KVM: arm64: Remove kvm_mmu_free_memory_caches()
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23
24 #define CREATE_TRACE_POINTS
25 #include "trace_arm.h"
26
27 #include <linux/uaccess.h>
28 #include <asm/ptrace.h>
29 #include <asm/mman.h>
30 #include <asm/tlbflush.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpufeature.h>
33 #include <asm/virt.h>
34 #include <asm/kvm_arm.h>
35 #include <asm/kvm_asm.h>
36 #include <asm/kvm_mmu.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_coproc.h>
39 #include <asm/sections.h>
40
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension        virt");
47 #endif
48
49 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
51
52 /* The VMID used in the VTTBR */
53 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54 static u32 kvm_next_vmid;
55 static DEFINE_SPINLOCK(kvm_vmid_lock);
56
57 static bool vgic_present;
58
59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61
62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
63 {
64         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
65 }
66
67 int kvm_arch_hardware_setup(void *opaque)
68 {
69         return 0;
70 }
71
72 int kvm_arch_check_processor_compat(void *opaque)
73 {
74         return 0;
75 }
76
77 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
78                             struct kvm_enable_cap *cap)
79 {
80         int r;
81
82         if (cap->flags)
83                 return -EINVAL;
84
85         switch (cap->cap) {
86         case KVM_CAP_ARM_NISV_TO_USER:
87                 r = 0;
88                 kvm->arch.return_nisv_io_abort_to_user = true;
89                 break;
90         default:
91                 r = -EINVAL;
92                 break;
93         }
94
95         return r;
96 }
97
98 static int kvm_arm_default_max_vcpus(void)
99 {
100         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
101 }
102
103 /**
104  * kvm_arch_init_vm - initializes a VM data structure
105  * @kvm:        pointer to the KVM struct
106  */
107 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
108 {
109         int ret;
110
111         ret = kvm_arm_setup_stage2(kvm, type);
112         if (ret)
113                 return ret;
114
115         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
116         if (ret)
117                 return ret;
118
119         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
120         if (ret)
121                 goto out_free_stage2_pgd;
122
123         kvm_vgic_early_init(kvm);
124
125         /* The maximum number of VCPUs is limited by the host's GIC model */
126         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
127
128         return ret;
129 out_free_stage2_pgd:
130         kvm_free_stage2_pgd(&kvm->arch.mmu);
131         return ret;
132 }
133
134 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
135 {
136         return VM_FAULT_SIGBUS;
137 }
138
139
140 /**
141  * kvm_arch_destroy_vm - destroy the VM data structure
142  * @kvm:        pointer to the KVM struct
143  */
144 void kvm_arch_destroy_vm(struct kvm *kvm)
145 {
146         int i;
147
148         kvm_vgic_destroy(kvm);
149
150         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
151                 if (kvm->vcpus[i]) {
152                         kvm_vcpu_destroy(kvm->vcpus[i]);
153                         kvm->vcpus[i] = NULL;
154                 }
155         }
156         atomic_set(&kvm->online_vcpus, 0);
157 }
158
159 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
160 {
161         int r;
162         switch (ext) {
163         case KVM_CAP_IRQCHIP:
164                 r = vgic_present;
165                 break;
166         case KVM_CAP_IOEVENTFD:
167         case KVM_CAP_DEVICE_CTRL:
168         case KVM_CAP_USER_MEMORY:
169         case KVM_CAP_SYNC_MMU:
170         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
171         case KVM_CAP_ONE_REG:
172         case KVM_CAP_ARM_PSCI:
173         case KVM_CAP_ARM_PSCI_0_2:
174         case KVM_CAP_READONLY_MEM:
175         case KVM_CAP_MP_STATE:
176         case KVM_CAP_IMMEDIATE_EXIT:
177         case KVM_CAP_VCPU_EVENTS:
178         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
179         case KVM_CAP_ARM_NISV_TO_USER:
180         case KVM_CAP_ARM_INJECT_EXT_DABT:
181                 r = 1;
182                 break;
183         case KVM_CAP_ARM_SET_DEVICE_ADDR:
184                 r = 1;
185                 break;
186         case KVM_CAP_NR_VCPUS:
187                 r = num_online_cpus();
188                 break;
189         case KVM_CAP_MAX_VCPUS:
190         case KVM_CAP_MAX_VCPU_ID:
191                 if (kvm)
192                         r = kvm->arch.max_vcpus;
193                 else
194                         r = kvm_arm_default_max_vcpus();
195                 break;
196         case KVM_CAP_MSI_DEVID:
197                 if (!kvm)
198                         r = -EINVAL;
199                 else
200                         r = kvm->arch.vgic.msis_require_devid;
201                 break;
202         case KVM_CAP_ARM_USER_IRQ:
203                 /*
204                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
205                  * (bump this number if adding more devices)
206                  */
207                 r = 1;
208                 break;
209         default:
210                 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
211                 break;
212         }
213         return r;
214 }
215
216 long kvm_arch_dev_ioctl(struct file *filp,
217                         unsigned int ioctl, unsigned long arg)
218 {
219         return -EINVAL;
220 }
221
222 struct kvm *kvm_arch_alloc_vm(void)
223 {
224         if (!has_vhe())
225                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
226
227         return vzalloc(sizeof(struct kvm));
228 }
229
230 void kvm_arch_free_vm(struct kvm *kvm)
231 {
232         if (!has_vhe())
233                 kfree(kvm);
234         else
235                 vfree(kvm);
236 }
237
238 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
239 {
240         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
241                 return -EBUSY;
242
243         if (id >= kvm->arch.max_vcpus)
244                 return -EINVAL;
245
246         return 0;
247 }
248
249 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
250 {
251         int err;
252
253         /* Force users to call KVM_ARM_VCPU_INIT */
254         vcpu->arch.target = -1;
255         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
256
257         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
258
259         /* Set up the timer */
260         kvm_timer_vcpu_init(vcpu);
261
262         kvm_pmu_vcpu_init(vcpu);
263
264         kvm_arm_reset_debug_ptr(vcpu);
265
266         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
267
268         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
269
270         err = kvm_vgic_vcpu_init(vcpu);
271         if (err)
272                 return err;
273
274         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
275 }
276
277 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
278 {
279 }
280
281 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
282 {
283         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
284                 static_branch_dec(&userspace_irqchip_in_use);
285
286         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
287         kvm_timer_vcpu_terminate(vcpu);
288         kvm_pmu_vcpu_destroy(vcpu);
289
290         kvm_arm_vcpu_destroy(vcpu);
291 }
292
293 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
294 {
295         return kvm_timer_is_pending(vcpu);
296 }
297
298 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
299 {
300         /*
301          * If we're about to block (most likely because we've just hit a
302          * WFI), we need to sync back the state of the GIC CPU interface
303          * so that we have the latest PMR and group enables. This ensures
304          * that kvm_arch_vcpu_runnable has up-to-date data to decide
305          * whether we have pending interrupts.
306          *
307          * For the same reason, we want to tell GICv4 that we need
308          * doorbells to be signalled, should an interrupt become pending.
309          */
310         preempt_disable();
311         kvm_vgic_vmcr_sync(vcpu);
312         vgic_v4_put(vcpu, true);
313         preempt_enable();
314 }
315
316 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
317 {
318         preempt_disable();
319         vgic_v4_load(vcpu);
320         preempt_enable();
321 }
322
323 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
324 {
325         struct kvm_s2_mmu *mmu;
326         int *last_ran;
327
328         mmu = vcpu->arch.hw_mmu;
329         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
330
331         /*
332          * We might get preempted before the vCPU actually runs, but
333          * over-invalidation doesn't affect correctness.
334          */
335         if (*last_ran != vcpu->vcpu_id) {
336                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
337                 *last_ran = vcpu->vcpu_id;
338         }
339
340         vcpu->cpu = cpu;
341
342         kvm_vgic_load(vcpu);
343         kvm_timer_vcpu_load(vcpu);
344         if (has_vhe())
345                 kvm_vcpu_load_sysregs_vhe(vcpu);
346         kvm_arch_vcpu_load_fp(vcpu);
347         kvm_vcpu_pmu_restore_guest(vcpu);
348         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
349                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
350
351         if (single_task_running())
352                 vcpu_clear_wfx_traps(vcpu);
353         else
354                 vcpu_set_wfx_traps(vcpu);
355
356         if (vcpu_has_ptrauth(vcpu))
357                 vcpu_ptrauth_disable(vcpu);
358 }
359
360 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
361 {
362         kvm_arch_vcpu_put_fp(vcpu);
363         if (has_vhe())
364                 kvm_vcpu_put_sysregs_vhe(vcpu);
365         kvm_timer_vcpu_put(vcpu);
366         kvm_vgic_put(vcpu);
367         kvm_vcpu_pmu_restore_host(vcpu);
368
369         vcpu->cpu = -1;
370 }
371
372 static void vcpu_power_off(struct kvm_vcpu *vcpu)
373 {
374         vcpu->arch.power_off = true;
375         kvm_make_request(KVM_REQ_SLEEP, vcpu);
376         kvm_vcpu_kick(vcpu);
377 }
378
379 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
380                                     struct kvm_mp_state *mp_state)
381 {
382         if (vcpu->arch.power_off)
383                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
384         else
385                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
386
387         return 0;
388 }
389
390 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
391                                     struct kvm_mp_state *mp_state)
392 {
393         int ret = 0;
394
395         switch (mp_state->mp_state) {
396         case KVM_MP_STATE_RUNNABLE:
397                 vcpu->arch.power_off = false;
398                 break;
399         case KVM_MP_STATE_STOPPED:
400                 vcpu_power_off(vcpu);
401                 break;
402         default:
403                 ret = -EINVAL;
404         }
405
406         return ret;
407 }
408
409 /**
410  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
411  * @v:          The VCPU pointer
412  *
413  * If the guest CPU is not waiting for interrupts or an interrupt line is
414  * asserted, the CPU is by definition runnable.
415  */
416 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
417 {
418         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
419         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
420                 && !v->arch.power_off && !v->arch.pause);
421 }
422
423 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
424 {
425         return vcpu_mode_priv(vcpu);
426 }
427
428 /* Just ensure a guest exit from a particular CPU */
429 static void exit_vm_noop(void *info)
430 {
431 }
432
433 void force_vm_exit(const cpumask_t *mask)
434 {
435         preempt_disable();
436         smp_call_function_many(mask, exit_vm_noop, NULL, true);
437         preempt_enable();
438 }
439
440 /**
441  * need_new_vmid_gen - check that the VMID is still valid
442  * @vmid: The VMID to check
443  *
444  * return true if there is a new generation of VMIDs being used
445  *
446  * The hardware supports a limited set of values with the value zero reserved
447  * for the host, so we check if an assigned value belongs to a previous
448  * generation, which requires us to assign a new value. If we're the first to
449  * use a VMID for the new generation, we must flush necessary caches and TLBs
450  * on all CPUs.
451  */
452 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
453 {
454         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
455         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
456         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
457 }
458
459 /**
460  * update_vmid - Update the vmid with a valid VMID for the current generation
461  * @vmid: The stage-2 VMID information struct
462  */
463 static void update_vmid(struct kvm_vmid *vmid)
464 {
465         if (!need_new_vmid_gen(vmid))
466                 return;
467
468         spin_lock(&kvm_vmid_lock);
469
470         /*
471          * We need to re-check the vmid_gen here to ensure that if another vcpu
472          * already allocated a valid vmid for this vm, then this vcpu should
473          * use the same vmid.
474          */
475         if (!need_new_vmid_gen(vmid)) {
476                 spin_unlock(&kvm_vmid_lock);
477                 return;
478         }
479
480         /* First user of a new VMID generation? */
481         if (unlikely(kvm_next_vmid == 0)) {
482                 atomic64_inc(&kvm_vmid_gen);
483                 kvm_next_vmid = 1;
484
485                 /*
486                  * On SMP we know no other CPUs can use this CPU's or each
487                  * other's VMID after force_vm_exit returns since the
488                  * kvm_vmid_lock blocks them from reentry to the guest.
489                  */
490                 force_vm_exit(cpu_all_mask);
491                 /*
492                  * Now broadcast TLB + ICACHE invalidation over the inner
493                  * shareable domain to make sure all data structures are
494                  * clean.
495                  */
496                 kvm_call_hyp(__kvm_flush_vm_context);
497         }
498
499         vmid->vmid = kvm_next_vmid;
500         kvm_next_vmid++;
501         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
502
503         smp_wmb();
504         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
505
506         spin_unlock(&kvm_vmid_lock);
507 }
508
509 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
510 {
511         struct kvm *kvm = vcpu->kvm;
512         int ret = 0;
513
514         if (likely(vcpu->arch.has_run_once))
515                 return 0;
516
517         if (!kvm_arm_vcpu_is_finalized(vcpu))
518                 return -EPERM;
519
520         vcpu->arch.has_run_once = true;
521
522         if (likely(irqchip_in_kernel(kvm))) {
523                 /*
524                  * Map the VGIC hardware resources before running a vcpu the
525                  * first time on this VM.
526                  */
527                 if (unlikely(!vgic_ready(kvm))) {
528                         ret = kvm_vgic_map_resources(kvm);
529                         if (ret)
530                                 return ret;
531                 }
532         } else {
533                 /*
534                  * Tell the rest of the code that there are userspace irqchip
535                  * VMs in the wild.
536                  */
537                 static_branch_inc(&userspace_irqchip_in_use);
538         }
539
540         ret = kvm_timer_enable(vcpu);
541         if (ret)
542                 return ret;
543
544         ret = kvm_arm_pmu_v3_enable(vcpu);
545
546         return ret;
547 }
548
549 bool kvm_arch_intc_initialized(struct kvm *kvm)
550 {
551         return vgic_initialized(kvm);
552 }
553
554 void kvm_arm_halt_guest(struct kvm *kvm)
555 {
556         int i;
557         struct kvm_vcpu *vcpu;
558
559         kvm_for_each_vcpu(i, vcpu, kvm)
560                 vcpu->arch.pause = true;
561         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
562 }
563
564 void kvm_arm_resume_guest(struct kvm *kvm)
565 {
566         int i;
567         struct kvm_vcpu *vcpu;
568
569         kvm_for_each_vcpu(i, vcpu, kvm) {
570                 vcpu->arch.pause = false;
571                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
572         }
573 }
574
575 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
576 {
577         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
578
579         rcuwait_wait_event(wait,
580                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
581                            TASK_INTERRUPTIBLE);
582
583         if (vcpu->arch.power_off || vcpu->arch.pause) {
584                 /* Awaken to handle a signal, request we sleep again later. */
585                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
586         }
587
588         /*
589          * Make sure we will observe a potential reset request if we've
590          * observed a change to the power state. Pairs with the smp_wmb() in
591          * kvm_psci_vcpu_on().
592          */
593         smp_rmb();
594 }
595
596 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
597 {
598         return vcpu->arch.target >= 0;
599 }
600
601 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
602 {
603         if (kvm_request_pending(vcpu)) {
604                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
605                         vcpu_req_sleep(vcpu);
606
607                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
608                         kvm_reset_vcpu(vcpu);
609
610                 /*
611                  * Clear IRQ_PENDING requests that were made to guarantee
612                  * that a VCPU sees new virtual interrupts.
613                  */
614                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
615
616                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
617                         kvm_update_stolen_time(vcpu);
618
619                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
620                         /* The distributor enable bits were changed */
621                         preempt_disable();
622                         vgic_v4_put(vcpu, false);
623                         vgic_v4_load(vcpu);
624                         preempt_enable();
625                 }
626         }
627 }
628
629 /**
630  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
631  * @vcpu:       The VCPU pointer
632  *
633  * This function is called through the VCPU_RUN ioctl called from user space. It
634  * will execute VM code in a loop until the time slice for the process is used
635  * or some emulation is needed from user space in which case the function will
636  * return with return value 0 and with the kvm_run structure filled in with the
637  * required data for the requested emulation.
638  */
639 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
640 {
641         struct kvm_run *run = vcpu->run;
642         int ret;
643
644         if (unlikely(!kvm_vcpu_initialized(vcpu)))
645                 return -ENOEXEC;
646
647         ret = kvm_vcpu_first_run_init(vcpu);
648         if (ret)
649                 return ret;
650
651         if (run->exit_reason == KVM_EXIT_MMIO) {
652                 ret = kvm_handle_mmio_return(vcpu);
653                 if (ret)
654                         return ret;
655         }
656
657         if (run->immediate_exit)
658                 return -EINTR;
659
660         vcpu_load(vcpu);
661
662         kvm_sigset_activate(vcpu);
663
664         ret = 1;
665         run->exit_reason = KVM_EXIT_UNKNOWN;
666         while (ret > 0) {
667                 /*
668                  * Check conditions before entering the guest
669                  */
670                 cond_resched();
671
672                 update_vmid(&vcpu->arch.hw_mmu->vmid);
673
674                 check_vcpu_requests(vcpu);
675
676                 /*
677                  * Preparing the interrupts to be injected also
678                  * involves poking the GIC, which must be done in a
679                  * non-preemptible context.
680                  */
681                 preempt_disable();
682
683                 kvm_pmu_flush_hwstate(vcpu);
684
685                 local_irq_disable();
686
687                 kvm_vgic_flush_hwstate(vcpu);
688
689                 /*
690                  * Exit if we have a signal pending so that we can deliver the
691                  * signal to user space.
692                  */
693                 if (signal_pending(current)) {
694                         ret = -EINTR;
695                         run->exit_reason = KVM_EXIT_INTR;
696                 }
697
698                 /*
699                  * If we're using a userspace irqchip, then check if we need
700                  * to tell a userspace irqchip about timer or PMU level
701                  * changes and if so, exit to userspace (the actual level
702                  * state gets updated in kvm_timer_update_run and
703                  * kvm_pmu_update_run below).
704                  */
705                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
706                         if (kvm_timer_should_notify_user(vcpu) ||
707                             kvm_pmu_should_notify_user(vcpu)) {
708                                 ret = -EINTR;
709                                 run->exit_reason = KVM_EXIT_INTR;
710                         }
711                 }
712
713                 /*
714                  * Ensure we set mode to IN_GUEST_MODE after we disable
715                  * interrupts and before the final VCPU requests check.
716                  * See the comment in kvm_vcpu_exiting_guest_mode() and
717                  * Documentation/virt/kvm/vcpu-requests.rst
718                  */
719                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
720
721                 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
722                     kvm_request_pending(vcpu)) {
723                         vcpu->mode = OUTSIDE_GUEST_MODE;
724                         isb(); /* Ensure work in x_flush_hwstate is committed */
725                         kvm_pmu_sync_hwstate(vcpu);
726                         if (static_branch_unlikely(&userspace_irqchip_in_use))
727                                 kvm_timer_sync_user(vcpu);
728                         kvm_vgic_sync_hwstate(vcpu);
729                         local_irq_enable();
730                         preempt_enable();
731                         continue;
732                 }
733
734                 kvm_arm_setup_debug(vcpu);
735
736                 /**************************************************************
737                  * Enter the guest
738                  */
739                 trace_kvm_entry(*vcpu_pc(vcpu));
740                 guest_enter_irqoff();
741
742                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
743
744                 vcpu->mode = OUTSIDE_GUEST_MODE;
745                 vcpu->stat.exits++;
746                 /*
747                  * Back from guest
748                  *************************************************************/
749
750                 kvm_arm_clear_debug(vcpu);
751
752                 /*
753                  * We must sync the PMU state before the vgic state so
754                  * that the vgic can properly sample the updated state of the
755                  * interrupt line.
756                  */
757                 kvm_pmu_sync_hwstate(vcpu);
758
759                 /*
760                  * Sync the vgic state before syncing the timer state because
761                  * the timer code needs to know if the virtual timer
762                  * interrupts are active.
763                  */
764                 kvm_vgic_sync_hwstate(vcpu);
765
766                 /*
767                  * Sync the timer hardware state before enabling interrupts as
768                  * we don't want vtimer interrupts to race with syncing the
769                  * timer virtual interrupt state.
770                  */
771                 if (static_branch_unlikely(&userspace_irqchip_in_use))
772                         kvm_timer_sync_user(vcpu);
773
774                 kvm_arch_vcpu_ctxsync_fp(vcpu);
775
776                 /*
777                  * We may have taken a host interrupt in HYP mode (ie
778                  * while executing the guest). This interrupt is still
779                  * pending, as we haven't serviced it yet!
780                  *
781                  * We're now back in SVC mode, with interrupts
782                  * disabled.  Enabling the interrupts now will have
783                  * the effect of taking the interrupt again, in SVC
784                  * mode this time.
785                  */
786                 local_irq_enable();
787
788                 /*
789                  * We do local_irq_enable() before calling guest_exit() so
790                  * that if a timer interrupt hits while running the guest we
791                  * account that tick as being spent in the guest.  We enable
792                  * preemption after calling guest_exit() so that if we get
793                  * preempted we make sure ticks after that is not counted as
794                  * guest time.
795                  */
796                 guest_exit();
797                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
798
799                 /* Exit types that need handling before we can be preempted */
800                 handle_exit_early(vcpu, ret);
801
802                 preempt_enable();
803
804                 ret = handle_exit(vcpu, ret);
805         }
806
807         /* Tell userspace about in-kernel device output levels */
808         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
809                 kvm_timer_update_run(vcpu);
810                 kvm_pmu_update_run(vcpu);
811         }
812
813         kvm_sigset_deactivate(vcpu);
814
815         vcpu_put(vcpu);
816         return ret;
817 }
818
819 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
820 {
821         int bit_index;
822         bool set;
823         unsigned long *hcr;
824
825         if (number == KVM_ARM_IRQ_CPU_IRQ)
826                 bit_index = __ffs(HCR_VI);
827         else /* KVM_ARM_IRQ_CPU_FIQ */
828                 bit_index = __ffs(HCR_VF);
829
830         hcr = vcpu_hcr(vcpu);
831         if (level)
832                 set = test_and_set_bit(bit_index, hcr);
833         else
834                 set = test_and_clear_bit(bit_index, hcr);
835
836         /*
837          * If we didn't change anything, no need to wake up or kick other CPUs
838          */
839         if (set == level)
840                 return 0;
841
842         /*
843          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
844          * trigger a world-switch round on the running physical CPU to set the
845          * virtual IRQ/FIQ fields in the HCR appropriately.
846          */
847         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
848         kvm_vcpu_kick(vcpu);
849
850         return 0;
851 }
852
853 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
854                           bool line_status)
855 {
856         u32 irq = irq_level->irq;
857         unsigned int irq_type, vcpu_idx, irq_num;
858         int nrcpus = atomic_read(&kvm->online_vcpus);
859         struct kvm_vcpu *vcpu = NULL;
860         bool level = irq_level->level;
861
862         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
863         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
864         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
865         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
866
867         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
868
869         switch (irq_type) {
870         case KVM_ARM_IRQ_TYPE_CPU:
871                 if (irqchip_in_kernel(kvm))
872                         return -ENXIO;
873
874                 if (vcpu_idx >= nrcpus)
875                         return -EINVAL;
876
877                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
878                 if (!vcpu)
879                         return -EINVAL;
880
881                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
882                         return -EINVAL;
883
884                 return vcpu_interrupt_line(vcpu, irq_num, level);
885         case KVM_ARM_IRQ_TYPE_PPI:
886                 if (!irqchip_in_kernel(kvm))
887                         return -ENXIO;
888
889                 if (vcpu_idx >= nrcpus)
890                         return -EINVAL;
891
892                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
893                 if (!vcpu)
894                         return -EINVAL;
895
896                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
897                         return -EINVAL;
898
899                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
900         case KVM_ARM_IRQ_TYPE_SPI:
901                 if (!irqchip_in_kernel(kvm))
902                         return -ENXIO;
903
904                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
905                         return -EINVAL;
906
907                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
908         }
909
910         return -EINVAL;
911 }
912
913 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
914                                const struct kvm_vcpu_init *init)
915 {
916         unsigned int i, ret;
917         int phys_target = kvm_target_cpu();
918
919         if (init->target != phys_target)
920                 return -EINVAL;
921
922         /*
923          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
924          * use the same target.
925          */
926         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
927                 return -EINVAL;
928
929         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
930         for (i = 0; i < sizeof(init->features) * 8; i++) {
931                 bool set = (init->features[i / 32] & (1 << (i % 32)));
932
933                 if (set && i >= KVM_VCPU_MAX_FEATURES)
934                         return -ENOENT;
935
936                 /*
937                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
938                  * use the same feature set.
939                  */
940                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
941                     test_bit(i, vcpu->arch.features) != set)
942                         return -EINVAL;
943
944                 if (set)
945                         set_bit(i, vcpu->arch.features);
946         }
947
948         vcpu->arch.target = phys_target;
949
950         /* Now we know what it is, we can reset it. */
951         ret = kvm_reset_vcpu(vcpu);
952         if (ret) {
953                 vcpu->arch.target = -1;
954                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
955         }
956
957         return ret;
958 }
959
960 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
961                                          struct kvm_vcpu_init *init)
962 {
963         int ret;
964
965         ret = kvm_vcpu_set_target(vcpu, init);
966         if (ret)
967                 return ret;
968
969         /*
970          * Ensure a rebooted VM will fault in RAM pages and detect if the
971          * guest MMU is turned off and flush the caches as needed.
972          *
973          * S2FWB enforces all memory accesses to RAM being cacheable,
974          * ensuring that the data side is always coherent. We still
975          * need to invalidate the I-cache though, as FWB does *not*
976          * imply CTR_EL0.DIC.
977          */
978         if (vcpu->arch.has_run_once) {
979                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
980                         stage2_unmap_vm(vcpu->kvm);
981                 else
982                         __flush_icache_all();
983         }
984
985         vcpu_reset_hcr(vcpu);
986
987         /*
988          * Handle the "start in power-off" case.
989          */
990         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
991                 vcpu_power_off(vcpu);
992         else
993                 vcpu->arch.power_off = false;
994
995         return 0;
996 }
997
998 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
999                                  struct kvm_device_attr *attr)
1000 {
1001         int ret = -ENXIO;
1002
1003         switch (attr->group) {
1004         default:
1005                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1006                 break;
1007         }
1008
1009         return ret;
1010 }
1011
1012 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1013                                  struct kvm_device_attr *attr)
1014 {
1015         int ret = -ENXIO;
1016
1017         switch (attr->group) {
1018         default:
1019                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1020                 break;
1021         }
1022
1023         return ret;
1024 }
1025
1026 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1027                                  struct kvm_device_attr *attr)
1028 {
1029         int ret = -ENXIO;
1030
1031         switch (attr->group) {
1032         default:
1033                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1034                 break;
1035         }
1036
1037         return ret;
1038 }
1039
1040 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1041                                    struct kvm_vcpu_events *events)
1042 {
1043         memset(events, 0, sizeof(*events));
1044
1045         return __kvm_arm_vcpu_get_events(vcpu, events);
1046 }
1047
1048 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1049                                    struct kvm_vcpu_events *events)
1050 {
1051         int i;
1052
1053         /* check whether the reserved field is zero */
1054         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1055                 if (events->reserved[i])
1056                         return -EINVAL;
1057
1058         /* check whether the pad field is zero */
1059         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1060                 if (events->exception.pad[i])
1061                         return -EINVAL;
1062
1063         return __kvm_arm_vcpu_set_events(vcpu, events);
1064 }
1065
1066 long kvm_arch_vcpu_ioctl(struct file *filp,
1067                          unsigned int ioctl, unsigned long arg)
1068 {
1069         struct kvm_vcpu *vcpu = filp->private_data;
1070         void __user *argp = (void __user *)arg;
1071         struct kvm_device_attr attr;
1072         long r;
1073
1074         switch (ioctl) {
1075         case KVM_ARM_VCPU_INIT: {
1076                 struct kvm_vcpu_init init;
1077
1078                 r = -EFAULT;
1079                 if (copy_from_user(&init, argp, sizeof(init)))
1080                         break;
1081
1082                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1083                 break;
1084         }
1085         case KVM_SET_ONE_REG:
1086         case KVM_GET_ONE_REG: {
1087                 struct kvm_one_reg reg;
1088
1089                 r = -ENOEXEC;
1090                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1091                         break;
1092
1093                 r = -EFAULT;
1094                 if (copy_from_user(&reg, argp, sizeof(reg)))
1095                         break;
1096
1097                 if (ioctl == KVM_SET_ONE_REG)
1098                         r = kvm_arm_set_reg(vcpu, &reg);
1099                 else
1100                         r = kvm_arm_get_reg(vcpu, &reg);
1101                 break;
1102         }
1103         case KVM_GET_REG_LIST: {
1104                 struct kvm_reg_list __user *user_list = argp;
1105                 struct kvm_reg_list reg_list;
1106                 unsigned n;
1107
1108                 r = -ENOEXEC;
1109                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1110                         break;
1111
1112                 r = -EPERM;
1113                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1114                         break;
1115
1116                 r = -EFAULT;
1117                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1118                         break;
1119                 n = reg_list.n;
1120                 reg_list.n = kvm_arm_num_regs(vcpu);
1121                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1122                         break;
1123                 r = -E2BIG;
1124                 if (n < reg_list.n)
1125                         break;
1126                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1127                 break;
1128         }
1129         case KVM_SET_DEVICE_ATTR: {
1130                 r = -EFAULT;
1131                 if (copy_from_user(&attr, argp, sizeof(attr)))
1132                         break;
1133                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1134                 break;
1135         }
1136         case KVM_GET_DEVICE_ATTR: {
1137                 r = -EFAULT;
1138                 if (copy_from_user(&attr, argp, sizeof(attr)))
1139                         break;
1140                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1141                 break;
1142         }
1143         case KVM_HAS_DEVICE_ATTR: {
1144                 r = -EFAULT;
1145                 if (copy_from_user(&attr, argp, sizeof(attr)))
1146                         break;
1147                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1148                 break;
1149         }
1150         case KVM_GET_VCPU_EVENTS: {
1151                 struct kvm_vcpu_events events;
1152
1153                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1154                         return -EINVAL;
1155
1156                 if (copy_to_user(argp, &events, sizeof(events)))
1157                         return -EFAULT;
1158
1159                 return 0;
1160         }
1161         case KVM_SET_VCPU_EVENTS: {
1162                 struct kvm_vcpu_events events;
1163
1164                 if (copy_from_user(&events, argp, sizeof(events)))
1165                         return -EFAULT;
1166
1167                 return kvm_arm_vcpu_set_events(vcpu, &events);
1168         }
1169         case KVM_ARM_VCPU_FINALIZE: {
1170                 int what;
1171
1172                 if (!kvm_vcpu_initialized(vcpu))
1173                         return -ENOEXEC;
1174
1175                 if (get_user(what, (const int __user *)argp))
1176                         return -EFAULT;
1177
1178                 return kvm_arm_vcpu_finalize(vcpu, what);
1179         }
1180         default:
1181                 r = -EINVAL;
1182         }
1183
1184         return r;
1185 }
1186
1187 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1188 {
1189
1190 }
1191
1192 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1193                                         struct kvm_memory_slot *memslot)
1194 {
1195         kvm_flush_remote_tlbs(kvm);
1196 }
1197
1198 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1199                                         struct kvm_arm_device_addr *dev_addr)
1200 {
1201         unsigned long dev_id, type;
1202
1203         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1204                 KVM_ARM_DEVICE_ID_SHIFT;
1205         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1206                 KVM_ARM_DEVICE_TYPE_SHIFT;
1207
1208         switch (dev_id) {
1209         case KVM_ARM_DEVICE_VGIC_V2:
1210                 if (!vgic_present)
1211                         return -ENXIO;
1212                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1213         default:
1214                 return -ENODEV;
1215         }
1216 }
1217
1218 long kvm_arch_vm_ioctl(struct file *filp,
1219                        unsigned int ioctl, unsigned long arg)
1220 {
1221         struct kvm *kvm = filp->private_data;
1222         void __user *argp = (void __user *)arg;
1223
1224         switch (ioctl) {
1225         case KVM_CREATE_IRQCHIP: {
1226                 int ret;
1227                 if (!vgic_present)
1228                         return -ENXIO;
1229                 mutex_lock(&kvm->lock);
1230                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1231                 mutex_unlock(&kvm->lock);
1232                 return ret;
1233         }
1234         case KVM_ARM_SET_DEVICE_ADDR: {
1235                 struct kvm_arm_device_addr dev_addr;
1236
1237                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1238                         return -EFAULT;
1239                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1240         }
1241         case KVM_ARM_PREFERRED_TARGET: {
1242                 int err;
1243                 struct kvm_vcpu_init init;
1244
1245                 err = kvm_vcpu_preferred_target(&init);
1246                 if (err)
1247                         return err;
1248
1249                 if (copy_to_user(argp, &init, sizeof(init)))
1250                         return -EFAULT;
1251
1252                 return 0;
1253         }
1254         default:
1255                 return -EINVAL;
1256         }
1257 }
1258
1259 static void cpu_init_hyp_mode(void)
1260 {
1261         phys_addr_t pgd_ptr;
1262         unsigned long hyp_stack_ptr;
1263         unsigned long vector_ptr;
1264         unsigned long tpidr_el2;
1265
1266         /* Switch from the HYP stub to our own HYP init vector */
1267         __hyp_set_vectors(kvm_get_idmap_vector());
1268
1269         /*
1270          * Calculate the raw per-cpu offset without a translation from the
1271          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1272          * so that we can use adr_l to access per-cpu variables in EL2.
1273          */
1274         tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
1275                      (unsigned long)kvm_ksym_ref(&kvm_host_data));
1276
1277         pgd_ptr = kvm_mmu_get_httbr();
1278         hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1279         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1280
1281         /*
1282          * Call initialization code, and switch to the full blown HYP code.
1283          * If the cpucaps haven't been finalized yet, something has gone very
1284          * wrong, and hyp will crash and burn when it uses any
1285          * cpus_have_const_cap() wrapper.
1286          */
1287         BUG_ON(!system_capabilities_finalized());
1288         __kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
1289
1290         /*
1291          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1292          * at EL2.
1293          */
1294         if (this_cpu_has_cap(ARM64_SSBS) &&
1295             arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1296                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1297         }
1298 }
1299
1300 static void cpu_hyp_reset(void)
1301 {
1302         if (!is_kernel_in_hyp_mode())
1303                 __hyp_reset_vectors();
1304 }
1305
1306 static void cpu_hyp_reinit(void)
1307 {
1308         kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1309
1310         cpu_hyp_reset();
1311
1312         if (is_kernel_in_hyp_mode())
1313                 kvm_timer_init_vhe();
1314         else
1315                 cpu_init_hyp_mode();
1316
1317         kvm_arm_init_debug();
1318
1319         if (vgic_present)
1320                 kvm_vgic_init_cpu_hardware();
1321 }
1322
1323 static void _kvm_arch_hardware_enable(void *discard)
1324 {
1325         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1326                 cpu_hyp_reinit();
1327                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1328         }
1329 }
1330
1331 int kvm_arch_hardware_enable(void)
1332 {
1333         _kvm_arch_hardware_enable(NULL);
1334         return 0;
1335 }
1336
1337 static void _kvm_arch_hardware_disable(void *discard)
1338 {
1339         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1340                 cpu_hyp_reset();
1341                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1342         }
1343 }
1344
1345 void kvm_arch_hardware_disable(void)
1346 {
1347         _kvm_arch_hardware_disable(NULL);
1348 }
1349
1350 #ifdef CONFIG_CPU_PM
1351 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1352                                     unsigned long cmd,
1353                                     void *v)
1354 {
1355         /*
1356          * kvm_arm_hardware_enabled is left with its old value over
1357          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1358          * re-enable hyp.
1359          */
1360         switch (cmd) {
1361         case CPU_PM_ENTER:
1362                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1363                         /*
1364                          * don't update kvm_arm_hardware_enabled here
1365                          * so that the hardware will be re-enabled
1366                          * when we resume. See below.
1367                          */
1368                         cpu_hyp_reset();
1369
1370                 return NOTIFY_OK;
1371         case CPU_PM_ENTER_FAILED:
1372         case CPU_PM_EXIT:
1373                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1374                         /* The hardware was enabled before suspend. */
1375                         cpu_hyp_reinit();
1376
1377                 return NOTIFY_OK;
1378
1379         default:
1380                 return NOTIFY_DONE;
1381         }
1382 }
1383
1384 static struct notifier_block hyp_init_cpu_pm_nb = {
1385         .notifier_call = hyp_init_cpu_pm_notifier,
1386 };
1387
1388 static void __init hyp_cpu_pm_init(void)
1389 {
1390         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1391 }
1392 static void __init hyp_cpu_pm_exit(void)
1393 {
1394         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1395 }
1396 #else
1397 static inline void hyp_cpu_pm_init(void)
1398 {
1399 }
1400 static inline void hyp_cpu_pm_exit(void)
1401 {
1402 }
1403 #endif
1404
1405 static int init_common_resources(void)
1406 {
1407         return kvm_set_ipa_limit();
1408 }
1409
1410 static int init_subsystems(void)
1411 {
1412         int err = 0;
1413
1414         /*
1415          * Enable hardware so that subsystem initialisation can access EL2.
1416          */
1417         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1418
1419         /*
1420          * Register CPU lower-power notifier
1421          */
1422         hyp_cpu_pm_init();
1423
1424         /*
1425          * Init HYP view of VGIC
1426          */
1427         err = kvm_vgic_hyp_init();
1428         switch (err) {
1429         case 0:
1430                 vgic_present = true;
1431                 break;
1432         case -ENODEV:
1433         case -ENXIO:
1434                 vgic_present = false;
1435                 err = 0;
1436                 break;
1437         default:
1438                 goto out;
1439         }
1440
1441         /*
1442          * Init HYP architected timer support
1443          */
1444         err = kvm_timer_hyp_init(vgic_present);
1445         if (err)
1446                 goto out;
1447
1448         kvm_perf_init();
1449         kvm_coproc_table_init();
1450
1451 out:
1452         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1453
1454         return err;
1455 }
1456
1457 static void teardown_hyp_mode(void)
1458 {
1459         int cpu;
1460
1461         free_hyp_pgds();
1462         for_each_possible_cpu(cpu)
1463                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1464 }
1465
1466 /**
1467  * Inits Hyp-mode on all online CPUs
1468  */
1469 static int init_hyp_mode(void)
1470 {
1471         int cpu;
1472         int err = 0;
1473
1474         /*
1475          * Allocate Hyp PGD and setup Hyp identity mapping
1476          */
1477         err = kvm_mmu_init();
1478         if (err)
1479                 goto out_err;
1480
1481         /*
1482          * Allocate stack pages for Hypervisor-mode
1483          */
1484         for_each_possible_cpu(cpu) {
1485                 unsigned long stack_page;
1486
1487                 stack_page = __get_free_page(GFP_KERNEL);
1488                 if (!stack_page) {
1489                         err = -ENOMEM;
1490                         goto out_err;
1491                 }
1492
1493                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1494         }
1495
1496         /*
1497          * Map the Hyp-code called directly from the host
1498          */
1499         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1500                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1501         if (err) {
1502                 kvm_err("Cannot map world-switch code\n");
1503                 goto out_err;
1504         }
1505
1506         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1507                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1508         if (err) {
1509                 kvm_err("Cannot map rodata section\n");
1510                 goto out_err;
1511         }
1512
1513         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1514                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1515         if (err) {
1516                 kvm_err("Cannot map bss section\n");
1517                 goto out_err;
1518         }
1519
1520         err = kvm_map_vectors();
1521         if (err) {
1522                 kvm_err("Cannot map vectors\n");
1523                 goto out_err;
1524         }
1525
1526         /*
1527          * Map the Hyp stack pages
1528          */
1529         for_each_possible_cpu(cpu) {
1530                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1531                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1532                                           PAGE_HYP);
1533
1534                 if (err) {
1535                         kvm_err("Cannot map hyp stack\n");
1536                         goto out_err;
1537                 }
1538         }
1539
1540         for_each_possible_cpu(cpu) {
1541                 kvm_host_data_t *cpu_data;
1542
1543                 cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1544                 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1545
1546                 if (err) {
1547                         kvm_err("Cannot map host CPU state: %d\n", err);
1548                         goto out_err;
1549                 }
1550         }
1551
1552         err = hyp_map_aux_data();
1553         if (err)
1554                 kvm_err("Cannot map host auxiliary data: %d\n", err);
1555
1556         return 0;
1557
1558 out_err:
1559         teardown_hyp_mode();
1560         kvm_err("error initializing Hyp mode: %d\n", err);
1561         return err;
1562 }
1563
1564 static void check_kvm_target_cpu(void *ret)
1565 {
1566         *(int *)ret = kvm_target_cpu();
1567 }
1568
1569 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1570 {
1571         struct kvm_vcpu *vcpu;
1572         int i;
1573
1574         mpidr &= MPIDR_HWID_BITMASK;
1575         kvm_for_each_vcpu(i, vcpu, kvm) {
1576                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1577                         return vcpu;
1578         }
1579         return NULL;
1580 }
1581
1582 bool kvm_arch_has_irq_bypass(void)
1583 {
1584         return true;
1585 }
1586
1587 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1588                                       struct irq_bypass_producer *prod)
1589 {
1590         struct kvm_kernel_irqfd *irqfd =
1591                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1592
1593         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1594                                           &irqfd->irq_entry);
1595 }
1596 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1597                                       struct irq_bypass_producer *prod)
1598 {
1599         struct kvm_kernel_irqfd *irqfd =
1600                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1601
1602         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1603                                      &irqfd->irq_entry);
1604 }
1605
1606 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1607 {
1608         struct kvm_kernel_irqfd *irqfd =
1609                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1610
1611         kvm_arm_halt_guest(irqfd->kvm);
1612 }
1613
1614 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1615 {
1616         struct kvm_kernel_irqfd *irqfd =
1617                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1618
1619         kvm_arm_resume_guest(irqfd->kvm);
1620 }
1621
1622 /**
1623  * Initialize Hyp-mode and memory mappings on all CPUs.
1624  */
1625 int kvm_arch_init(void *opaque)
1626 {
1627         int err;
1628         int ret, cpu;
1629         bool in_hyp_mode;
1630
1631         if (!is_hyp_mode_available()) {
1632                 kvm_info("HYP mode not available\n");
1633                 return -ENODEV;
1634         }
1635
1636         in_hyp_mode = is_kernel_in_hyp_mode();
1637
1638         if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1639                 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1640                 return -ENODEV;
1641         }
1642
1643         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE))
1644                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1645                          "Only trusted guests should be used on this system.\n");
1646
1647         for_each_online_cpu(cpu) {
1648                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1649                 if (ret < 0) {
1650                         kvm_err("Error, CPU %d not supported!\n", cpu);
1651                         return -ENODEV;
1652                 }
1653         }
1654
1655         err = init_common_resources();
1656         if (err)
1657                 return err;
1658
1659         err = kvm_arm_init_sve();
1660         if (err)
1661                 return err;
1662
1663         if (!in_hyp_mode) {
1664                 err = init_hyp_mode();
1665                 if (err)
1666                         goto out_err;
1667         }
1668
1669         err = init_subsystems();
1670         if (err)
1671                 goto out_hyp;
1672
1673         if (in_hyp_mode)
1674                 kvm_info("VHE mode initialized successfully\n");
1675         else
1676                 kvm_info("Hyp mode initialized successfully\n");
1677
1678         return 0;
1679
1680 out_hyp:
1681         hyp_cpu_pm_exit();
1682         if (!in_hyp_mode)
1683                 teardown_hyp_mode();
1684 out_err:
1685         return err;
1686 }
1687
1688 /* NOP: Compiling as a module not supported */
1689 void kvm_arch_exit(void)
1690 {
1691         kvm_perf_teardown();
1692 }
1693
1694 static int arm_init(void)
1695 {
1696         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1697         return rc;
1698 }
1699
1700 module_init(arm_init);