KVM: arm64: Handle Asymmetric AArch32 systems
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23
24 #define CREATE_TRACE_POINTS
25 #include "trace_arm.h"
26
27 #include <linux/uaccess.h>
28 #include <asm/ptrace.h>
29 #include <asm/mman.h>
30 #include <asm/tlbflush.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpufeature.h>
33 #include <asm/virt.h>
34 #include <asm/kvm_arm.h>
35 #include <asm/kvm_asm.h>
36 #include <asm/kvm_mmu.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_coproc.h>
39 #include <asm/sections.h>
40
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension        virt");
47 #endif
48
49 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
50
51 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
53
54 /* The VMID used in the VTTBR */
55 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
56 static u32 kvm_next_vmid;
57 static DEFINE_SPINLOCK(kvm_vmid_lock);
58
59 static bool vgic_present;
60
61 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
62 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
63
64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
67 }
68
69 int kvm_arch_hardware_setup(void *opaque)
70 {
71         return 0;
72 }
73
74 int kvm_arch_check_processor_compat(void *opaque)
75 {
76         return 0;
77 }
78
79 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
80                             struct kvm_enable_cap *cap)
81 {
82         int r;
83
84         if (cap->flags)
85                 return -EINVAL;
86
87         switch (cap->cap) {
88         case KVM_CAP_ARM_NISV_TO_USER:
89                 r = 0;
90                 kvm->arch.return_nisv_io_abort_to_user = true;
91                 break;
92         default:
93                 r = -EINVAL;
94                 break;
95         }
96
97         return r;
98 }
99
100 static int kvm_arm_default_max_vcpus(void)
101 {
102         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
103 }
104
105 /**
106  * kvm_arch_init_vm - initializes a VM data structure
107  * @kvm:        pointer to the KVM struct
108  */
109 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
110 {
111         int ret;
112
113         ret = kvm_arm_setup_stage2(kvm, type);
114         if (ret)
115                 return ret;
116
117         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
118         if (ret)
119                 return ret;
120
121         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
122         if (ret)
123                 goto out_free_stage2_pgd;
124
125         kvm_vgic_early_init(kvm);
126
127         /* The maximum number of VCPUs is limited by the host's GIC model */
128         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
129
130         return ret;
131 out_free_stage2_pgd:
132         kvm_free_stage2_pgd(&kvm->arch.mmu);
133         return ret;
134 }
135
136 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
137 {
138         return VM_FAULT_SIGBUS;
139 }
140
141
142 /**
143  * kvm_arch_destroy_vm - destroy the VM data structure
144  * @kvm:        pointer to the KVM struct
145  */
146 void kvm_arch_destroy_vm(struct kvm *kvm)
147 {
148         int i;
149
150         bitmap_free(kvm->arch.pmu_filter);
151
152         kvm_vgic_destroy(kvm);
153
154         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
155                 if (kvm->vcpus[i]) {
156                         kvm_vcpu_destroy(kvm->vcpus[i]);
157                         kvm->vcpus[i] = NULL;
158                 }
159         }
160         atomic_set(&kvm->online_vcpus, 0);
161 }
162
163 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
164 {
165         int r;
166         switch (ext) {
167         case KVM_CAP_IRQCHIP:
168                 r = vgic_present;
169                 break;
170         case KVM_CAP_IOEVENTFD:
171         case KVM_CAP_DEVICE_CTRL:
172         case KVM_CAP_USER_MEMORY:
173         case KVM_CAP_SYNC_MMU:
174         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
175         case KVM_CAP_ONE_REG:
176         case KVM_CAP_ARM_PSCI:
177         case KVM_CAP_ARM_PSCI_0_2:
178         case KVM_CAP_READONLY_MEM:
179         case KVM_CAP_MP_STATE:
180         case KVM_CAP_IMMEDIATE_EXIT:
181         case KVM_CAP_VCPU_EVENTS:
182         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
183         case KVM_CAP_ARM_NISV_TO_USER:
184         case KVM_CAP_ARM_INJECT_EXT_DABT:
185                 r = 1;
186                 break;
187         case KVM_CAP_ARM_SET_DEVICE_ADDR:
188                 r = 1;
189                 break;
190         case KVM_CAP_NR_VCPUS:
191                 r = num_online_cpus();
192                 break;
193         case KVM_CAP_MAX_VCPUS:
194         case KVM_CAP_MAX_VCPU_ID:
195                 if (kvm)
196                         r = kvm->arch.max_vcpus;
197                 else
198                         r = kvm_arm_default_max_vcpus();
199                 break;
200         case KVM_CAP_MSI_DEVID:
201                 if (!kvm)
202                         r = -EINVAL;
203                 else
204                         r = kvm->arch.vgic.msis_require_devid;
205                 break;
206         case KVM_CAP_ARM_USER_IRQ:
207                 /*
208                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
209                  * (bump this number if adding more devices)
210                  */
211                 r = 1;
212                 break;
213         case KVM_CAP_STEAL_TIME:
214                 r = kvm_arm_pvtime_supported();
215                 break;
216         default:
217                 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
218                 break;
219         }
220         return r;
221 }
222
223 long kvm_arch_dev_ioctl(struct file *filp,
224                         unsigned int ioctl, unsigned long arg)
225 {
226         return -EINVAL;
227 }
228
229 struct kvm *kvm_arch_alloc_vm(void)
230 {
231         if (!has_vhe())
232                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
233
234         return vzalloc(sizeof(struct kvm));
235 }
236
237 void kvm_arch_free_vm(struct kvm *kvm)
238 {
239         if (!has_vhe())
240                 kfree(kvm);
241         else
242                 vfree(kvm);
243 }
244
245 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
246 {
247         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
248                 return -EBUSY;
249
250         if (id >= kvm->arch.max_vcpus)
251                 return -EINVAL;
252
253         return 0;
254 }
255
256 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
257 {
258         int err;
259
260         /* Force users to call KVM_ARM_VCPU_INIT */
261         vcpu->arch.target = -1;
262         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
263
264         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
265
266         /* Set up the timer */
267         kvm_timer_vcpu_init(vcpu);
268
269         kvm_pmu_vcpu_init(vcpu);
270
271         kvm_arm_reset_debug_ptr(vcpu);
272
273         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
274
275         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
276
277         err = kvm_vgic_vcpu_init(vcpu);
278         if (err)
279                 return err;
280
281         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
282 }
283
284 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
285 {
286 }
287
288 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
289 {
290         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
291                 static_branch_dec(&userspace_irqchip_in_use);
292
293         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
294         kvm_timer_vcpu_terminate(vcpu);
295         kvm_pmu_vcpu_destroy(vcpu);
296
297         kvm_arm_vcpu_destroy(vcpu);
298 }
299
300 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
301 {
302         return kvm_timer_is_pending(vcpu);
303 }
304
305 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
306 {
307         /*
308          * If we're about to block (most likely because we've just hit a
309          * WFI), we need to sync back the state of the GIC CPU interface
310          * so that we have the latest PMR and group enables. This ensures
311          * that kvm_arch_vcpu_runnable has up-to-date data to decide
312          * whether we have pending interrupts.
313          *
314          * For the same reason, we want to tell GICv4 that we need
315          * doorbells to be signalled, should an interrupt become pending.
316          */
317         preempt_disable();
318         kvm_vgic_vmcr_sync(vcpu);
319         vgic_v4_put(vcpu, true);
320         preempt_enable();
321 }
322
323 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
324 {
325         preempt_disable();
326         vgic_v4_load(vcpu);
327         preempt_enable();
328 }
329
330 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
331 {
332         struct kvm_s2_mmu *mmu;
333         int *last_ran;
334
335         mmu = vcpu->arch.hw_mmu;
336         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
337
338         /*
339          * We might get preempted before the vCPU actually runs, but
340          * over-invalidation doesn't affect correctness.
341          */
342         if (*last_ran != vcpu->vcpu_id) {
343                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
344                 *last_ran = vcpu->vcpu_id;
345         }
346
347         vcpu->cpu = cpu;
348
349         kvm_vgic_load(vcpu);
350         kvm_timer_vcpu_load(vcpu);
351         if (has_vhe())
352                 kvm_vcpu_load_sysregs_vhe(vcpu);
353         kvm_arch_vcpu_load_fp(vcpu);
354         kvm_vcpu_pmu_restore_guest(vcpu);
355         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
356                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
357
358         if (single_task_running())
359                 vcpu_clear_wfx_traps(vcpu);
360         else
361                 vcpu_set_wfx_traps(vcpu);
362
363         if (vcpu_has_ptrauth(vcpu))
364                 vcpu_ptrauth_disable(vcpu);
365 }
366
367 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
368 {
369         kvm_arch_vcpu_put_fp(vcpu);
370         if (has_vhe())
371                 kvm_vcpu_put_sysregs_vhe(vcpu);
372         kvm_timer_vcpu_put(vcpu);
373         kvm_vgic_put(vcpu);
374         kvm_vcpu_pmu_restore_host(vcpu);
375
376         vcpu->cpu = -1;
377 }
378
379 static void vcpu_power_off(struct kvm_vcpu *vcpu)
380 {
381         vcpu->arch.power_off = true;
382         kvm_make_request(KVM_REQ_SLEEP, vcpu);
383         kvm_vcpu_kick(vcpu);
384 }
385
386 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
387                                     struct kvm_mp_state *mp_state)
388 {
389         if (vcpu->arch.power_off)
390                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
391         else
392                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
393
394         return 0;
395 }
396
397 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
398                                     struct kvm_mp_state *mp_state)
399 {
400         int ret = 0;
401
402         switch (mp_state->mp_state) {
403         case KVM_MP_STATE_RUNNABLE:
404                 vcpu->arch.power_off = false;
405                 break;
406         case KVM_MP_STATE_STOPPED:
407                 vcpu_power_off(vcpu);
408                 break;
409         default:
410                 ret = -EINVAL;
411         }
412
413         return ret;
414 }
415
416 /**
417  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
418  * @v:          The VCPU pointer
419  *
420  * If the guest CPU is not waiting for interrupts or an interrupt line is
421  * asserted, the CPU is by definition runnable.
422  */
423 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
424 {
425         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
426         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
427                 && !v->arch.power_off && !v->arch.pause);
428 }
429
430 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
431 {
432         return vcpu_mode_priv(vcpu);
433 }
434
435 /* Just ensure a guest exit from a particular CPU */
436 static void exit_vm_noop(void *info)
437 {
438 }
439
440 void force_vm_exit(const cpumask_t *mask)
441 {
442         preempt_disable();
443         smp_call_function_many(mask, exit_vm_noop, NULL, true);
444         preempt_enable();
445 }
446
447 /**
448  * need_new_vmid_gen - check that the VMID is still valid
449  * @vmid: The VMID to check
450  *
451  * return true if there is a new generation of VMIDs being used
452  *
453  * The hardware supports a limited set of values with the value zero reserved
454  * for the host, so we check if an assigned value belongs to a previous
455  * generation, which requires us to assign a new value. If we're the first to
456  * use a VMID for the new generation, we must flush necessary caches and TLBs
457  * on all CPUs.
458  */
459 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
460 {
461         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
462         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
463         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
464 }
465
466 /**
467  * update_vmid - Update the vmid with a valid VMID for the current generation
468  * @vmid: The stage-2 VMID information struct
469  */
470 static void update_vmid(struct kvm_vmid *vmid)
471 {
472         if (!need_new_vmid_gen(vmid))
473                 return;
474
475         spin_lock(&kvm_vmid_lock);
476
477         /*
478          * We need to re-check the vmid_gen here to ensure that if another vcpu
479          * already allocated a valid vmid for this vm, then this vcpu should
480          * use the same vmid.
481          */
482         if (!need_new_vmid_gen(vmid)) {
483                 spin_unlock(&kvm_vmid_lock);
484                 return;
485         }
486
487         /* First user of a new VMID generation? */
488         if (unlikely(kvm_next_vmid == 0)) {
489                 atomic64_inc(&kvm_vmid_gen);
490                 kvm_next_vmid = 1;
491
492                 /*
493                  * On SMP we know no other CPUs can use this CPU's or each
494                  * other's VMID after force_vm_exit returns since the
495                  * kvm_vmid_lock blocks them from reentry to the guest.
496                  */
497                 force_vm_exit(cpu_all_mask);
498                 /*
499                  * Now broadcast TLB + ICACHE invalidation over the inner
500                  * shareable domain to make sure all data structures are
501                  * clean.
502                  */
503                 kvm_call_hyp(__kvm_flush_vm_context);
504         }
505
506         vmid->vmid = kvm_next_vmid;
507         kvm_next_vmid++;
508         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
509
510         smp_wmb();
511         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
512
513         spin_unlock(&kvm_vmid_lock);
514 }
515
516 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
517 {
518         struct kvm *kvm = vcpu->kvm;
519         int ret = 0;
520
521         if (likely(vcpu->arch.has_run_once))
522                 return 0;
523
524         if (!kvm_arm_vcpu_is_finalized(vcpu))
525                 return -EPERM;
526
527         vcpu->arch.has_run_once = true;
528
529         if (likely(irqchip_in_kernel(kvm))) {
530                 /*
531                  * Map the VGIC hardware resources before running a vcpu the
532                  * first time on this VM.
533                  */
534                 if (unlikely(!vgic_ready(kvm))) {
535                         ret = kvm_vgic_map_resources(kvm);
536                         if (ret)
537                                 return ret;
538                 }
539         } else {
540                 /*
541                  * Tell the rest of the code that there are userspace irqchip
542                  * VMs in the wild.
543                  */
544                 static_branch_inc(&userspace_irqchip_in_use);
545         }
546
547         ret = kvm_timer_enable(vcpu);
548         if (ret)
549                 return ret;
550
551         ret = kvm_arm_pmu_v3_enable(vcpu);
552
553         return ret;
554 }
555
556 bool kvm_arch_intc_initialized(struct kvm *kvm)
557 {
558         return vgic_initialized(kvm);
559 }
560
561 void kvm_arm_halt_guest(struct kvm *kvm)
562 {
563         int i;
564         struct kvm_vcpu *vcpu;
565
566         kvm_for_each_vcpu(i, vcpu, kvm)
567                 vcpu->arch.pause = true;
568         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
569 }
570
571 void kvm_arm_resume_guest(struct kvm *kvm)
572 {
573         int i;
574         struct kvm_vcpu *vcpu;
575
576         kvm_for_each_vcpu(i, vcpu, kvm) {
577                 vcpu->arch.pause = false;
578                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
579         }
580 }
581
582 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
583 {
584         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
585
586         rcuwait_wait_event(wait,
587                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
588                            TASK_INTERRUPTIBLE);
589
590         if (vcpu->arch.power_off || vcpu->arch.pause) {
591                 /* Awaken to handle a signal, request we sleep again later. */
592                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
593         }
594
595         /*
596          * Make sure we will observe a potential reset request if we've
597          * observed a change to the power state. Pairs with the smp_wmb() in
598          * kvm_psci_vcpu_on().
599          */
600         smp_rmb();
601 }
602
603 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
604 {
605         return vcpu->arch.target >= 0;
606 }
607
608 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
609 {
610         if (kvm_request_pending(vcpu)) {
611                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
612                         vcpu_req_sleep(vcpu);
613
614                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
615                         kvm_reset_vcpu(vcpu);
616
617                 /*
618                  * Clear IRQ_PENDING requests that were made to guarantee
619                  * that a VCPU sees new virtual interrupts.
620                  */
621                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
622
623                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
624                         kvm_update_stolen_time(vcpu);
625
626                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
627                         /* The distributor enable bits were changed */
628                         preempt_disable();
629                         vgic_v4_put(vcpu, false);
630                         vgic_v4_load(vcpu);
631                         preempt_enable();
632                 }
633         }
634 }
635
636 /**
637  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
638  * @vcpu:       The VCPU pointer
639  *
640  * This function is called through the VCPU_RUN ioctl called from user space. It
641  * will execute VM code in a loop until the time slice for the process is used
642  * or some emulation is needed from user space in which case the function will
643  * return with return value 0 and with the kvm_run structure filled in with the
644  * required data for the requested emulation.
645  */
646 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
647 {
648         struct kvm_run *run = vcpu->run;
649         int ret;
650
651         if (unlikely(!kvm_vcpu_initialized(vcpu)))
652                 return -ENOEXEC;
653
654         ret = kvm_vcpu_first_run_init(vcpu);
655         if (ret)
656                 return ret;
657
658         if (run->exit_reason == KVM_EXIT_MMIO) {
659                 ret = kvm_handle_mmio_return(vcpu);
660                 if (ret)
661                         return ret;
662         }
663
664         if (run->immediate_exit)
665                 return -EINTR;
666
667         vcpu_load(vcpu);
668
669         kvm_sigset_activate(vcpu);
670
671         ret = 1;
672         run->exit_reason = KVM_EXIT_UNKNOWN;
673         while (ret > 0) {
674                 /*
675                  * Check conditions before entering the guest
676                  */
677                 cond_resched();
678
679                 update_vmid(&vcpu->arch.hw_mmu->vmid);
680
681                 check_vcpu_requests(vcpu);
682
683                 /*
684                  * Preparing the interrupts to be injected also
685                  * involves poking the GIC, which must be done in a
686                  * non-preemptible context.
687                  */
688                 preempt_disable();
689
690                 kvm_pmu_flush_hwstate(vcpu);
691
692                 local_irq_disable();
693
694                 kvm_vgic_flush_hwstate(vcpu);
695
696                 /*
697                  * Exit if we have a signal pending so that we can deliver the
698                  * signal to user space.
699                  */
700                 if (signal_pending(current)) {
701                         ret = -EINTR;
702                         run->exit_reason = KVM_EXIT_INTR;
703                 }
704
705                 /*
706                  * If we're using a userspace irqchip, then check if we need
707                  * to tell a userspace irqchip about timer or PMU level
708                  * changes and if so, exit to userspace (the actual level
709                  * state gets updated in kvm_timer_update_run and
710                  * kvm_pmu_update_run below).
711                  */
712                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
713                         if (kvm_timer_should_notify_user(vcpu) ||
714                             kvm_pmu_should_notify_user(vcpu)) {
715                                 ret = -EINTR;
716                                 run->exit_reason = KVM_EXIT_INTR;
717                         }
718                 }
719
720                 /*
721                  * Ensure we set mode to IN_GUEST_MODE after we disable
722                  * interrupts and before the final VCPU requests check.
723                  * See the comment in kvm_vcpu_exiting_guest_mode() and
724                  * Documentation/virt/kvm/vcpu-requests.rst
725                  */
726                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
727
728                 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
729                     kvm_request_pending(vcpu)) {
730                         vcpu->mode = OUTSIDE_GUEST_MODE;
731                         isb(); /* Ensure work in x_flush_hwstate is committed */
732                         kvm_pmu_sync_hwstate(vcpu);
733                         if (static_branch_unlikely(&userspace_irqchip_in_use))
734                                 kvm_timer_sync_user(vcpu);
735                         kvm_vgic_sync_hwstate(vcpu);
736                         local_irq_enable();
737                         preempt_enable();
738                         continue;
739                 }
740
741                 kvm_arm_setup_debug(vcpu);
742
743                 /**************************************************************
744                  * Enter the guest
745                  */
746                 trace_kvm_entry(*vcpu_pc(vcpu));
747                 guest_enter_irqoff();
748
749                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
750
751                 vcpu->mode = OUTSIDE_GUEST_MODE;
752                 vcpu->stat.exits++;
753                 /*
754                  * Back from guest
755                  *************************************************************/
756
757                 kvm_arm_clear_debug(vcpu);
758
759                 /*
760                  * We must sync the PMU state before the vgic state so
761                  * that the vgic can properly sample the updated state of the
762                  * interrupt line.
763                  */
764                 kvm_pmu_sync_hwstate(vcpu);
765
766                 /*
767                  * Sync the vgic state before syncing the timer state because
768                  * the timer code needs to know if the virtual timer
769                  * interrupts are active.
770                  */
771                 kvm_vgic_sync_hwstate(vcpu);
772
773                 /*
774                  * Sync the timer hardware state before enabling interrupts as
775                  * we don't want vtimer interrupts to race with syncing the
776                  * timer virtual interrupt state.
777                  */
778                 if (static_branch_unlikely(&userspace_irqchip_in_use))
779                         kvm_timer_sync_user(vcpu);
780
781                 kvm_arch_vcpu_ctxsync_fp(vcpu);
782
783                 /*
784                  * We may have taken a host interrupt in HYP mode (ie
785                  * while executing the guest). This interrupt is still
786                  * pending, as we haven't serviced it yet!
787                  *
788                  * We're now back in SVC mode, with interrupts
789                  * disabled.  Enabling the interrupts now will have
790                  * the effect of taking the interrupt again, in SVC
791                  * mode this time.
792                  */
793                 local_irq_enable();
794
795                 /*
796                  * We do local_irq_enable() before calling guest_exit() so
797                  * that if a timer interrupt hits while running the guest we
798                  * account that tick as being spent in the guest.  We enable
799                  * preemption after calling guest_exit() so that if we get
800                  * preempted we make sure ticks after that is not counted as
801                  * guest time.
802                  */
803                 guest_exit();
804                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
805
806                 /* Exit types that need handling before we can be preempted */
807                 handle_exit_early(vcpu, ret);
808
809                 preempt_enable();
810
811                 /*
812                  * The ARMv8 architecture doesn't give the hypervisor
813                  * a mechanism to prevent a guest from dropping to AArch32 EL0
814                  * if implemented by the CPU. If we spot the guest in such
815                  * state and that we decided it wasn't supposed to do so (like
816                  * with the asymmetric AArch32 case), return to userspace with
817                  * a fatal error.
818                  */
819                 if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
820                         /*
821                          * As we have caught the guest red-handed, decide that
822                          * it isn't fit for purpose anymore by making the vcpu
823                          * invalid. The VMM can try and fix it by issuing  a
824                          * KVM_ARM_VCPU_INIT if it really wants to.
825                          */
826                         vcpu->arch.target = -1;
827                         ret = ARM_EXCEPTION_IL;
828                 }
829
830                 ret = handle_exit(vcpu, ret);
831         }
832
833         /* Tell userspace about in-kernel device output levels */
834         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
835                 kvm_timer_update_run(vcpu);
836                 kvm_pmu_update_run(vcpu);
837         }
838
839         kvm_sigset_deactivate(vcpu);
840
841         vcpu_put(vcpu);
842         return ret;
843 }
844
845 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
846 {
847         int bit_index;
848         bool set;
849         unsigned long *hcr;
850
851         if (number == KVM_ARM_IRQ_CPU_IRQ)
852                 bit_index = __ffs(HCR_VI);
853         else /* KVM_ARM_IRQ_CPU_FIQ */
854                 bit_index = __ffs(HCR_VF);
855
856         hcr = vcpu_hcr(vcpu);
857         if (level)
858                 set = test_and_set_bit(bit_index, hcr);
859         else
860                 set = test_and_clear_bit(bit_index, hcr);
861
862         /*
863          * If we didn't change anything, no need to wake up or kick other CPUs
864          */
865         if (set == level)
866                 return 0;
867
868         /*
869          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
870          * trigger a world-switch round on the running physical CPU to set the
871          * virtual IRQ/FIQ fields in the HCR appropriately.
872          */
873         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
874         kvm_vcpu_kick(vcpu);
875
876         return 0;
877 }
878
879 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
880                           bool line_status)
881 {
882         u32 irq = irq_level->irq;
883         unsigned int irq_type, vcpu_idx, irq_num;
884         int nrcpus = atomic_read(&kvm->online_vcpus);
885         struct kvm_vcpu *vcpu = NULL;
886         bool level = irq_level->level;
887
888         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
889         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
890         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
891         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
892
893         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
894
895         switch (irq_type) {
896         case KVM_ARM_IRQ_TYPE_CPU:
897                 if (irqchip_in_kernel(kvm))
898                         return -ENXIO;
899
900                 if (vcpu_idx >= nrcpus)
901                         return -EINVAL;
902
903                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
904                 if (!vcpu)
905                         return -EINVAL;
906
907                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
908                         return -EINVAL;
909
910                 return vcpu_interrupt_line(vcpu, irq_num, level);
911         case KVM_ARM_IRQ_TYPE_PPI:
912                 if (!irqchip_in_kernel(kvm))
913                         return -ENXIO;
914
915                 if (vcpu_idx >= nrcpus)
916                         return -EINVAL;
917
918                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
919                 if (!vcpu)
920                         return -EINVAL;
921
922                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
923                         return -EINVAL;
924
925                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
926         case KVM_ARM_IRQ_TYPE_SPI:
927                 if (!irqchip_in_kernel(kvm))
928                         return -ENXIO;
929
930                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
931                         return -EINVAL;
932
933                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
934         }
935
936         return -EINVAL;
937 }
938
939 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
940                                const struct kvm_vcpu_init *init)
941 {
942         unsigned int i, ret;
943         int phys_target = kvm_target_cpu();
944
945         if (init->target != phys_target)
946                 return -EINVAL;
947
948         /*
949          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
950          * use the same target.
951          */
952         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
953                 return -EINVAL;
954
955         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
956         for (i = 0; i < sizeof(init->features) * 8; i++) {
957                 bool set = (init->features[i / 32] & (1 << (i % 32)));
958
959                 if (set && i >= KVM_VCPU_MAX_FEATURES)
960                         return -ENOENT;
961
962                 /*
963                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
964                  * use the same feature set.
965                  */
966                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
967                     test_bit(i, vcpu->arch.features) != set)
968                         return -EINVAL;
969
970                 if (set)
971                         set_bit(i, vcpu->arch.features);
972         }
973
974         vcpu->arch.target = phys_target;
975
976         /* Now we know what it is, we can reset it. */
977         ret = kvm_reset_vcpu(vcpu);
978         if (ret) {
979                 vcpu->arch.target = -1;
980                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
981         }
982
983         return ret;
984 }
985
986 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
987                                          struct kvm_vcpu_init *init)
988 {
989         int ret;
990
991         ret = kvm_vcpu_set_target(vcpu, init);
992         if (ret)
993                 return ret;
994
995         /*
996          * Ensure a rebooted VM will fault in RAM pages and detect if the
997          * guest MMU is turned off and flush the caches as needed.
998          *
999          * S2FWB enforces all memory accesses to RAM being cacheable,
1000          * ensuring that the data side is always coherent. We still
1001          * need to invalidate the I-cache though, as FWB does *not*
1002          * imply CTR_EL0.DIC.
1003          */
1004         if (vcpu->arch.has_run_once) {
1005                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1006                         stage2_unmap_vm(vcpu->kvm);
1007                 else
1008                         __flush_icache_all();
1009         }
1010
1011         vcpu_reset_hcr(vcpu);
1012
1013         /*
1014          * Handle the "start in power-off" case.
1015          */
1016         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1017                 vcpu_power_off(vcpu);
1018         else
1019                 vcpu->arch.power_off = false;
1020
1021         return 0;
1022 }
1023
1024 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1025                                  struct kvm_device_attr *attr)
1026 {
1027         int ret = -ENXIO;
1028
1029         switch (attr->group) {
1030         default:
1031                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1032                 break;
1033         }
1034
1035         return ret;
1036 }
1037
1038 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1039                                  struct kvm_device_attr *attr)
1040 {
1041         int ret = -ENXIO;
1042
1043         switch (attr->group) {
1044         default:
1045                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1046                 break;
1047         }
1048
1049         return ret;
1050 }
1051
1052 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1053                                  struct kvm_device_attr *attr)
1054 {
1055         int ret = -ENXIO;
1056
1057         switch (attr->group) {
1058         default:
1059                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1060                 break;
1061         }
1062
1063         return ret;
1064 }
1065
1066 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1067                                    struct kvm_vcpu_events *events)
1068 {
1069         memset(events, 0, sizeof(*events));
1070
1071         return __kvm_arm_vcpu_get_events(vcpu, events);
1072 }
1073
1074 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1075                                    struct kvm_vcpu_events *events)
1076 {
1077         int i;
1078
1079         /* check whether the reserved field is zero */
1080         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1081                 if (events->reserved[i])
1082                         return -EINVAL;
1083
1084         /* check whether the pad field is zero */
1085         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1086                 if (events->exception.pad[i])
1087                         return -EINVAL;
1088
1089         return __kvm_arm_vcpu_set_events(vcpu, events);
1090 }
1091
1092 long kvm_arch_vcpu_ioctl(struct file *filp,
1093                          unsigned int ioctl, unsigned long arg)
1094 {
1095         struct kvm_vcpu *vcpu = filp->private_data;
1096         void __user *argp = (void __user *)arg;
1097         struct kvm_device_attr attr;
1098         long r;
1099
1100         switch (ioctl) {
1101         case KVM_ARM_VCPU_INIT: {
1102                 struct kvm_vcpu_init init;
1103
1104                 r = -EFAULT;
1105                 if (copy_from_user(&init, argp, sizeof(init)))
1106                         break;
1107
1108                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1109                 break;
1110         }
1111         case KVM_SET_ONE_REG:
1112         case KVM_GET_ONE_REG: {
1113                 struct kvm_one_reg reg;
1114
1115                 r = -ENOEXEC;
1116                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1117                         break;
1118
1119                 r = -EFAULT;
1120                 if (copy_from_user(&reg, argp, sizeof(reg)))
1121                         break;
1122
1123                 if (ioctl == KVM_SET_ONE_REG)
1124                         r = kvm_arm_set_reg(vcpu, &reg);
1125                 else
1126                         r = kvm_arm_get_reg(vcpu, &reg);
1127                 break;
1128         }
1129         case KVM_GET_REG_LIST: {
1130                 struct kvm_reg_list __user *user_list = argp;
1131                 struct kvm_reg_list reg_list;
1132                 unsigned n;
1133
1134                 r = -ENOEXEC;
1135                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1136                         break;
1137
1138                 r = -EPERM;
1139                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1140                         break;
1141
1142                 r = -EFAULT;
1143                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1144                         break;
1145                 n = reg_list.n;
1146                 reg_list.n = kvm_arm_num_regs(vcpu);
1147                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1148                         break;
1149                 r = -E2BIG;
1150                 if (n < reg_list.n)
1151                         break;
1152                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1153                 break;
1154         }
1155         case KVM_SET_DEVICE_ATTR: {
1156                 r = -EFAULT;
1157                 if (copy_from_user(&attr, argp, sizeof(attr)))
1158                         break;
1159                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1160                 break;
1161         }
1162         case KVM_GET_DEVICE_ATTR: {
1163                 r = -EFAULT;
1164                 if (copy_from_user(&attr, argp, sizeof(attr)))
1165                         break;
1166                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1167                 break;
1168         }
1169         case KVM_HAS_DEVICE_ATTR: {
1170                 r = -EFAULT;
1171                 if (copy_from_user(&attr, argp, sizeof(attr)))
1172                         break;
1173                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1174                 break;
1175         }
1176         case KVM_GET_VCPU_EVENTS: {
1177                 struct kvm_vcpu_events events;
1178
1179                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1180                         return -EINVAL;
1181
1182                 if (copy_to_user(argp, &events, sizeof(events)))
1183                         return -EFAULT;
1184
1185                 return 0;
1186         }
1187         case KVM_SET_VCPU_EVENTS: {
1188                 struct kvm_vcpu_events events;
1189
1190                 if (copy_from_user(&events, argp, sizeof(events)))
1191                         return -EFAULT;
1192
1193                 return kvm_arm_vcpu_set_events(vcpu, &events);
1194         }
1195         case KVM_ARM_VCPU_FINALIZE: {
1196                 int what;
1197
1198                 if (!kvm_vcpu_initialized(vcpu))
1199                         return -ENOEXEC;
1200
1201                 if (get_user(what, (const int __user *)argp))
1202                         return -EFAULT;
1203
1204                 return kvm_arm_vcpu_finalize(vcpu, what);
1205         }
1206         default:
1207                 r = -EINVAL;
1208         }
1209
1210         return r;
1211 }
1212
1213 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1214 {
1215
1216 }
1217
1218 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1219                                         struct kvm_memory_slot *memslot)
1220 {
1221         kvm_flush_remote_tlbs(kvm);
1222 }
1223
1224 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1225                                         struct kvm_arm_device_addr *dev_addr)
1226 {
1227         unsigned long dev_id, type;
1228
1229         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1230                 KVM_ARM_DEVICE_ID_SHIFT;
1231         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1232                 KVM_ARM_DEVICE_TYPE_SHIFT;
1233
1234         switch (dev_id) {
1235         case KVM_ARM_DEVICE_VGIC_V2:
1236                 if (!vgic_present)
1237                         return -ENXIO;
1238                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1239         default:
1240                 return -ENODEV;
1241         }
1242 }
1243
1244 long kvm_arch_vm_ioctl(struct file *filp,
1245                        unsigned int ioctl, unsigned long arg)
1246 {
1247         struct kvm *kvm = filp->private_data;
1248         void __user *argp = (void __user *)arg;
1249
1250         switch (ioctl) {
1251         case KVM_CREATE_IRQCHIP: {
1252                 int ret;
1253                 if (!vgic_present)
1254                         return -ENXIO;
1255                 mutex_lock(&kvm->lock);
1256                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1257                 mutex_unlock(&kvm->lock);
1258                 return ret;
1259         }
1260         case KVM_ARM_SET_DEVICE_ADDR: {
1261                 struct kvm_arm_device_addr dev_addr;
1262
1263                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1264                         return -EFAULT;
1265                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1266         }
1267         case KVM_ARM_PREFERRED_TARGET: {
1268                 int err;
1269                 struct kvm_vcpu_init init;
1270
1271                 err = kvm_vcpu_preferred_target(&init);
1272                 if (err)
1273                         return err;
1274
1275                 if (copy_to_user(argp, &init, sizeof(init)))
1276                         return -EFAULT;
1277
1278                 return 0;
1279         }
1280         default:
1281                 return -EINVAL;
1282         }
1283 }
1284
1285 static unsigned long nvhe_percpu_size(void)
1286 {
1287         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1288                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1289 }
1290
1291 static unsigned long nvhe_percpu_order(void)
1292 {
1293         unsigned long size = nvhe_percpu_size();
1294
1295         return size ? get_order(size) : 0;
1296 }
1297
1298 static int kvm_map_vectors(void)
1299 {
1300         /*
1301          * SV2  = ARM64_SPECTRE_V2
1302          * HEL2 = ARM64_HARDEN_EL2_VECTORS
1303          *
1304          * !SV2 + !HEL2 -> use direct vectors
1305          *  SV2 + !HEL2 -> use hardened vectors in place
1306          * !SV2 +  HEL2 -> allocate one vector slot and use exec mapping
1307          *  SV2 +  HEL2 -> use hardened vectors and use exec mapping
1308          */
1309         if (cpus_have_const_cap(ARM64_SPECTRE_V2)) {
1310                 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs);
1311                 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
1312         }
1313
1314         if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
1315                 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs);
1316                 unsigned long size = __BP_HARDEN_HYP_VECS_SZ;
1317
1318                 /*
1319                  * Always allocate a spare vector slot, as we don't
1320                  * know yet which CPUs have a BP hardening slot that
1321                  * we can reuse.
1322                  */
1323                 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
1324                 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
1325                 return create_hyp_exec_mappings(vect_pa, size,
1326                                                 &__kvm_bp_vect_base);
1327         }
1328
1329         return 0;
1330 }
1331
1332 static void cpu_init_hyp_mode(void)
1333 {
1334         phys_addr_t pgd_ptr;
1335         unsigned long hyp_stack_ptr;
1336         unsigned long vector_ptr;
1337         unsigned long tpidr_el2;
1338         struct arm_smccc_res res;
1339
1340         /* Switch from the HYP stub to our own HYP init vector */
1341         __hyp_set_vectors(kvm_get_idmap_vector());
1342
1343         /*
1344          * Calculate the raw per-cpu offset without a translation from the
1345          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1346          * so that we can use adr_l to access per-cpu variables in EL2.
1347          */
1348         tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) -
1349                     (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1350
1351         pgd_ptr = kvm_mmu_get_httbr();
1352         hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1353         hyp_stack_ptr = kern_hyp_va(hyp_stack_ptr);
1354         vector_ptr = (unsigned long)kern_hyp_va(kvm_ksym_ref(__kvm_hyp_host_vector));
1355
1356         /*
1357          * Call initialization code, and switch to the full blown HYP code.
1358          * If the cpucaps haven't been finalized yet, something has gone very
1359          * wrong, and hyp will crash and burn when it uses any
1360          * cpus_have_const_cap() wrapper.
1361          */
1362         BUG_ON(!system_capabilities_finalized());
1363         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init),
1364                           pgd_ptr, tpidr_el2, hyp_stack_ptr, vector_ptr, &res);
1365         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1366
1367         /*
1368          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1369          * at EL2.
1370          */
1371         if (this_cpu_has_cap(ARM64_SSBS) &&
1372             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1373                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1374         }
1375 }
1376
1377 static void cpu_hyp_reset(void)
1378 {
1379         if (!is_kernel_in_hyp_mode())
1380                 __hyp_reset_vectors();
1381 }
1382
1383 static void cpu_hyp_reinit(void)
1384 {
1385         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1386
1387         cpu_hyp_reset();
1388
1389         *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)kvm_get_hyp_vector();
1390
1391         if (is_kernel_in_hyp_mode())
1392                 kvm_timer_init_vhe();
1393         else
1394                 cpu_init_hyp_mode();
1395
1396         kvm_arm_init_debug();
1397
1398         if (vgic_present)
1399                 kvm_vgic_init_cpu_hardware();
1400 }
1401
1402 static void _kvm_arch_hardware_enable(void *discard)
1403 {
1404         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1405                 cpu_hyp_reinit();
1406                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1407         }
1408 }
1409
1410 int kvm_arch_hardware_enable(void)
1411 {
1412         _kvm_arch_hardware_enable(NULL);
1413         return 0;
1414 }
1415
1416 static void _kvm_arch_hardware_disable(void *discard)
1417 {
1418         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1419                 cpu_hyp_reset();
1420                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1421         }
1422 }
1423
1424 void kvm_arch_hardware_disable(void)
1425 {
1426         _kvm_arch_hardware_disable(NULL);
1427 }
1428
1429 #ifdef CONFIG_CPU_PM
1430 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1431                                     unsigned long cmd,
1432                                     void *v)
1433 {
1434         /*
1435          * kvm_arm_hardware_enabled is left with its old value over
1436          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1437          * re-enable hyp.
1438          */
1439         switch (cmd) {
1440         case CPU_PM_ENTER:
1441                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1442                         /*
1443                          * don't update kvm_arm_hardware_enabled here
1444                          * so that the hardware will be re-enabled
1445                          * when we resume. See below.
1446                          */
1447                         cpu_hyp_reset();
1448
1449                 return NOTIFY_OK;
1450         case CPU_PM_ENTER_FAILED:
1451         case CPU_PM_EXIT:
1452                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1453                         /* The hardware was enabled before suspend. */
1454                         cpu_hyp_reinit();
1455
1456                 return NOTIFY_OK;
1457
1458         default:
1459                 return NOTIFY_DONE;
1460         }
1461 }
1462
1463 static struct notifier_block hyp_init_cpu_pm_nb = {
1464         .notifier_call = hyp_init_cpu_pm_notifier,
1465 };
1466
1467 static void __init hyp_cpu_pm_init(void)
1468 {
1469         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1470 }
1471 static void __init hyp_cpu_pm_exit(void)
1472 {
1473         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1474 }
1475 #else
1476 static inline void hyp_cpu_pm_init(void)
1477 {
1478 }
1479 static inline void hyp_cpu_pm_exit(void)
1480 {
1481 }
1482 #endif
1483
1484 static int init_common_resources(void)
1485 {
1486         return kvm_set_ipa_limit();
1487 }
1488
1489 static int init_subsystems(void)
1490 {
1491         int err = 0;
1492
1493         /*
1494          * Enable hardware so that subsystem initialisation can access EL2.
1495          */
1496         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1497
1498         /*
1499          * Register CPU lower-power notifier
1500          */
1501         hyp_cpu_pm_init();
1502
1503         /*
1504          * Init HYP view of VGIC
1505          */
1506         err = kvm_vgic_hyp_init();
1507         switch (err) {
1508         case 0:
1509                 vgic_present = true;
1510                 break;
1511         case -ENODEV:
1512         case -ENXIO:
1513                 vgic_present = false;
1514                 err = 0;
1515                 break;
1516         default:
1517                 goto out;
1518         }
1519
1520         /*
1521          * Init HYP architected timer support
1522          */
1523         err = kvm_timer_hyp_init(vgic_present);
1524         if (err)
1525                 goto out;
1526
1527         kvm_perf_init();
1528         kvm_coproc_table_init();
1529
1530 out:
1531         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1532
1533         return err;
1534 }
1535
1536 static void teardown_hyp_mode(void)
1537 {
1538         int cpu;
1539
1540         free_hyp_pgds();
1541         for_each_possible_cpu(cpu) {
1542                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1543                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1544         }
1545 }
1546
1547 /**
1548  * Inits Hyp-mode on all online CPUs
1549  */
1550 static int init_hyp_mode(void)
1551 {
1552         int cpu;
1553         int err = 0;
1554
1555         /*
1556          * Allocate Hyp PGD and setup Hyp identity mapping
1557          */
1558         err = kvm_mmu_init();
1559         if (err)
1560                 goto out_err;
1561
1562         /*
1563          * Allocate stack pages for Hypervisor-mode
1564          */
1565         for_each_possible_cpu(cpu) {
1566                 unsigned long stack_page;
1567
1568                 stack_page = __get_free_page(GFP_KERNEL);
1569                 if (!stack_page) {
1570                         err = -ENOMEM;
1571                         goto out_err;
1572                 }
1573
1574                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1575         }
1576
1577         /*
1578          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1579          */
1580         for_each_possible_cpu(cpu) {
1581                 struct page *page;
1582                 void *page_addr;
1583
1584                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1585                 if (!page) {
1586                         err = -ENOMEM;
1587                         goto out_err;
1588                 }
1589
1590                 page_addr = page_address(page);
1591                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1592                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1593         }
1594
1595         /*
1596          * Map the Hyp-code called directly from the host
1597          */
1598         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1599                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1600         if (err) {
1601                 kvm_err("Cannot map world-switch code\n");
1602                 goto out_err;
1603         }
1604
1605         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1606                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1607         if (err) {
1608                 kvm_err("Cannot map rodata section\n");
1609                 goto out_err;
1610         }
1611
1612         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1613                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1614         if (err) {
1615                 kvm_err("Cannot map bss section\n");
1616                 goto out_err;
1617         }
1618
1619         err = kvm_map_vectors();
1620         if (err) {
1621                 kvm_err("Cannot map vectors\n");
1622                 goto out_err;
1623         }
1624
1625         /*
1626          * Map the Hyp stack pages
1627          */
1628         for_each_possible_cpu(cpu) {
1629                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1630                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1631                                           PAGE_HYP);
1632
1633                 if (err) {
1634                         kvm_err("Cannot map hyp stack\n");
1635                         goto out_err;
1636                 }
1637         }
1638
1639         /*
1640          * Map Hyp percpu pages
1641          */
1642         for_each_possible_cpu(cpu) {
1643                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1644                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1645
1646                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1647
1648                 if (err) {
1649                         kvm_err("Cannot map hyp percpu region\n");
1650                         goto out_err;
1651                 }
1652         }
1653
1654         return 0;
1655
1656 out_err:
1657         teardown_hyp_mode();
1658         kvm_err("error initializing Hyp mode: %d\n", err);
1659         return err;
1660 }
1661
1662 static void check_kvm_target_cpu(void *ret)
1663 {
1664         *(int *)ret = kvm_target_cpu();
1665 }
1666
1667 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1668 {
1669         struct kvm_vcpu *vcpu;
1670         int i;
1671
1672         mpidr &= MPIDR_HWID_BITMASK;
1673         kvm_for_each_vcpu(i, vcpu, kvm) {
1674                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1675                         return vcpu;
1676         }
1677         return NULL;
1678 }
1679
1680 bool kvm_arch_has_irq_bypass(void)
1681 {
1682         return true;
1683 }
1684
1685 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1686                                       struct irq_bypass_producer *prod)
1687 {
1688         struct kvm_kernel_irqfd *irqfd =
1689                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1690
1691         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1692                                           &irqfd->irq_entry);
1693 }
1694 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1695                                       struct irq_bypass_producer *prod)
1696 {
1697         struct kvm_kernel_irqfd *irqfd =
1698                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1699
1700         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1701                                      &irqfd->irq_entry);
1702 }
1703
1704 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1705 {
1706         struct kvm_kernel_irqfd *irqfd =
1707                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1708
1709         kvm_arm_halt_guest(irqfd->kvm);
1710 }
1711
1712 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1713 {
1714         struct kvm_kernel_irqfd *irqfd =
1715                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1716
1717         kvm_arm_resume_guest(irqfd->kvm);
1718 }
1719
1720 /**
1721  * Initialize Hyp-mode and memory mappings on all CPUs.
1722  */
1723 int kvm_arch_init(void *opaque)
1724 {
1725         int err;
1726         int ret, cpu;
1727         bool in_hyp_mode;
1728
1729         if (!is_hyp_mode_available()) {
1730                 kvm_info("HYP mode not available\n");
1731                 return -ENODEV;
1732         }
1733
1734         in_hyp_mode = is_kernel_in_hyp_mode();
1735
1736         if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1737                 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1738                 return -ENODEV;
1739         }
1740
1741         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE))
1742                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1743                          "Only trusted guests should be used on this system.\n");
1744
1745         for_each_online_cpu(cpu) {
1746                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1747                 if (ret < 0) {
1748                         kvm_err("Error, CPU %d not supported!\n", cpu);
1749                         return -ENODEV;
1750                 }
1751         }
1752
1753         err = init_common_resources();
1754         if (err)
1755                 return err;
1756
1757         err = kvm_arm_init_sve();
1758         if (err)
1759                 return err;
1760
1761         if (!in_hyp_mode) {
1762                 err = init_hyp_mode();
1763                 if (err)
1764                         goto out_err;
1765         }
1766
1767         err = init_subsystems();
1768         if (err)
1769                 goto out_hyp;
1770
1771         if (in_hyp_mode)
1772                 kvm_info("VHE mode initialized successfully\n");
1773         else
1774                 kvm_info("Hyp mode initialized successfully\n");
1775
1776         return 0;
1777
1778 out_hyp:
1779         hyp_cpu_pm_exit();
1780         if (!in_hyp_mode)
1781                 teardown_hyp_mode();
1782 out_err:
1783         return err;
1784 }
1785
1786 /* NOP: Compiling as a module not supported */
1787 void kvm_arch_exit(void)
1788 {
1789         kvm_perf_teardown();
1790 }
1791
1792 static int arm_init(void)
1793 {
1794         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1795         return rc;
1796 }
1797
1798 module_init(arm_init);