Merge tag 'locking-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / arm64 / kernel / traps.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/traps.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/kallsyms.h>
13 #include <linux/kprobes.h>
14 #include <linux/spinlock.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kdebug.h>
18 #include <linux/module.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/efi.h>
22 #include <linux/init.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/debug.h>
25 #include <linux/sched/task_stack.h>
26 #include <linux/sizes.h>
27 #include <linux/syscalls.h>
28 #include <linux/mm_types.h>
29 #include <linux/kasan.h>
30 #include <linux/ubsan.h>
31 #include <linux/cfi.h>
32
33 #include <asm/atomic.h>
34 #include <asm/bug.h>
35 #include <asm/cpufeature.h>
36 #include <asm/daifflags.h>
37 #include <asm/debug-monitors.h>
38 #include <asm/efi.h>
39 #include <asm/esr.h>
40 #include <asm/exception.h>
41 #include <asm/extable.h>
42 #include <asm/insn.h>
43 #include <asm/kprobes.h>
44 #include <asm/patching.h>
45 #include <asm/traps.h>
46 #include <asm/smp.h>
47 #include <asm/stack_pointer.h>
48 #include <asm/stacktrace.h>
49 #include <asm/system_misc.h>
50 #include <asm/sysreg.h>
51
52 static bool __kprobes __check_eq(unsigned long pstate)
53 {
54         return (pstate & PSR_Z_BIT) != 0;
55 }
56
57 static bool __kprobes __check_ne(unsigned long pstate)
58 {
59         return (pstate & PSR_Z_BIT) == 0;
60 }
61
62 static bool __kprobes __check_cs(unsigned long pstate)
63 {
64         return (pstate & PSR_C_BIT) != 0;
65 }
66
67 static bool __kprobes __check_cc(unsigned long pstate)
68 {
69         return (pstate & PSR_C_BIT) == 0;
70 }
71
72 static bool __kprobes __check_mi(unsigned long pstate)
73 {
74         return (pstate & PSR_N_BIT) != 0;
75 }
76
77 static bool __kprobes __check_pl(unsigned long pstate)
78 {
79         return (pstate & PSR_N_BIT) == 0;
80 }
81
82 static bool __kprobes __check_vs(unsigned long pstate)
83 {
84         return (pstate & PSR_V_BIT) != 0;
85 }
86
87 static bool __kprobes __check_vc(unsigned long pstate)
88 {
89         return (pstate & PSR_V_BIT) == 0;
90 }
91
92 static bool __kprobes __check_hi(unsigned long pstate)
93 {
94         pstate &= ~(pstate >> 1);       /* PSR_C_BIT &= ~PSR_Z_BIT */
95         return (pstate & PSR_C_BIT) != 0;
96 }
97
98 static bool __kprobes __check_ls(unsigned long pstate)
99 {
100         pstate &= ~(pstate >> 1);       /* PSR_C_BIT &= ~PSR_Z_BIT */
101         return (pstate & PSR_C_BIT) == 0;
102 }
103
104 static bool __kprobes __check_ge(unsigned long pstate)
105 {
106         pstate ^= (pstate << 3);        /* PSR_N_BIT ^= PSR_V_BIT */
107         return (pstate & PSR_N_BIT) == 0;
108 }
109
110 static bool __kprobes __check_lt(unsigned long pstate)
111 {
112         pstate ^= (pstate << 3);        /* PSR_N_BIT ^= PSR_V_BIT */
113         return (pstate & PSR_N_BIT) != 0;
114 }
115
116 static bool __kprobes __check_gt(unsigned long pstate)
117 {
118         /*PSR_N_BIT ^= PSR_V_BIT */
119         unsigned long temp = pstate ^ (pstate << 3);
120
121         temp |= (pstate << 1);  /*PSR_N_BIT |= PSR_Z_BIT */
122         return (temp & PSR_N_BIT) == 0;
123 }
124
125 static bool __kprobes __check_le(unsigned long pstate)
126 {
127         /*PSR_N_BIT ^= PSR_V_BIT */
128         unsigned long temp = pstate ^ (pstate << 3);
129
130         temp |= (pstate << 1);  /*PSR_N_BIT |= PSR_Z_BIT */
131         return (temp & PSR_N_BIT) != 0;
132 }
133
134 static bool __kprobes __check_al(unsigned long pstate)
135 {
136         return true;
137 }
138
139 /*
140  * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
141  * it behaves identically to 0b1110 ("al").
142  */
143 pstate_check_t * const aarch32_opcode_cond_checks[16] = {
144         __check_eq, __check_ne, __check_cs, __check_cc,
145         __check_mi, __check_pl, __check_vs, __check_vc,
146         __check_hi, __check_ls, __check_ge, __check_lt,
147         __check_gt, __check_le, __check_al, __check_al
148 };
149
150 int show_unhandled_signals = 0;
151
152 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
153 {
154         unsigned long addr = instruction_pointer(regs);
155         char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
156         int i;
157
158         if (user_mode(regs))
159                 return;
160
161         for (i = -4; i < 1; i++) {
162                 unsigned int val, bad;
163
164                 bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
165
166                 if (!bad)
167                         p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
168                 else
169                         p += sprintf(p, i == 0 ? "(????????) " : "???????? ");
170         }
171
172         printk("%sCode: %s\n", lvl, str);
173 }
174
175 #ifdef CONFIG_PREEMPT
176 #define S_PREEMPT " PREEMPT"
177 #elif defined(CONFIG_PREEMPT_RT)
178 #define S_PREEMPT " PREEMPT_RT"
179 #else
180 #define S_PREEMPT ""
181 #endif
182
183 #define S_SMP " SMP"
184
185 static int __die(const char *str, long err, struct pt_regs *regs)
186 {
187         static int die_counter;
188         int ret;
189
190         pr_emerg("Internal error: %s: %016lx [#%d]" S_PREEMPT S_SMP "\n",
191                  str, err, ++die_counter);
192
193         /* trap and error numbers are mostly meaningless on ARM */
194         ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
195         if (ret == NOTIFY_STOP)
196                 return ret;
197
198         print_modules();
199         show_regs(regs);
200
201         dump_kernel_instr(KERN_EMERG, regs);
202
203         return ret;
204 }
205
206 static DEFINE_RAW_SPINLOCK(die_lock);
207
208 /*
209  * This function is protected against re-entrancy.
210  */
211 void die(const char *str, struct pt_regs *regs, long err)
212 {
213         int ret;
214         unsigned long flags;
215
216         raw_spin_lock_irqsave(&die_lock, flags);
217
218         oops_enter();
219
220         console_verbose();
221         bust_spinlocks(1);
222         ret = __die(str, err, regs);
223
224         if (regs && kexec_should_crash(current))
225                 crash_kexec(regs);
226
227         bust_spinlocks(0);
228         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
229         oops_exit();
230
231         if (in_interrupt())
232                 panic("%s: Fatal exception in interrupt", str);
233         if (panic_on_oops)
234                 panic("%s: Fatal exception", str);
235
236         raw_spin_unlock_irqrestore(&die_lock, flags);
237
238         if (ret != NOTIFY_STOP)
239                 make_task_dead(SIGSEGV);
240 }
241
242 static void arm64_show_signal(int signo, const char *str)
243 {
244         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
245                                       DEFAULT_RATELIMIT_BURST);
246         struct task_struct *tsk = current;
247         unsigned long esr = tsk->thread.fault_code;
248         struct pt_regs *regs = task_pt_regs(tsk);
249
250         /* Leave if the signal won't be shown */
251         if (!show_unhandled_signals ||
252             !unhandled_signal(tsk, signo) ||
253             !__ratelimit(&rs))
254                 return;
255
256         pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
257         if (esr)
258                 pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
259
260         pr_cont("%s", str);
261         print_vma_addr(KERN_CONT " in ", regs->pc);
262         pr_cont("\n");
263         __show_regs(regs);
264 }
265
266 void arm64_force_sig_fault(int signo, int code, unsigned long far,
267                            const char *str)
268 {
269         arm64_show_signal(signo, str);
270         if (signo == SIGKILL)
271                 force_sig(SIGKILL);
272         else
273                 force_sig_fault(signo, code, (void __user *)far);
274 }
275
276 void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
277                             const char *str)
278 {
279         arm64_show_signal(SIGBUS, str);
280         force_sig_mceerr(code, (void __user *)far, lsb);
281 }
282
283 void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
284                                        const char *str)
285 {
286         arm64_show_signal(SIGTRAP, str);
287         force_sig_ptrace_errno_trap(errno, (void __user *)far);
288 }
289
290 void arm64_notify_die(const char *str, struct pt_regs *regs,
291                       int signo, int sicode, unsigned long far,
292                       unsigned long err)
293 {
294         if (user_mode(regs)) {
295                 WARN_ON(regs != current_pt_regs());
296                 current->thread.fault_address = 0;
297                 current->thread.fault_code = err;
298
299                 arm64_force_sig_fault(signo, sicode, far, str);
300         } else {
301                 die(str, regs, err);
302         }
303 }
304
305 #ifdef CONFIG_COMPAT
306 #define PSTATE_IT_1_0_SHIFT     25
307 #define PSTATE_IT_1_0_MASK      (0x3 << PSTATE_IT_1_0_SHIFT)
308 #define PSTATE_IT_7_2_SHIFT     10
309 #define PSTATE_IT_7_2_MASK      (0x3f << PSTATE_IT_7_2_SHIFT)
310
311 static u32 compat_get_it_state(struct pt_regs *regs)
312 {
313         u32 it, pstate = regs->pstate;
314
315         it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
316         it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
317
318         return it;
319 }
320
321 static void compat_set_it_state(struct pt_regs *regs, u32 it)
322 {
323         u32 pstate_it;
324
325         pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
326         pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
327
328         regs->pstate &= ~PSR_AA32_IT_MASK;
329         regs->pstate |= pstate_it;
330 }
331
332 static void advance_itstate(struct pt_regs *regs)
333 {
334         u32 it;
335
336         /* ARM mode */
337         if (!(regs->pstate & PSR_AA32_T_BIT) ||
338             !(regs->pstate & PSR_AA32_IT_MASK))
339                 return;
340
341         it  = compat_get_it_state(regs);
342
343         /*
344          * If this is the last instruction of the block, wipe the IT
345          * state. Otherwise advance it.
346          */
347         if (!(it & 7))
348                 it = 0;
349         else
350                 it = (it & 0xe0) | ((it << 1) & 0x1f);
351
352         compat_set_it_state(regs, it);
353 }
354 #else
355 static void advance_itstate(struct pt_regs *regs)
356 {
357 }
358 #endif
359
360 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
361 {
362         regs->pc += size;
363
364         /*
365          * If we were single stepping, we want to get the step exception after
366          * we return from the trap.
367          */
368         if (user_mode(regs))
369                 user_fastforward_single_step(current);
370
371         if (compat_user_mode(regs))
372                 advance_itstate(regs);
373         else
374                 regs->pstate &= ~PSR_BTYPE_MASK;
375 }
376
377 static int user_insn_read(struct pt_regs *regs, u32 *insnp)
378 {
379         u32 instr;
380         unsigned long pc = instruction_pointer(regs);
381
382         if (compat_thumb_mode(regs)) {
383                 /* 16-bit Thumb instruction */
384                 __le16 instr_le;
385                 if (get_user(instr_le, (__le16 __user *)pc))
386                         return -EFAULT;
387                 instr = le16_to_cpu(instr_le);
388                 if (aarch32_insn_is_wide(instr)) {
389                         u32 instr2;
390
391                         if (get_user(instr_le, (__le16 __user *)(pc + 2)))
392                                 return -EFAULT;
393                         instr2 = le16_to_cpu(instr_le);
394                         instr = (instr << 16) | instr2;
395                 }
396         } else {
397                 /* 32-bit ARM instruction */
398                 __le32 instr_le;
399                 if (get_user(instr_le, (__le32 __user *)pc))
400                         return -EFAULT;
401                 instr = le32_to_cpu(instr_le);
402         }
403
404         *insnp = instr;
405         return 0;
406 }
407
408 void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
409 {
410         const char *desc;
411         struct pt_regs *regs = current_pt_regs();
412
413         if (WARN_ON(!user_mode(regs)))
414                 return;
415
416         switch (signal) {
417         case SIGILL:
418                 desc = "undefined instruction";
419                 break;
420         case SIGSEGV:
421                 desc = "illegal memory access";
422                 break;
423         default:
424                 desc = "unknown or unrecoverable error";
425                 break;
426         }
427
428         /* Force signals we don't understand to SIGKILL */
429         if (WARN_ON(signal != SIGKILL &&
430                     siginfo_layout(signal, code) != SIL_FAULT)) {
431                 signal = SIGKILL;
432         }
433
434         arm64_notify_die(desc, regs, signal, code, address, err);
435 }
436
437 /*
438  * Set up process info to signal segmentation fault - called on access error.
439  */
440 void arm64_notify_segfault(unsigned long addr)
441 {
442         int code;
443
444         mmap_read_lock(current->mm);
445         if (find_vma(current->mm, untagged_addr(addr)) == NULL)
446                 code = SEGV_MAPERR;
447         else
448                 code = SEGV_ACCERR;
449         mmap_read_unlock(current->mm);
450
451         force_signal_inject(SIGSEGV, code, addr, 0);
452 }
453
454 void do_el0_undef(struct pt_regs *regs, unsigned long esr)
455 {
456         u32 insn;
457
458         /* check for AArch32 breakpoint instructions */
459         if (!aarch32_break_handler(regs))
460                 return;
461
462         if (user_insn_read(regs, &insn))
463                 goto out_err;
464
465         if (try_emulate_mrs(regs, insn))
466                 return;
467
468         if (try_emulate_armv8_deprecated(regs, insn))
469                 return;
470
471 out_err:
472         force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
473 }
474
475 void do_el1_undef(struct pt_regs *regs, unsigned long esr)
476 {
477         u32 insn;
478
479         if (aarch64_insn_read((void *)regs->pc, &insn))
480                 goto out_err;
481
482         if (try_emulate_el1_ssbs(regs, insn))
483                 return;
484
485 out_err:
486         die("Oops - Undefined instruction", regs, esr);
487 }
488
489 void do_el0_bti(struct pt_regs *regs)
490 {
491         force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
492 }
493
494 void do_el1_bti(struct pt_regs *regs, unsigned long esr)
495 {
496         if (efi_runtime_fixup_exception(regs, "BTI violation")) {
497                 regs->pstate &= ~PSR_BTYPE_MASK;
498                 return;
499         }
500         die("Oops - BTI", regs, esr);
501 }
502
503 void do_el0_fpac(struct pt_regs *regs, unsigned long esr)
504 {
505         force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
506 }
507
508 void do_el1_fpac(struct pt_regs *regs, unsigned long esr)
509 {
510         /*
511          * Unexpected FPAC exception in the kernel: kill the task before it
512          * does any more harm.
513          */
514         die("Oops - FPAC", regs, esr);
515 }
516
517 void do_el0_mops(struct pt_regs *regs, unsigned long esr)
518 {
519         bool wrong_option = esr & ESR_ELx_MOPS_ISS_WRONG_OPTION;
520         bool option_a = esr & ESR_ELx_MOPS_ISS_OPTION_A;
521         int dstreg = ESR_ELx_MOPS_ISS_DESTREG(esr);
522         int srcreg = ESR_ELx_MOPS_ISS_SRCREG(esr);
523         int sizereg = ESR_ELx_MOPS_ISS_SIZEREG(esr);
524         unsigned long dst, src, size;
525
526         dst = pt_regs_read_reg(regs, dstreg);
527         src = pt_regs_read_reg(regs, srcreg);
528         size = pt_regs_read_reg(regs, sizereg);
529
530         /*
531          * Put the registers back in the original format suitable for a
532          * prologue instruction, using the generic return routine from the
533          * Arm ARM (DDI 0487I.a) rules CNTMJ and MWFQH.
534          */
535         if (esr & ESR_ELx_MOPS_ISS_MEM_INST) {
536                 /* SET* instruction */
537                 if (option_a ^ wrong_option) {
538                         /* Format is from Option A; forward set */
539                         pt_regs_write_reg(regs, dstreg, dst + size);
540                         pt_regs_write_reg(regs, sizereg, -size);
541                 }
542         } else {
543                 /* CPY* instruction */
544                 if (!(option_a ^ wrong_option)) {
545                         /* Format is from Option B */
546                         if (regs->pstate & PSR_N_BIT) {
547                                 /* Backward copy */
548                                 pt_regs_write_reg(regs, dstreg, dst - size);
549                                 pt_regs_write_reg(regs, srcreg, src - size);
550                         }
551                 } else {
552                         /* Format is from Option A */
553                         if (size & BIT(63)) {
554                                 /* Forward copy */
555                                 pt_regs_write_reg(regs, dstreg, dst + size);
556                                 pt_regs_write_reg(regs, srcreg, src + size);
557                                 pt_regs_write_reg(regs, sizereg, -size);
558                         }
559                 }
560         }
561
562         if (esr & ESR_ELx_MOPS_ISS_FROM_EPILOGUE)
563                 regs->pc -= 8;
564         else
565                 regs->pc -= 4;
566
567         /*
568          * If single stepping then finish the step before executing the
569          * prologue instruction.
570          */
571         user_fastforward_single_step(current);
572 }
573
574 #define __user_cache_maint(insn, address, res)                  \
575         if (address >= TASK_SIZE_MAX) {                         \
576                 res = -EFAULT;                                  \
577         } else {                                                \
578                 uaccess_ttbr0_enable();                         \
579                 asm volatile (                                  \
580                         "1:     " insn ", %1\n"                 \
581                         "       mov     %w0, #0\n"              \
582                         "2:\n"                                  \
583                         _ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0)   \
584                         : "=r" (res)                            \
585                         : "r" (address));                       \
586                 uaccess_ttbr0_disable();                        \
587         }
588
589 static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
590 {
591         unsigned long tagged_address, address;
592         int rt = ESR_ELx_SYS64_ISS_RT(esr);
593         int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
594         int ret = 0;
595
596         tagged_address = pt_regs_read_reg(regs, rt);
597         address = untagged_addr(tagged_address);
598
599         switch (crm) {
600         case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:     /* DC CVAU, gets promoted */
601                 __user_cache_maint("dc civac", address, ret);
602                 break;
603         case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:     /* DC CVAC, gets promoted */
604                 __user_cache_maint("dc civac", address, ret);
605                 break;
606         case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:    /* DC CVADP */
607                 __user_cache_maint("sys 3, c7, c13, 1", address, ret);
608                 break;
609         case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:     /* DC CVAP */
610                 __user_cache_maint("sys 3, c7, c12, 1", address, ret);
611                 break;
612         case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:    /* DC CIVAC */
613                 __user_cache_maint("dc civac", address, ret);
614                 break;
615         case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:     /* IC IVAU */
616                 __user_cache_maint("ic ivau", address, ret);
617                 break;
618         default:
619                 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
620                 return;
621         }
622
623         if (ret)
624                 arm64_notify_segfault(tagged_address);
625         else
626                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
627 }
628
629 static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
630 {
631         int rt = ESR_ELx_SYS64_ISS_RT(esr);
632         unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
633
634         if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
635                 /* Hide DIC so that we can trap the unnecessary maintenance...*/
636                 val &= ~BIT(CTR_EL0_DIC_SHIFT);
637
638                 /* ... and fake IminLine to reduce the number of traps. */
639                 val &= ~CTR_EL0_IminLine_MASK;
640                 val |= (PAGE_SHIFT - 2) & CTR_EL0_IminLine_MASK;
641         }
642
643         pt_regs_write_reg(regs, rt, val);
644
645         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
646 }
647
648 static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
649 {
650         int rt = ESR_ELx_SYS64_ISS_RT(esr);
651
652         pt_regs_write_reg(regs, rt, arch_timer_read_counter());
653         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
654 }
655
656 static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
657 {
658         int rt = ESR_ELx_SYS64_ISS_RT(esr);
659
660         pt_regs_write_reg(regs, rt, arch_timer_get_rate());
661         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
662 }
663
664 static void mrs_handler(unsigned long esr, struct pt_regs *regs)
665 {
666         u32 sysreg, rt;
667
668         rt = ESR_ELx_SYS64_ISS_RT(esr);
669         sysreg = esr_sys64_to_sysreg(esr);
670
671         if (do_emulate_mrs(regs, sysreg, rt) != 0)
672                 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
673 }
674
675 static void wfi_handler(unsigned long esr, struct pt_regs *regs)
676 {
677         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
678 }
679
680 struct sys64_hook {
681         unsigned long esr_mask;
682         unsigned long esr_val;
683         void (*handler)(unsigned long esr, struct pt_regs *regs);
684 };
685
686 static const struct sys64_hook sys64_hooks[] = {
687         {
688                 .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
689                 .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
690                 .handler = user_cache_maint_handler,
691         },
692         {
693                 /* Trap read access to CTR_EL0 */
694                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
695                 .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
696                 .handler = ctr_read_handler,
697         },
698         {
699                 /* Trap read access to CNTVCT_EL0 */
700                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
701                 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
702                 .handler = cntvct_read_handler,
703         },
704         {
705                 /* Trap read access to CNTVCTSS_EL0 */
706                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
707                 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS,
708                 .handler = cntvct_read_handler,
709         },
710         {
711                 /* Trap read access to CNTFRQ_EL0 */
712                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
713                 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
714                 .handler = cntfrq_read_handler,
715         },
716         {
717                 /* Trap read access to CPUID registers */
718                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
719                 .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
720                 .handler = mrs_handler,
721         },
722         {
723                 /* Trap WFI instructions executed in userspace */
724                 .esr_mask = ESR_ELx_WFx_MASK,
725                 .esr_val = ESR_ELx_WFx_WFI_VAL,
726                 .handler = wfi_handler,
727         },
728         {},
729 };
730
731 #ifdef CONFIG_COMPAT
732 static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
733 {
734         int cond;
735
736         /* Only a T32 instruction can trap without CV being set */
737         if (!(esr & ESR_ELx_CV)) {
738                 u32 it;
739
740                 it = compat_get_it_state(regs);
741                 if (!it)
742                         return true;
743
744                 cond = it >> 4;
745         } else {
746                 cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
747         }
748
749         return aarch32_opcode_cond_checks[cond](regs->pstate);
750 }
751
752 static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
753 {
754         int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
755
756         pt_regs_write_reg(regs, reg, arch_timer_get_rate());
757         arm64_skip_faulting_instruction(regs, 4);
758 }
759
760 static const struct sys64_hook cp15_32_hooks[] = {
761         {
762                 .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
763                 .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
764                 .handler = compat_cntfrq_read_handler,
765         },
766         {},
767 };
768
769 static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
770 {
771         int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
772         int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
773         u64 val = arch_timer_read_counter();
774
775         pt_regs_write_reg(regs, rt, lower_32_bits(val));
776         pt_regs_write_reg(regs, rt2, upper_32_bits(val));
777         arm64_skip_faulting_instruction(regs, 4);
778 }
779
780 static const struct sys64_hook cp15_64_hooks[] = {
781         {
782                 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
783                 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
784                 .handler = compat_cntvct_read_handler,
785         },
786         {
787                 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
788                 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS,
789                 .handler = compat_cntvct_read_handler,
790         },
791         {},
792 };
793
794 void do_el0_cp15(unsigned long esr, struct pt_regs *regs)
795 {
796         const struct sys64_hook *hook, *hook_base;
797
798         if (!cp15_cond_valid(esr, regs)) {
799                 /*
800                  * There is no T16 variant of a CP access, so we
801                  * always advance PC by 4 bytes.
802                  */
803                 arm64_skip_faulting_instruction(regs, 4);
804                 return;
805         }
806
807         switch (ESR_ELx_EC(esr)) {
808         case ESR_ELx_EC_CP15_32:
809                 hook_base = cp15_32_hooks;
810                 break;
811         case ESR_ELx_EC_CP15_64:
812                 hook_base = cp15_64_hooks;
813                 break;
814         default:
815                 do_el0_undef(regs, esr);
816                 return;
817         }
818
819         for (hook = hook_base; hook->handler; hook++)
820                 if ((hook->esr_mask & esr) == hook->esr_val) {
821                         hook->handler(esr, regs);
822                         return;
823                 }
824
825         /*
826          * New cp15 instructions may previously have been undefined at
827          * EL0. Fall back to our usual undefined instruction handler
828          * so that we handle these consistently.
829          */
830         do_el0_undef(regs, esr);
831 }
832 #endif
833
834 void do_el0_sys(unsigned long esr, struct pt_regs *regs)
835 {
836         const struct sys64_hook *hook;
837
838         for (hook = sys64_hooks; hook->handler; hook++)
839                 if ((hook->esr_mask & esr) == hook->esr_val) {
840                         hook->handler(esr, regs);
841                         return;
842                 }
843
844         /*
845          * New SYS instructions may previously have been undefined at EL0. Fall
846          * back to our usual undefined instruction handler so that we handle
847          * these consistently.
848          */
849         do_el0_undef(regs, esr);
850 }
851
852 static const char *esr_class_str[] = {
853         [0 ... ESR_ELx_EC_MAX]          = "UNRECOGNIZED EC",
854         [ESR_ELx_EC_UNKNOWN]            = "Unknown/Uncategorized",
855         [ESR_ELx_EC_WFx]                = "WFI/WFE",
856         [ESR_ELx_EC_CP15_32]            = "CP15 MCR/MRC",
857         [ESR_ELx_EC_CP15_64]            = "CP15 MCRR/MRRC",
858         [ESR_ELx_EC_CP14_MR]            = "CP14 MCR/MRC",
859         [ESR_ELx_EC_CP14_LS]            = "CP14 LDC/STC",
860         [ESR_ELx_EC_FP_ASIMD]           = "ASIMD",
861         [ESR_ELx_EC_CP10_ID]            = "CP10 MRC/VMRS",
862         [ESR_ELx_EC_PAC]                = "PAC",
863         [ESR_ELx_EC_CP14_64]            = "CP14 MCRR/MRRC",
864         [ESR_ELx_EC_BTI]                = "BTI",
865         [ESR_ELx_EC_ILL]                = "PSTATE.IL",
866         [ESR_ELx_EC_SVC32]              = "SVC (AArch32)",
867         [ESR_ELx_EC_HVC32]              = "HVC (AArch32)",
868         [ESR_ELx_EC_SMC32]              = "SMC (AArch32)",
869         [ESR_ELx_EC_SVC64]              = "SVC (AArch64)",
870         [ESR_ELx_EC_HVC64]              = "HVC (AArch64)",
871         [ESR_ELx_EC_SMC64]              = "SMC (AArch64)",
872         [ESR_ELx_EC_SYS64]              = "MSR/MRS (AArch64)",
873         [ESR_ELx_EC_SVE]                = "SVE",
874         [ESR_ELx_EC_ERET]               = "ERET/ERETAA/ERETAB",
875         [ESR_ELx_EC_FPAC]               = "FPAC",
876         [ESR_ELx_EC_SME]                = "SME",
877         [ESR_ELx_EC_IMP_DEF]            = "EL3 IMP DEF",
878         [ESR_ELx_EC_IABT_LOW]           = "IABT (lower EL)",
879         [ESR_ELx_EC_IABT_CUR]           = "IABT (current EL)",
880         [ESR_ELx_EC_PC_ALIGN]           = "PC Alignment",
881         [ESR_ELx_EC_DABT_LOW]           = "DABT (lower EL)",
882         [ESR_ELx_EC_DABT_CUR]           = "DABT (current EL)",
883         [ESR_ELx_EC_SP_ALIGN]           = "SP Alignment",
884         [ESR_ELx_EC_MOPS]               = "MOPS",
885         [ESR_ELx_EC_FP_EXC32]           = "FP (AArch32)",
886         [ESR_ELx_EC_FP_EXC64]           = "FP (AArch64)",
887         [ESR_ELx_EC_SERROR]             = "SError",
888         [ESR_ELx_EC_BREAKPT_LOW]        = "Breakpoint (lower EL)",
889         [ESR_ELx_EC_BREAKPT_CUR]        = "Breakpoint (current EL)",
890         [ESR_ELx_EC_SOFTSTP_LOW]        = "Software Step (lower EL)",
891         [ESR_ELx_EC_SOFTSTP_CUR]        = "Software Step (current EL)",
892         [ESR_ELx_EC_WATCHPT_LOW]        = "Watchpoint (lower EL)",
893         [ESR_ELx_EC_WATCHPT_CUR]        = "Watchpoint (current EL)",
894         [ESR_ELx_EC_BKPT32]             = "BKPT (AArch32)",
895         [ESR_ELx_EC_VECTOR32]           = "Vector catch (AArch32)",
896         [ESR_ELx_EC_BRK64]              = "BRK (AArch64)",
897 };
898
899 const char *esr_get_class_string(unsigned long esr)
900 {
901         return esr_class_str[ESR_ELx_EC(esr)];
902 }
903
904 /*
905  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
906  * exceptions taken from EL0.
907  */
908 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
909 {
910         unsigned long pc = instruction_pointer(regs);
911
912         current->thread.fault_address = 0;
913         current->thread.fault_code = esr;
914
915         arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
916                               "Bad EL0 synchronous exception");
917 }
918
919 #ifdef CONFIG_VMAP_STACK
920
921 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
922         __aligned(16);
923
924 void __noreturn panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
925 {
926         unsigned long tsk_stk = (unsigned long)current->stack;
927         unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
928         unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
929
930         console_verbose();
931         pr_emerg("Insufficient stack space to handle exception!");
932
933         pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
934         pr_emerg("FAR: 0x%016lx\n", far);
935
936         pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
937                  tsk_stk, tsk_stk + THREAD_SIZE);
938         pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
939                  irq_stk, irq_stk + IRQ_STACK_SIZE);
940         pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
941                  ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
942
943         __show_regs(regs);
944
945         /*
946          * We use nmi_panic to limit the potential for recusive overflows, and
947          * to get a better stack trace.
948          */
949         nmi_panic(NULL, "kernel stack overflow");
950         cpu_park_loop();
951 }
952 #endif
953
954 void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
955 {
956         console_verbose();
957
958         pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
959                 smp_processor_id(), esr, esr_get_class_string(esr));
960         if (regs)
961                 __show_regs(regs);
962
963         nmi_panic(regs, "Asynchronous SError Interrupt");
964
965         cpu_park_loop();
966 }
967
968 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
969 {
970         unsigned long aet = arm64_ras_serror_get_severity(esr);
971
972         switch (aet) {
973         case ESR_ELx_AET_CE:    /* corrected error */
974         case ESR_ELx_AET_UEO:   /* restartable, not yet consumed */
975                 /*
976                  * The CPU can make progress. We may take UEO again as
977                  * a more severe error.
978                  */
979                 return false;
980
981         case ESR_ELx_AET_UEU:   /* Uncorrected Unrecoverable */
982         case ESR_ELx_AET_UER:   /* Uncorrected Recoverable */
983                 /*
984                  * The CPU can't make progress. The exception may have
985                  * been imprecise.
986                  *
987                  * Neoverse-N1 #1349291 means a non-KVM SError reported as
988                  * Unrecoverable should be treated as Uncontainable. We
989                  * call arm64_serror_panic() in both cases.
990                  */
991                 return true;
992
993         case ESR_ELx_AET_UC:    /* Uncontainable or Uncategorized error */
994         default:
995                 /* Error has been silently propagated */
996                 arm64_serror_panic(regs, esr);
997         }
998 }
999
1000 void do_serror(struct pt_regs *regs, unsigned long esr)
1001 {
1002         /* non-RAS errors are not containable */
1003         if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
1004                 arm64_serror_panic(regs, esr);
1005 }
1006
1007 /* GENERIC_BUG traps */
1008 #ifdef CONFIG_GENERIC_BUG
1009 int is_valid_bugaddr(unsigned long addr)
1010 {
1011         /*
1012          * bug_handler() only called for BRK #BUG_BRK_IMM.
1013          * So the answer is trivial -- any spurious instances with no
1014          * bug table entry will be rejected by report_bug() and passed
1015          * back to the debug-monitors code and handled as a fatal
1016          * unexpected debug exception.
1017          */
1018         return 1;
1019 }
1020 #endif
1021
1022 static int bug_handler(struct pt_regs *regs, unsigned long esr)
1023 {
1024         switch (report_bug(regs->pc, regs)) {
1025         case BUG_TRAP_TYPE_BUG:
1026                 die("Oops - BUG", regs, esr);
1027                 break;
1028
1029         case BUG_TRAP_TYPE_WARN:
1030                 break;
1031
1032         default:
1033                 /* unknown/unrecognised bug trap type */
1034                 return DBG_HOOK_ERROR;
1035         }
1036
1037         /* If thread survives, skip over the BUG instruction and continue: */
1038         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1039         return DBG_HOOK_HANDLED;
1040 }
1041
1042 static struct break_hook bug_break_hook = {
1043         .fn = bug_handler,
1044         .imm = BUG_BRK_IMM,
1045 };
1046
1047 #ifdef CONFIG_CFI_CLANG
1048 static int cfi_handler(struct pt_regs *regs, unsigned long esr)
1049 {
1050         unsigned long target;
1051         u32 type;
1052
1053         target = pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TARGET, esr));
1054         type = (u32)pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TYPE, esr));
1055
1056         switch (report_cfi_failure(regs, regs->pc, &target, type)) {
1057         case BUG_TRAP_TYPE_BUG:
1058                 die("Oops - CFI", regs, esr);
1059                 break;
1060
1061         case BUG_TRAP_TYPE_WARN:
1062                 break;
1063
1064         default:
1065                 return DBG_HOOK_ERROR;
1066         }
1067
1068         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1069         return DBG_HOOK_HANDLED;
1070 }
1071
1072 static struct break_hook cfi_break_hook = {
1073         .fn = cfi_handler,
1074         .imm = CFI_BRK_IMM_BASE,
1075         .mask = CFI_BRK_IMM_MASK,
1076 };
1077 #endif /* CONFIG_CFI_CLANG */
1078
1079 static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
1080 {
1081         pr_err("%s generated an invalid instruction at %pS!\n",
1082                 "Kernel text patching",
1083                 (void *)instruction_pointer(regs));
1084
1085         /* We cannot handle this */
1086         return DBG_HOOK_ERROR;
1087 }
1088
1089 static struct break_hook fault_break_hook = {
1090         .fn = reserved_fault_handler,
1091         .imm = FAULT_BRK_IMM,
1092 };
1093
1094 #ifdef CONFIG_KASAN_SW_TAGS
1095
1096 #define KASAN_ESR_RECOVER       0x20
1097 #define KASAN_ESR_WRITE 0x10
1098 #define KASAN_ESR_SIZE_MASK     0x0f
1099 #define KASAN_ESR_SIZE(esr)     (1 << ((esr) & KASAN_ESR_SIZE_MASK))
1100
1101 static int kasan_handler(struct pt_regs *regs, unsigned long esr)
1102 {
1103         bool recover = esr & KASAN_ESR_RECOVER;
1104         bool write = esr & KASAN_ESR_WRITE;
1105         size_t size = KASAN_ESR_SIZE(esr);
1106         void *addr = (void *)regs->regs[0];
1107         u64 pc = regs->pc;
1108
1109         kasan_report(addr, size, write, pc);
1110
1111         /*
1112          * The instrumentation allows to control whether we can proceed after
1113          * a crash was detected. This is done by passing the -recover flag to
1114          * the compiler. Disabling recovery allows to generate more compact
1115          * code.
1116          *
1117          * Unfortunately disabling recovery doesn't work for the kernel right
1118          * now. KASAN reporting is disabled in some contexts (for example when
1119          * the allocator accesses slab object metadata; this is controlled by
1120          * current->kasan_depth). All these accesses are detected by the tool,
1121          * even though the reports for them are not printed.
1122          *
1123          * This is something that might be fixed at some point in the future.
1124          */
1125         if (!recover)
1126                 die("Oops - KASAN", regs, esr);
1127
1128         /* If thread survives, skip over the brk instruction and continue: */
1129         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1130         return DBG_HOOK_HANDLED;
1131 }
1132
1133 static struct break_hook kasan_break_hook = {
1134         .fn     = kasan_handler,
1135         .imm    = KASAN_BRK_IMM,
1136         .mask   = KASAN_BRK_MASK,
1137 };
1138 #endif
1139
1140 #ifdef CONFIG_UBSAN_TRAP
1141 static int ubsan_handler(struct pt_regs *regs, unsigned long esr)
1142 {
1143         die(report_ubsan_failure(regs, esr & UBSAN_BRK_MASK), regs, esr);
1144         return DBG_HOOK_HANDLED;
1145 }
1146
1147 static struct break_hook ubsan_break_hook = {
1148         .fn     = ubsan_handler,
1149         .imm    = UBSAN_BRK_IMM,
1150         .mask   = UBSAN_BRK_MASK,
1151 };
1152 #endif
1153
1154 #define esr_comment(esr) ((esr) & ESR_ELx_BRK64_ISS_COMMENT_MASK)
1155
1156 /*
1157  * Initial handler for AArch64 BRK exceptions
1158  * This handler only used until debug_traps_init().
1159  */
1160 int __init early_brk64(unsigned long addr, unsigned long esr,
1161                 struct pt_regs *regs)
1162 {
1163 #ifdef CONFIG_CFI_CLANG
1164         if ((esr_comment(esr) & ~CFI_BRK_IMM_MASK) == CFI_BRK_IMM_BASE)
1165                 return cfi_handler(regs, esr) != DBG_HOOK_HANDLED;
1166 #endif
1167 #ifdef CONFIG_KASAN_SW_TAGS
1168         if ((esr_comment(esr) & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1169                 return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1170 #endif
1171 #ifdef CONFIG_UBSAN_TRAP
1172         if ((esr_comment(esr) & ~UBSAN_BRK_MASK) == UBSAN_BRK_IMM)
1173                 return ubsan_handler(regs, esr) != DBG_HOOK_HANDLED;
1174 #endif
1175         return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1176 }
1177
1178 void __init trap_init(void)
1179 {
1180         register_kernel_break_hook(&bug_break_hook);
1181 #ifdef CONFIG_CFI_CLANG
1182         register_kernel_break_hook(&cfi_break_hook);
1183 #endif
1184         register_kernel_break_hook(&fault_break_hook);
1185 #ifdef CONFIG_KASAN_SW_TAGS
1186         register_kernel_break_hook(&kasan_break_hook);
1187 #endif
1188 #ifdef CONFIG_UBSAN_TRAP
1189         register_kernel_break_hook(&ubsan_break_hook);
1190 #endif
1191         debug_traps_init();
1192 }