hyp(start, end);
1989                 if (ret)
1990                         return ret;
1991
1992                 start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
1993                 end = start + PAGE_SIZE;
1994                 ret = pkvm_mark_hyp(start, end);
1995                 if (ret)
1996                         return ret;
1997         }
1998
1999         /*
2000          * Flip the static key upfront as that may no longer be possible
2001          * once the host stage 2 is installed.
2002          */
2003         static_branch_enable(&kvm_protected_mode_initialized);
2004         on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
2005
2006         return 0;
2007 }
2008
2009 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2010 {
2011         struct kvm_vcpu *vcpu;
2012         int i;
2013
2014         mpidr &= MPIDR_HWID_BITMASK;
2015         kvm_for_each_vcpu(i, vcpu, kvm) {
2016                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2017                         return vcpu;
2018         }
2019         return NULL;
2020 }
2021
2022 bool kvm_arch_has_irq_bypass(void)
2023 {
2024         return true;
2025 }
2026
2027 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2028                                       struct irq_bypass_producer *prod)
2029 {
2030         struct kvm_kernel_irqfd *irqfd =
2031                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2032
2033         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2034                                           &irqfd->irq_entry);
2035 }
2036 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2037                                       struct irq_bypass_producer *prod)
2038 {
2039         struct kvm_kernel_irqfd *irqfd =
2040                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2041
2042         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2043                                      &irqfd->irq_entry);
2044 }
2045
2046 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2047 {
2048         struct kvm_kernel_irqfd *irqfd =
2049                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2050
2051         kvm_arm_halt_guest(irqfd->kvm);
2052 }
2053
2054 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2055 {
2056         struct kvm_kernel_irqfd *irqfd =
2057                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2058
2059         kvm_arm_resume_guest(irqfd->kvm);
2060 }
2061
2062 /**
2063  * Initialize Hyp-mode and memory mappings on all CPUs.
2064  */
2065 int kvm_arch_init(void *opaque)
2066 {
2067         int err;
2068         bool in_hyp_mode;
2069
2070         if (!is_hyp_mode_available()) {
2071                 kvm_info("HYP mode not available\n");
2072                 return -ENODEV;
2073         }
2074
2075         in_hyp_mode = is_kernel_in_hyp_mode();
2076
2077         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2078             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2079                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2080                          "Only trusted guests should be used on this system.\n");
2081
2082         err = kvm_set_ipa_limit();
2083         if (err)
2084                 return err;
2085
2086         err = kvm_arm_init_sve();
2087         if (err)
2088                 return err;
2089
2090         if (!in_hyp_mode) {
2091                 err = init_hyp_mode();
2092                 if (err)
2093                         goto out_err;
2094         }
2095
2096         err = kvm_init_vector_slots();
2097         if (err) {
2098                 kvm_err("Cannot initialise vector slots\n");
2099                 goto out_err;
2100         }
2101
2102         err = init_subsystems();
2103         if (err)
2104                 goto out_hyp;
2105
2106         if (!in_hyp_mode) {
2107                 err = finalize_hyp_mode();
2108                 if (err) {
2109                         kvm_err("Failed to finalize Hyp protection\n");
2110                         goto out_hyp;
2111                 }
2112         }
2113
2114         if (is_protected_kvm_enabled()) {
2115                 kvm_info("Protected nVHE mode initialized successfully\n");
2116         } else if (in_hyp_mode) {
2117                 kvm_info("VHE mode initialized successfully\n");
2118         } else {
2119                 kvm_info("Hyp mode initialized successfully\n");
2120         }
2121
2122         return 0;
2123
2124 out_hyp:
2125         hyp_cpu_pm_exit();
2126         if (!in_hyp_mode)
2127                 teardown_hyp_mode();
2128 out_err:
2129         return err;
2130 }
2131
2132 /* NOP: Compiling as a module not supported */
2133 void kvm_arch_exit(void)
2134 {
2135         kvm_perf_teardown();
2136 }
2137
2138 static int __init early_kvm_mode_cfg(char *arg)
2139 {
2140         if (!arg)
2141                 return -EINVAL;
2142
2143         if (strcmp(arg, "protected") == 0) {
2144                 kvm_mode = KVM_MODE_PROTECTED;
2145                 return 0;
2146         }
2147
2148         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2149                 return 0;
2150
2151         return -EINVAL;
2152 }
2153 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2154
2155 enum kvm_mode kvm_get_mode(void)
2156 {
2157         return kvm_mode;
2158 }
2159
2160 static int arm_init(void)
2161 {
2162         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2163         return rc;
2164 }
2165
2166 module_init(arm_init);