Merge tag 'linux-watchdog-5.15-rc1' of git://www.linux-watchdog.org/linux-watchdog
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19
20 #include <kvm/arm_vgic.h>
21 #include <kvm/arm_arch_timer.h>
22
23 #include "trace.h"
24
25 static struct timecounter *timecounter;
26 static unsigned int host_vtimer_irq;
27 static unsigned int host_ptimer_irq;
28 static u32 host_vtimer_irq_flags;
29 static u32 host_ptimer_irq_flags;
30
31 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
32
33 static const struct kvm_irq_level default_ptimer_irq = {
34         .irq    = 30,
35         .level  = 1,
36 };
37
38 static const struct kvm_irq_level default_vtimer_irq = {
39         .irq    = 27,
40         .level  = 1,
41 };
42
43 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
44 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
45                                  struct arch_timer_context *timer_ctx);
46 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
47 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
48                                 struct arch_timer_context *timer,
49                                 enum kvm_arch_timer_regs treg,
50                                 u64 val);
51 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
52                               struct arch_timer_context *timer,
53                               enum kvm_arch_timer_regs treg);
54
55 u32 timer_get_ctl(struct arch_timer_context *ctxt)
56 {
57         struct kvm_vcpu *vcpu = ctxt->vcpu;
58
59         switch(arch_timer_ctx_index(ctxt)) {
60         case TIMER_VTIMER:
61                 return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
62         case TIMER_PTIMER:
63                 return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
64         default:
65                 WARN_ON(1);
66                 return 0;
67         }
68 }
69
70 u64 timer_get_cval(struct arch_timer_context *ctxt)
71 {
72         struct kvm_vcpu *vcpu = ctxt->vcpu;
73
74         switch(arch_timer_ctx_index(ctxt)) {
75         case TIMER_VTIMER:
76                 return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
77         case TIMER_PTIMER:
78                 return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
79         default:
80                 WARN_ON(1);
81                 return 0;
82         }
83 }
84
85 static u64 timer_get_offset(struct arch_timer_context *ctxt)
86 {
87         struct kvm_vcpu *vcpu = ctxt->vcpu;
88
89         switch(arch_timer_ctx_index(ctxt)) {
90         case TIMER_VTIMER:
91                 return __vcpu_sys_reg(vcpu, CNTVOFF_EL2);
92         default:
93                 return 0;
94         }
95 }
96
97 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
98 {
99         struct kvm_vcpu *vcpu = ctxt->vcpu;
100
101         switch(arch_timer_ctx_index(ctxt)) {
102         case TIMER_VTIMER:
103                 __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
104                 break;
105         case TIMER_PTIMER:
106                 __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
107                 break;
108         default:
109                 WARN_ON(1);
110         }
111 }
112
113 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
114 {
115         struct kvm_vcpu *vcpu = ctxt->vcpu;
116
117         switch(arch_timer_ctx_index(ctxt)) {
118         case TIMER_VTIMER:
119                 __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
120                 break;
121         case TIMER_PTIMER:
122                 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
123                 break;
124         default:
125                 WARN_ON(1);
126         }
127 }
128
129 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
130 {
131         struct kvm_vcpu *vcpu = ctxt->vcpu;
132
133         switch(arch_timer_ctx_index(ctxt)) {
134         case TIMER_VTIMER:
135                 __vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset;
136                 break;
137         default:
138                 WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
139         }
140 }
141
142 u64 kvm_phys_timer_read(void)
143 {
144         return timecounter->cc->read(timecounter->cc);
145 }
146
147 static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
148 {
149         if (has_vhe()) {
150                 map->direct_vtimer = vcpu_vtimer(vcpu);
151                 map->direct_ptimer = vcpu_ptimer(vcpu);
152                 map->emul_ptimer = NULL;
153         } else {
154                 map->direct_vtimer = vcpu_vtimer(vcpu);
155                 map->direct_ptimer = NULL;
156                 map->emul_ptimer = vcpu_ptimer(vcpu);
157         }
158
159         trace_kvm_get_timer_map(vcpu->vcpu_id, map);
160 }
161
162 static inline bool userspace_irqchip(struct kvm *kvm)
163 {
164         return static_branch_unlikely(&userspace_irqchip_in_use) &&
165                 unlikely(!irqchip_in_kernel(kvm));
166 }
167
168 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
169 {
170         hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
171                       HRTIMER_MODE_ABS_HARD);
172 }
173
174 static void soft_timer_cancel(struct hrtimer *hrt)
175 {
176         hrtimer_cancel(hrt);
177 }
178
179 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
180 {
181         struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
182         struct arch_timer_context *ctx;
183         struct timer_map map;
184
185         /*
186          * We may see a timer interrupt after vcpu_put() has been called which
187          * sets the CPU's vcpu pointer to NULL, because even though the timer
188          * has been disabled in timer_save_state(), the hardware interrupt
189          * signal may not have been retired from the interrupt controller yet.
190          */
191         if (!vcpu)
192                 return IRQ_HANDLED;
193
194         get_timer_map(vcpu, &map);
195
196         if (irq == host_vtimer_irq)
197                 ctx = map.direct_vtimer;
198         else
199                 ctx = map.direct_ptimer;
200
201         if (kvm_timer_should_fire(ctx))
202                 kvm_timer_update_irq(vcpu, true, ctx);
203
204         if (userspace_irqchip(vcpu->kvm) &&
205             !static_branch_unlikely(&has_gic_active_state))
206                 disable_percpu_irq(host_vtimer_irq);
207
208         return IRQ_HANDLED;
209 }
210
211 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
212 {
213         u64 cval, now;
214
215         cval = timer_get_cval(timer_ctx);
216         now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
217
218         if (now < cval) {
219                 u64 ns;
220
221                 ns = cyclecounter_cyc2ns(timecounter->cc,
222                                          cval - now,
223                                          timecounter->mask,
224                                          &timecounter->frac);
225                 return ns;
226         }
227
228         return 0;
229 }
230
231 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
232 {
233         WARN_ON(timer_ctx && timer_ctx->loaded);
234         return timer_ctx &&
235                 ((timer_get_ctl(timer_ctx) &
236                   (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
237 }
238
239 /*
240  * Returns the earliest expiration time in ns among guest timers.
241  * Note that it will return 0 if none of timers can fire.
242  */
243 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
244 {
245         u64 min_delta = ULLONG_MAX;
246         int i;
247
248         for (i = 0; i < NR_KVM_TIMERS; i++) {
249                 struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
250
251                 WARN(ctx->loaded, "timer %d loaded\n", i);
252                 if (kvm_timer_irq_can_fire(ctx))
253                         min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
254         }
255
256         /* If none of timers can fire, then return 0 */
257         if (min_delta == ULLONG_MAX)
258                 return 0;
259
260         return min_delta;
261 }
262
263 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
264 {
265         struct arch_timer_cpu *timer;
266         struct kvm_vcpu *vcpu;
267         u64 ns;
268
269         timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
270         vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
271
272         /*
273          * Check that the timer has really expired from the guest's
274          * PoV (NTP on the host may have forced it to expire
275          * early). If we should have slept longer, restart it.
276          */
277         ns = kvm_timer_earliest_exp(vcpu);
278         if (unlikely(ns)) {
279                 hrtimer_forward_now(hrt, ns_to_ktime(ns));
280                 return HRTIMER_RESTART;
281         }
282
283         kvm_vcpu_wake_up(vcpu);
284         return HRTIMER_NORESTART;
285 }
286
287 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
288 {
289         struct arch_timer_context *ctx;
290         struct kvm_vcpu *vcpu;
291         u64 ns;
292
293         ctx = container_of(hrt, struct arch_timer_context, hrtimer);
294         vcpu = ctx->vcpu;
295
296         trace_kvm_timer_hrtimer_expire(ctx);
297
298         /*
299          * Check that the timer has really expired from the guest's
300          * PoV (NTP on the host may have forced it to expire
301          * early). If not ready, schedule for a later time.
302          */
303         ns = kvm_timer_compute_delta(ctx);
304         if (unlikely(ns)) {
305                 hrtimer_forward_now(hrt, ns_to_ktime(ns));
306                 return HRTIMER_RESTART;
307         }
308
309         kvm_timer_update_irq(vcpu, true, ctx);
310         return HRTIMER_NORESTART;
311 }
312
313 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
314 {
315         enum kvm_arch_timers index;
316         u64 cval, now;
317
318         if (!timer_ctx)
319                 return false;
320
321         index = arch_timer_ctx_index(timer_ctx);
322
323         if (timer_ctx->loaded) {
324                 u32 cnt_ctl = 0;
325
326                 switch (index) {
327                 case TIMER_VTIMER:
328                         cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
329                         break;
330                 case TIMER_PTIMER:
331                         cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
332                         break;
333                 case NR_KVM_TIMERS:
334                         /* GCC is braindead */
335                         cnt_ctl = 0;
336                         break;
337                 }
338
339                 return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
340                         (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
341                        !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
342         }
343
344         if (!kvm_timer_irq_can_fire(timer_ctx))
345                 return false;
346
347         cval = timer_get_cval(timer_ctx);
348         now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
349
350         return cval <= now;
351 }
352
353 bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
354 {
355         struct timer_map map;
356
357         get_timer_map(vcpu, &map);
358
359         return kvm_timer_should_fire(map.direct_vtimer) ||
360                kvm_timer_should_fire(map.direct_ptimer) ||
361                kvm_timer_should_fire(map.emul_ptimer);
362 }
363
364 /*
365  * Reflect the timer output level into the kvm_run structure
366  */
367 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
368 {
369         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
370         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
371         struct kvm_sync_regs *regs = &vcpu->run->s.regs;
372
373         /* Populate the device bitmap with the timer states */
374         regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
375                                     KVM_ARM_DEV_EL1_PTIMER);
376         if (kvm_timer_should_fire(vtimer))
377                 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
378         if (kvm_timer_should_fire(ptimer))
379                 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
380 }
381
382 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
383                                  struct arch_timer_context *timer_ctx)
384 {
385         int ret;
386
387         timer_ctx->irq.level = new_level;
388         trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
389                                    timer_ctx->irq.level);
390
391         if (!userspace_irqchip(vcpu->kvm)) {
392                 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
393                                           timer_ctx->irq.irq,
394                                           timer_ctx->irq.level,
395                                           timer_ctx);
396                 WARN_ON(ret);
397         }
398 }
399
400 /* Only called for a fully emulated timer */
401 static void timer_emulate(struct arch_timer_context *ctx)
402 {
403         bool should_fire = kvm_timer_should_fire(ctx);
404
405         trace_kvm_timer_emulate(ctx, should_fire);
406
407         if (should_fire != ctx->irq.level) {
408                 kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
409                 return;
410         }
411
412         /*
413          * If the timer can fire now, we don't need to have a soft timer
414          * scheduled for the future.  If the timer cannot fire at all,
415          * then we also don't need a soft timer.
416          */
417         if (!kvm_timer_irq_can_fire(ctx)) {
418                 soft_timer_cancel(&ctx->hrtimer);
419                 return;
420         }
421
422         soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
423 }
424
425 static void timer_save_state(struct arch_timer_context *ctx)
426 {
427         struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
428         enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
429         unsigned long flags;
430
431         if (!timer->enabled)
432                 return;
433
434         local_irq_save(flags);
435
436         if (!ctx->loaded)
437                 goto out;
438
439         switch (index) {
440         case TIMER_VTIMER:
441                 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
442                 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
443
444                 /* Disable the timer */
445                 write_sysreg_el0(0, SYS_CNTV_CTL);
446                 isb();
447
448                 break;
449         case TIMER_PTIMER:
450                 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
451                 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL));
452
453                 /* Disable the timer */
454                 write_sysreg_el0(0, SYS_CNTP_CTL);
455                 isb();
456
457                 break;
458         case NR_KVM_TIMERS:
459                 BUG();
460         }
461
462         trace_kvm_timer_save_state(ctx);
463
464         ctx->loaded = false;
465 out:
466         local_irq_restore(flags);
467 }
468
469 /*
470  * Schedule the background timer before calling kvm_vcpu_block, so that this
471  * thread is removed from its waitqueue and made runnable when there's a timer
472  * interrupt to handle.
473  */
474 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
475 {
476         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
477         struct timer_map map;
478
479         get_timer_map(vcpu, &map);
480
481         /*
482          * If no timers are capable of raising interrupts (disabled or
483          * masked), then there's no more work for us to do.
484          */
485         if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
486             !kvm_timer_irq_can_fire(map.direct_ptimer) &&
487             !kvm_timer_irq_can_fire(map.emul_ptimer))
488                 return;
489
490         /*
491          * At least one guest time will expire. Schedule a background timer.
492          * Set the earliest expiration time among the guest timers.
493          */
494         soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
495 }
496
497 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
498 {
499         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
500
501         soft_timer_cancel(&timer->bg_timer);
502 }
503
504 static void timer_restore_state(struct arch_timer_context *ctx)
505 {
506         struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
507         enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
508         unsigned long flags;
509
510         if (!timer->enabled)
511                 return;
512
513         local_irq_save(flags);
514
515         if (ctx->loaded)
516                 goto out;
517
518         switch (index) {
519         case TIMER_VTIMER:
520                 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
521                 isb();
522                 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
523                 break;
524         case TIMER_PTIMER:
525                 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL);
526                 isb();
527                 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
528                 break;
529         case NR_KVM_TIMERS:
530                 BUG();
531         }
532
533         trace_kvm_timer_restore_state(ctx);
534
535         ctx->loaded = true;
536 out:
537         local_irq_restore(flags);
538 }
539
540 static void set_cntvoff(u64 cntvoff)
541 {
542         kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
543 }
544
545 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
546 {
547         int r;
548         r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
549         WARN_ON(r);
550 }
551
552 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
553 {
554         struct kvm_vcpu *vcpu = ctx->vcpu;
555         bool phys_active = false;
556
557         /*
558          * Update the timer output so that it is likely to match the
559          * state we're about to restore. If the timer expires between
560          * this point and the register restoration, we'll take the
561          * interrupt anyway.
562          */
563         kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
564
565         if (irqchip_in_kernel(vcpu->kvm))
566                 phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
567
568         phys_active |= ctx->irq.level;
569
570         set_timer_irq_phys_active(ctx, phys_active);
571 }
572
573 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
574 {
575         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
576
577         /*
578          * Update the timer output so that it is likely to match the
579          * state we're about to restore. If the timer expires between
580          * this point and the register restoration, we'll take the
581          * interrupt anyway.
582          */
583         kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
584
585         /*
586          * When using a userspace irqchip with the architected timers and a
587          * host interrupt controller that doesn't support an active state, we
588          * must still prevent continuously exiting from the guest, and
589          * therefore mask the physical interrupt by disabling it on the host
590          * interrupt controller when the virtual level is high, such that the
591          * guest can make forward progress.  Once we detect the output level
592          * being de-asserted, we unmask the interrupt again so that we exit
593          * from the guest when the timer fires.
594          */
595         if (vtimer->irq.level)
596                 disable_percpu_irq(host_vtimer_irq);
597         else
598                 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
599 }
600
601 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
602 {
603         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
604         struct timer_map map;
605
606         if (unlikely(!timer->enabled))
607                 return;
608
609         get_timer_map(vcpu, &map);
610
611         if (static_branch_likely(&has_gic_active_state)) {
612                 kvm_timer_vcpu_load_gic(map.direct_vtimer);
613                 if (map.direct_ptimer)
614                         kvm_timer_vcpu_load_gic(map.direct_ptimer);
615         } else {
616                 kvm_timer_vcpu_load_nogic(vcpu);
617         }
618
619         set_cntvoff(timer_get_offset(map.direct_vtimer));
620
621         kvm_timer_unblocking(vcpu);
622
623         timer_restore_state(map.direct_vtimer);
624         if (map.direct_ptimer)
625                 timer_restore_state(map.direct_ptimer);
626
627         if (map.emul_ptimer)
628                 timer_emulate(map.emul_ptimer);
629 }
630
631 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
632 {
633         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
634         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
635         struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
636         bool vlevel, plevel;
637
638         if (likely(irqchip_in_kernel(vcpu->kvm)))
639                 return false;
640
641         vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
642         plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
643
644         return kvm_timer_should_fire(vtimer) != vlevel ||
645                kvm_timer_should_fire(ptimer) != plevel;
646 }
647
648 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
649 {
650         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
651         struct timer_map map;
652         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
653
654         if (unlikely(!timer->enabled))
655                 return;
656
657         get_timer_map(vcpu, &map);
658
659         timer_save_state(map.direct_vtimer);
660         if (map.direct_ptimer)
661                 timer_save_state(map.direct_ptimer);
662
663         /*
664          * Cancel soft timer emulation, because the only case where we
665          * need it after a vcpu_put is in the context of a sleeping VCPU, and
666          * in that case we already factor in the deadline for the physical
667          * timer when scheduling the bg_timer.
668          *
669          * In any case, we re-schedule the hrtimer for the physical timer when
670          * coming back to the VCPU thread in kvm_timer_vcpu_load().
671          */
672         if (map.emul_ptimer)
673                 soft_timer_cancel(&map.emul_ptimer->hrtimer);
674
675         if (rcuwait_active(wait))
676                 kvm_timer_blocking(vcpu);
677
678         /*
679          * The kernel may decide to run userspace after calling vcpu_put, so
680          * we reset cntvoff to 0 to ensure a consistent read between user
681          * accesses to the virtual counter and kernel access to the physical
682          * counter of non-VHE case. For VHE, the virtual counter uses a fixed
683          * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
684          */
685         set_cntvoff(0);
686 }
687
688 /*
689  * With a userspace irqchip we have to check if the guest de-asserted the
690  * timer and if so, unmask the timer irq signal on the host interrupt
691  * controller to ensure that we see future timer signals.
692  */
693 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
694 {
695         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
696
697         if (!kvm_timer_should_fire(vtimer)) {
698                 kvm_timer_update_irq(vcpu, false, vtimer);
699                 if (static_branch_likely(&has_gic_active_state))
700                         set_timer_irq_phys_active(vtimer, false);
701                 else
702                         enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
703         }
704 }
705
706 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
707 {
708         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
709
710         if (unlikely(!timer->enabled))
711                 return;
712
713         if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
714                 unmask_vtimer_irq_user(vcpu);
715 }
716
717 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
718 {
719         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
720         struct timer_map map;
721
722         get_timer_map(vcpu, &map);
723
724         /*
725          * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
726          * and to 0 for ARMv7.  We provide an implementation that always
727          * resets the timer to be disabled and unmasked and is compliant with
728          * the ARMv7 architecture.
729          */
730         timer_set_ctl(vcpu_vtimer(vcpu), 0);
731         timer_set_ctl(vcpu_ptimer(vcpu), 0);
732
733         if (timer->enabled) {
734                 kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
735                 kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
736
737                 if (irqchip_in_kernel(vcpu->kvm)) {
738                         kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
739                         if (map.direct_ptimer)
740                                 kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
741                 }
742         }
743
744         if (map.emul_ptimer)
745                 soft_timer_cancel(&map.emul_ptimer->hrtimer);
746
747         return 0;
748 }
749
750 /* Make the updates of cntvoff for all vtimer contexts atomic */
751 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
752 {
753         int i;
754         struct kvm *kvm = vcpu->kvm;
755         struct kvm_vcpu *tmp;
756
757         mutex_lock(&kvm->lock);
758         kvm_for_each_vcpu(i, tmp, kvm)
759                 timer_set_offset(vcpu_vtimer(tmp), cntvoff);
760
761         /*
762          * When called from the vcpu create path, the CPU being created is not
763          * included in the loop above, so we just set it here as well.
764          */
765         timer_set_offset(vcpu_vtimer(vcpu), cntvoff);
766         mutex_unlock(&kvm->lock);
767 }
768
769 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
770 {
771         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
772         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
773         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
774
775         vtimer->vcpu = vcpu;
776         ptimer->vcpu = vcpu;
777
778         /* Synchronize cntvoff across all vtimers of a VM. */
779         update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
780         timer_set_offset(ptimer, 0);
781
782         hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
783         timer->bg_timer.function = kvm_bg_timer_expire;
784
785         hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
786         hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
787         vtimer->hrtimer.function = kvm_hrtimer_expire;
788         ptimer->hrtimer.function = kvm_hrtimer_expire;
789
790         vtimer->irq.irq = default_vtimer_irq.irq;
791         ptimer->irq.irq = default_ptimer_irq.irq;
792
793         vtimer->host_timer_irq = host_vtimer_irq;
794         ptimer->host_timer_irq = host_ptimer_irq;
795
796         vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
797         ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
798 }
799
800 static void kvm_timer_init_interrupt(void *info)
801 {
802         enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
803         enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
804 }
805
806 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
807 {
808         struct arch_timer_context *timer;
809
810         switch (regid) {
811         case KVM_REG_ARM_TIMER_CTL:
812                 timer = vcpu_vtimer(vcpu);
813                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
814                 break;
815         case KVM_REG_ARM_TIMER_CNT:
816                 timer = vcpu_vtimer(vcpu);
817                 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
818                 break;
819         case KVM_REG_ARM_TIMER_CVAL:
820                 timer = vcpu_vtimer(vcpu);
821                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
822                 break;
823         case KVM_REG_ARM_PTIMER_CTL:
824                 timer = vcpu_ptimer(vcpu);
825                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
826                 break;
827         case KVM_REG_ARM_PTIMER_CVAL:
828                 timer = vcpu_ptimer(vcpu);
829                 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
830                 break;
831
832         default:
833                 return -1;
834         }
835
836         return 0;
837 }
838
839 static u64 read_timer_ctl(struct arch_timer_context *timer)
840 {
841         /*
842          * Set ISTATUS bit if it's expired.
843          * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
844          * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
845          * regardless of ENABLE bit for our implementation convenience.
846          */
847         u32 ctl = timer_get_ctl(timer);
848
849         if (!kvm_timer_compute_delta(timer))
850                 ctl |= ARCH_TIMER_CTRL_IT_STAT;
851
852         return ctl;
853 }
854
855 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
856 {
857         switch (regid) {
858         case KVM_REG_ARM_TIMER_CTL:
859                 return kvm_arm_timer_read(vcpu,
860                                           vcpu_vtimer(vcpu), TIMER_REG_CTL);
861         case KVM_REG_ARM_TIMER_CNT:
862                 return kvm_arm_timer_read(vcpu,
863                                           vcpu_vtimer(vcpu), TIMER_REG_CNT);
864         case KVM_REG_ARM_TIMER_CVAL:
865                 return kvm_arm_timer_read(vcpu,
866                                           vcpu_vtimer(vcpu), TIMER_REG_CVAL);
867         case KVM_REG_ARM_PTIMER_CTL:
868                 return kvm_arm_timer_read(vcpu,
869                                           vcpu_ptimer(vcpu), TIMER_REG_CTL);
870         case KVM_REG_ARM_PTIMER_CNT:
871                 return kvm_arm_timer_read(vcpu,
872                                           vcpu_ptimer(vcpu), TIMER_REG_CNT);
873         case KVM_REG_ARM_PTIMER_CVAL:
874                 return kvm_arm_timer_read(vcpu,
875                                           vcpu_ptimer(vcpu), TIMER_REG_CVAL);
876         }
877         return (u64)-1;
878 }
879
880 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
881                               struct arch_timer_context *timer,
882                               enum kvm_arch_timer_regs treg)
883 {
884         u64 val;
885
886         switch (treg) {
887         case TIMER_REG_TVAL:
888                 val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
889                 val = lower_32_bits(val);
890                 break;
891
892         case TIMER_REG_CTL:
893                 val = read_timer_ctl(timer);
894                 break;
895
896         case TIMER_REG_CVAL:
897                 val = timer_get_cval(timer);
898                 break;
899
900         case TIMER_REG_CNT:
901                 val = kvm_phys_timer_read() - timer_get_offset(timer);
902                 break;
903
904         default:
905                 BUG();
906         }
907
908         return val;
909 }
910
911 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
912                               enum kvm_arch_timers tmr,
913                               enum kvm_arch_timer_regs treg)
914 {
915         u64 val;
916
917         preempt_disable();
918         kvm_timer_vcpu_put(vcpu);
919
920         val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);
921
922         kvm_timer_vcpu_load(vcpu);
923         preempt_enable();
924
925         return val;
926 }
927
928 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
929                                 struct arch_timer_context *timer,
930                                 enum kvm_arch_timer_regs treg,
931                                 u64 val)
932 {
933         switch (treg) {
934         case TIMER_REG_TVAL:
935                 timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
936                 break;
937
938         case TIMER_REG_CTL:
939                 timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
940                 break;
941
942         case TIMER_REG_CVAL:
943                 timer_set_cval(timer, val);
944                 break;
945
946         default:
947                 BUG();
948         }
949 }
950
951 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
952                                 enum kvm_arch_timers tmr,
953                                 enum kvm_arch_timer_regs treg,
954                                 u64 val)
955 {
956         preempt_disable();
957         kvm_timer_vcpu_put(vcpu);
958
959         kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);
960
961         kvm_timer_vcpu_load(vcpu);
962         preempt_enable();
963 }
964
965 static int kvm_timer_starting_cpu(unsigned int cpu)
966 {
967         kvm_timer_init_interrupt(NULL);
968         return 0;
969 }
970
971 static int kvm_timer_dying_cpu(unsigned int cpu)
972 {
973         disable_percpu_irq(host_vtimer_irq);
974         return 0;
975 }
976
977 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
978 {
979         if (vcpu)
980                 irqd_set_forwarded_to_vcpu(d);
981         else
982                 irqd_clr_forwarded_to_vcpu(d);
983
984         return 0;
985 }
986
987 static int timer_irq_set_irqchip_state(struct irq_data *d,
988                                        enum irqchip_irq_state which, bool val)
989 {
990         if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
991                 return irq_chip_set_parent_state(d, which, val);
992
993         if (val)
994                 irq_chip_mask_parent(d);
995         else
996                 irq_chip_unmask_parent(d);
997
998         return 0;
999 }
1000
1001 static void timer_irq_eoi(struct irq_data *d)
1002 {
1003         if (!irqd_is_forwarded_to_vcpu(d))
1004                 irq_chip_eoi_parent(d);
1005 }
1006
1007 static void timer_irq_ack(struct irq_data *d)
1008 {
1009         d = d->parent_data;
1010         if (d->chip->irq_ack)
1011                 d->chip->irq_ack(d);
1012 }
1013
1014 static struct irq_chip timer_chip = {
1015         .name                   = "KVM",
1016         .irq_ack                = timer_irq_ack,
1017         .irq_mask               = irq_chip_mask_parent,
1018         .irq_unmask             = irq_chip_unmask_parent,
1019         .irq_eoi                = timer_irq_eoi,
1020         .irq_set_type           = irq_chip_set_type_parent,
1021         .irq_set_vcpu_affinity  = timer_irq_set_vcpu_affinity,
1022         .irq_set_irqchip_state  = timer_irq_set_irqchip_state,
1023 };
1024
1025 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1026                                   unsigned int nr_irqs, void *arg)
1027 {
1028         irq_hw_number_t hwirq = (uintptr_t)arg;
1029
1030         return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1031                                              &timer_chip, NULL);
1032 }
1033
1034 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1035                                   unsigned int nr_irqs)
1036 {
1037 }
1038
1039 static const struct irq_domain_ops timer_domain_ops = {
1040         .alloc  = timer_irq_domain_alloc,
1041         .free   = timer_irq_domain_free,
1042 };
1043
1044 static struct irq_ops arch_timer_irq_ops = {
1045         .get_input_level = kvm_arch_timer_get_input_level,
1046 };
1047
1048 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1049 {
1050         *flags = irq_get_trigger_type(virq);
1051         if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1052                 kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1053                         virq);
1054                 *flags = IRQF_TRIGGER_LOW;
1055         }
1056 }
1057
1058 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1059 {
1060         struct irq_domain *domain = NULL;
1061
1062         if (info->virtual_irq <= 0) {
1063                 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1064                         info->virtual_irq);
1065                 return -ENODEV;
1066         }
1067
1068         host_vtimer_irq = info->virtual_irq;
1069         kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1070
1071         if (kvm_vgic_global_state.no_hw_deactivation) {
1072                 struct fwnode_handle *fwnode;
1073                 struct irq_data *data;
1074
1075                 fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1076                 if (!fwnode)
1077                         return -ENOMEM;
1078
1079                 /* Assume both vtimer and ptimer in the same parent */
1080                 data = irq_get_irq_data(host_vtimer_irq);
1081                 domain = irq_domain_create_hierarchy(data->domain, 0,
1082                                                      NR_KVM_TIMERS, fwnode,
1083                                                      &timer_domain_ops, NULL);
1084                 if (!domain) {
1085                         irq_domain_free_fwnode(fwnode);
1086                         return -ENOMEM;
1087                 }
1088
1089                 arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1090                 WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1091                                             (void *)TIMER_VTIMER));
1092         }
1093
1094         if (info->physical_irq > 0) {
1095                 host_ptimer_irq = info->physical_irq;
1096                 kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1097
1098                 if (domain)
1099                         WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1100                                                     (void *)TIMER_PTIMER));
1101         }
1102
1103         return 0;
1104 }
1105
1106 int kvm_timer_hyp_init(bool has_gic)
1107 {
1108         struct arch_timer_kvm_info *info;
1109         int err;
1110
1111         info = arch_timer_get_kvm_info();
1112         timecounter = &info->timecounter;
1113
1114         if (!timecounter->cc) {
1115                 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1116                 return -ENODEV;
1117         }
1118
1119         err = kvm_irq_init(info);
1120         if (err)
1121                 return err;
1122
1123         /* First, do the virtual EL1 timer irq */
1124
1125         err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1126                                  "kvm guest vtimer", kvm_get_running_vcpus());
1127         if (err) {
1128                 kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1129                         host_vtimer_irq, err);
1130                 return err;
1131         }
1132
1133         if (has_gic) {
1134                 err = irq_set_vcpu_affinity(host_vtimer_irq,
1135                                             kvm_get_running_vcpus());
1136                 if (err) {
1137                         kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1138                         goto out_free_irq;
1139                 }
1140
1141                 static_branch_enable(&has_gic_active_state);
1142         }
1143
1144         kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1145
1146         /* Now let's do the physical EL1 timer irq */
1147
1148         if (info->physical_irq > 0) {
1149                 err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1150                                          "kvm guest ptimer", kvm_get_running_vcpus());
1151                 if (err) {
1152                         kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1153                                 host_ptimer_irq, err);
1154                         return err;
1155                 }
1156
1157                 if (has_gic) {
1158                         err = irq_set_vcpu_affinity(host_ptimer_irq,
1159                                                     kvm_get_running_vcpus());
1160                         if (err) {
1161                                 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1162                                 goto out_free_irq;
1163                         }
1164                 }
1165
1166                 kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1167         } else if (has_vhe()) {
1168                 kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1169                         info->physical_irq);
1170                 err = -ENODEV;
1171                 goto out_free_irq;
1172         }
1173
1174         cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
1175                           "kvm/arm/timer:starting", kvm_timer_starting_cpu,
1176                           kvm_timer_dying_cpu);
1177         return 0;
1178 out_free_irq:
1179         free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1180         return err;
1181 }
1182
1183 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1184 {
1185         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1186
1187         soft_timer_cancel(&timer->bg_timer);
1188 }
1189
1190 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1191 {
1192         int vtimer_irq, ptimer_irq;
1193         int i, ret;
1194
1195         vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
1196         ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
1197         if (ret)
1198                 return false;
1199
1200         ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
1201         ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
1202         if (ret)
1203                 return false;
1204
1205         kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
1206                 if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
1207                     vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
1208                         return false;
1209         }
1210
1211         return true;
1212 }
1213
1214 bool kvm_arch_timer_get_input_level(int vintid)
1215 {
1216         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1217         struct arch_timer_context *timer;
1218
1219         if (vintid == vcpu_vtimer(vcpu)->irq.irq)
1220                 timer = vcpu_vtimer(vcpu);
1221         else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
1222                 timer = vcpu_ptimer(vcpu);
1223         else
1224                 BUG();
1225
1226         return kvm_timer_should_fire(timer);
1227 }
1228
1229 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1230 {
1231         struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1232         struct timer_map map;
1233         int ret;
1234
1235         if (timer->enabled)
1236                 return 0;
1237
1238         /* Without a VGIC we do not map virtual IRQs to physical IRQs */
1239         if (!irqchip_in_kernel(vcpu->kvm))
1240                 goto no_vgic;
1241
1242         /*
1243          * At this stage, we have the guarantee that the vgic is both
1244          * available and initialized.
1245          */
1246         if (!timer_irqs_are_valid(vcpu)) {
1247                 kvm_debug("incorrectly configured timer irqs\n");
1248                 return -EINVAL;
1249         }
1250
1251         get_timer_map(vcpu, &map);
1252
1253         ret = kvm_vgic_map_phys_irq(vcpu,
1254                                     map.direct_vtimer->host_timer_irq,
1255                                     map.direct_vtimer->irq.irq,
1256                                     &arch_timer_irq_ops);
1257         if (ret)
1258                 return ret;
1259
1260         if (map.direct_ptimer) {
1261                 ret = kvm_vgic_map_phys_irq(vcpu,
1262                                             map.direct_ptimer->host_timer_irq,
1263                                             map.direct_ptimer->irq.irq,
1264                                             &arch_timer_irq_ops);
1265         }
1266
1267         if (ret)
1268                 return ret;
1269
1270 no_vgic:
1271         timer->enabled = 1;
1272         return 0;
1273 }
1274
1275 /*
1276  * On VHE system, we only need to configure the EL2 timer trap register once,
1277  * not for every world switch.
1278  * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
1279  * and this makes those bits have no effect for the host kernel execution.
1280  */
1281 void kvm_timer_init_vhe(void)
1282 {
1283         /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
1284         u32 cnthctl_shift = 10;
1285         u64 val;
1286
1287         /*
1288          * VHE systems allow the guest direct access to the EL1 physical
1289          * timer/counter.
1290          */
1291         val = read_sysreg(cnthctl_el2);
1292         val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
1293         val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
1294         write_sysreg(val, cnthctl_el2);
1295 }
1296
1297 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
1298 {
1299         struct kvm_vcpu *vcpu;
1300         int i;
1301
1302         kvm_for_each_vcpu(i, vcpu, kvm) {
1303                 vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
1304                 vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
1305         }
1306 }
1307
1308 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1309 {
1310         int __user *uaddr = (int __user *)(long)attr->addr;
1311         struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
1312         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
1313         int irq;
1314
1315         if (!irqchip_in_kernel(vcpu->kvm))
1316                 return -EINVAL;
1317
1318         if (get_user(irq, uaddr))
1319                 return -EFAULT;
1320
1321         if (!(irq_is_ppi(irq)))
1322                 return -EINVAL;
1323
1324         if (vcpu->arch.timer_cpu.enabled)
1325                 return -EBUSY;
1326
1327         switch (attr->attr) {
1328         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1329                 set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
1330                 break;
1331         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1332                 set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
1333                 break;
1334         default:
1335                 return -ENXIO;
1336         }
1337
1338         return 0;
1339 }
1340
1341 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1342 {
1343         int __user *uaddr = (int __user *)(long)attr->addr;
1344         struct arch_timer_context *timer;
1345         int irq;
1346
1347         switch (attr->attr) {
1348         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1349                 timer = vcpu_vtimer(vcpu);
1350                 break;
1351         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1352                 timer = vcpu_ptimer(vcpu);
1353                 break;
1354         default:
1355                 return -ENXIO;
1356         }
1357
1358         irq = timer->irq.irq;
1359         return put_user(irq, uaddr);
1360 }
1361
1362 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1363 {
1364         switch (attr->attr) {
1365         case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1366         case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1367                 return 0;
1368         }
1369
1370         return -ENXIO;
1371 }