Merge branch 'md-fixes' of https://git.kernel.org/pub/scm/linux/kernel/git/song/md...
[linux-2.6-microblaze.git] / arch / arm64 / kernel / machine_kexec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec for arm64
4  *
5  * Copyright (C) Linaro.
6  * Copyright (C) Huawei Futurewei Technologies.
7  */
8
9 #include <linux/interrupt.h>
10 #include <linux/irq.h>
11 #include <linux/kernel.h>
12 #include <linux/kexec.h>
13 #include <linux/page-flags.h>
14 #include <linux/smp.h>
15
16 #include <asm/cacheflush.h>
17 #include <asm/cpu_ops.h>
18 #include <asm/daifflags.h>
19 #include <asm/memory.h>
20 #include <asm/mmu.h>
21 #include <asm/mmu_context.h>
22 #include <asm/page.h>
23
24 #include "cpu-reset.h"
25
26 /* Global variables for the arm64_relocate_new_kernel routine. */
27 extern const unsigned char arm64_relocate_new_kernel[];
28 extern const unsigned long arm64_relocate_new_kernel_size;
29
30 /**
31  * kexec_image_info - For debugging output.
32  */
33 #define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i)
34 static void _kexec_image_info(const char *func, int line,
35         const struct kimage *kimage)
36 {
37         unsigned long i;
38
39         pr_debug("%s:%d:\n", func, line);
40         pr_debug("  kexec kimage info:\n");
41         pr_debug("    type:        %d\n", kimage->type);
42         pr_debug("    start:       %lx\n", kimage->start);
43         pr_debug("    head:        %lx\n", kimage->head);
44         pr_debug("    nr_segments: %lu\n", kimage->nr_segments);
45         pr_debug("    kern_reloc: %pa\n", &kimage->arch.kern_reloc);
46
47         for (i = 0; i < kimage->nr_segments; i++) {
48                 pr_debug("      segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
49                         i,
50                         kimage->segment[i].mem,
51                         kimage->segment[i].mem + kimage->segment[i].memsz,
52                         kimage->segment[i].memsz,
53                         kimage->segment[i].memsz /  PAGE_SIZE);
54         }
55 }
56
57 void machine_kexec_cleanup(struct kimage *kimage)
58 {
59         /* Empty routine needed to avoid build errors. */
60 }
61
62 int machine_kexec_post_load(struct kimage *kimage)
63 {
64         void *reloc_code = page_to_virt(kimage->control_code_page);
65
66         memcpy(reloc_code, arm64_relocate_new_kernel,
67                arm64_relocate_new_kernel_size);
68         kimage->arch.kern_reloc = __pa(reloc_code);
69         kexec_image_info(kimage);
70
71         /*
72          * For execution with the MMU off, reloc_code needs to be cleaned to the
73          * PoC and invalidated from the I-cache.
74          */
75         dcache_clean_inval_poc((unsigned long)reloc_code,
76                             (unsigned long)reloc_code +
77                                     arm64_relocate_new_kernel_size);
78         icache_inval_pou((uintptr_t)reloc_code,
79                                 (uintptr_t)reloc_code +
80                                         arm64_relocate_new_kernel_size);
81
82         return 0;
83 }
84
85 /**
86  * machine_kexec_prepare - Prepare for a kexec reboot.
87  *
88  * Called from the core kexec code when a kernel image is loaded.
89  * Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus
90  * are stuck in the kernel. This avoids a panic once we hit machine_kexec().
91  */
92 int machine_kexec_prepare(struct kimage *kimage)
93 {
94         if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) {
95                 pr_err("Can't kexec: CPUs are stuck in the kernel.\n");
96                 return -EBUSY;
97         }
98
99         return 0;
100 }
101
102 /**
103  * kexec_list_flush - Helper to flush the kimage list and source pages to PoC.
104  */
105 static void kexec_list_flush(struct kimage *kimage)
106 {
107         kimage_entry_t *entry;
108
109         for (entry = &kimage->head; ; entry++) {
110                 unsigned int flag;
111                 unsigned long addr;
112
113                 /* flush the list entries. */
114                 dcache_clean_inval_poc((unsigned long)entry,
115                                     (unsigned long)entry +
116                                             sizeof(kimage_entry_t));
117
118                 flag = *entry & IND_FLAGS;
119                 if (flag == IND_DONE)
120                         break;
121
122                 addr = (unsigned long)phys_to_virt(*entry & PAGE_MASK);
123
124                 switch (flag) {
125                 case IND_INDIRECTION:
126                         /* Set entry point just before the new list page. */
127                         entry = (kimage_entry_t *)addr - 1;
128                         break;
129                 case IND_SOURCE:
130                         /* flush the source pages. */
131                         dcache_clean_inval_poc(addr, addr + PAGE_SIZE);
132                         break;
133                 case IND_DESTINATION:
134                         break;
135                 default:
136                         BUG();
137                 }
138         }
139 }
140
141 /**
142  * kexec_segment_flush - Helper to flush the kimage segments to PoC.
143  */
144 static void kexec_segment_flush(const struct kimage *kimage)
145 {
146         unsigned long i;
147
148         pr_debug("%s:\n", __func__);
149
150         for (i = 0; i < kimage->nr_segments; i++) {
151                 pr_debug("  segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
152                         i,
153                         kimage->segment[i].mem,
154                         kimage->segment[i].mem + kimage->segment[i].memsz,
155                         kimage->segment[i].memsz,
156                         kimage->segment[i].memsz /  PAGE_SIZE);
157
158                 dcache_clean_inval_poc(
159                         (unsigned long)phys_to_virt(kimage->segment[i].mem),
160                         (unsigned long)phys_to_virt(kimage->segment[i].mem) +
161                                 kimage->segment[i].memsz);
162         }
163 }
164
165 /**
166  * machine_kexec - Do the kexec reboot.
167  *
168  * Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC.
169  */
170 void machine_kexec(struct kimage *kimage)
171 {
172         bool in_kexec_crash = (kimage == kexec_crash_image);
173         bool stuck_cpus = cpus_are_stuck_in_kernel();
174
175         /*
176          * New cpus may have become stuck_in_kernel after we loaded the image.
177          */
178         BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1)));
179         WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()),
180                 "Some CPUs may be stale, kdump will be unreliable.\n");
181
182         /* Flush the kimage list and its buffers. */
183         kexec_list_flush(kimage);
184
185         /* Flush the new image if already in place. */
186         if ((kimage != kexec_crash_image) && (kimage->head & IND_DONE))
187                 kexec_segment_flush(kimage);
188
189         pr_info("Bye!\n");
190
191         local_daif_mask();
192
193         /*
194          * cpu_soft_restart will shutdown the MMU, disable data caches, then
195          * transfer control to the kern_reloc which contains a copy of
196          * the arm64_relocate_new_kernel routine.  arm64_relocate_new_kernel
197          * uses physical addressing to relocate the new image to its final
198          * position and transfers control to the image entry point when the
199          * relocation is complete.
200          * In kexec case, kimage->start points to purgatory assuming that
201          * kernel entry and dtb address are embedded in purgatory by
202          * userspace (kexec-tools).
203          * In kexec_file case, the kernel starts directly without purgatory.
204          */
205         cpu_soft_restart(kimage->arch.kern_reloc, kimage->head, kimage->start,
206                          kimage->arch.dtb_mem);
207
208         BUG(); /* Should never get here. */
209 }
210
211 static void machine_kexec_mask_interrupts(void)
212 {
213         unsigned int i;
214         struct irq_desc *desc;
215
216         for_each_irq_desc(i, desc) {
217                 struct irq_chip *chip;
218                 int ret;
219
220                 chip = irq_desc_get_chip(desc);
221                 if (!chip)
222                         continue;
223
224                 /*
225                  * First try to remove the active state. If this
226                  * fails, try to EOI the interrupt.
227                  */
228                 ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false);
229
230                 if (ret && irqd_irq_inprogress(&desc->irq_data) &&
231                     chip->irq_eoi)
232                         chip->irq_eoi(&desc->irq_data);
233
234                 if (chip->irq_mask)
235                         chip->irq_mask(&desc->irq_data);
236
237                 if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data))
238                         chip->irq_disable(&desc->irq_data);
239         }
240 }
241
242 /**
243  * machine_crash_shutdown - shutdown non-crashing cpus and save registers
244  */
245 void machine_crash_shutdown(struct pt_regs *regs)
246 {
247         local_irq_disable();
248
249         /* shutdown non-crashing cpus */
250         crash_smp_send_stop();
251
252         /* for crashing cpu */
253         crash_save_cpu(regs, smp_processor_id());
254         machine_kexec_mask_interrupts();
255
256         pr_info("Starting crashdump kernel...\n");
257 }
258
259 void arch_kexec_protect_crashkres(void)
260 {
261         int i;
262
263         kexec_segment_flush(kexec_crash_image);
264
265         for (i = 0; i < kexec_crash_image->nr_segments; i++)
266                 set_memory_valid(
267                         __phys_to_virt(kexec_crash_image->segment[i].mem),
268                         kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 0);
269 }
270
271 void arch_kexec_unprotect_crashkres(void)
272 {
273         int i;
274
275         for (i = 0; i < kexec_crash_image->nr_segments; i++)
276                 set_memory_valid(
277                         __phys_to_virt(kexec_crash_image->segment[i].mem),
278                         kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 1);
279 }
280
281 #ifdef CONFIG_HIBERNATION
282 /*
283  * To preserve the crash dump kernel image, the relevant memory segments
284  * should be mapped again around the hibernation.
285  */
286 void crash_prepare_suspend(void)
287 {
288         if (kexec_crash_image)
289                 arch_kexec_unprotect_crashkres();
290 }
291
292 void crash_post_resume(void)
293 {
294         if (kexec_crash_image)
295                 arch_kexec_protect_crashkres();
296 }
297
298 /*
299  * crash_is_nosave
300  *
301  * Return true only if a page is part of reserved memory for crash dump kernel,
302  * but does not hold any data of loaded kernel image.
303  *
304  * Note that all the pages in crash dump kernel memory have been initially
305  * marked as Reserved as memory was allocated via memblock_reserve().
306  *
307  * In hibernation, the pages which are Reserved and yet "nosave" are excluded
308  * from the hibernation iamge. crash_is_nosave() does thich check for crash
309  * dump kernel and will reduce the total size of hibernation image.
310  */
311
312 bool crash_is_nosave(unsigned long pfn)
313 {
314         int i;
315         phys_addr_t addr;
316
317         if (!crashk_res.end)
318                 return false;
319
320         /* in reserved memory? */
321         addr = __pfn_to_phys(pfn);
322         if ((addr < crashk_res.start) || (crashk_res.end < addr))
323                 return false;
324
325         if (!kexec_crash_image)
326                 return true;
327
328         /* not part of loaded kernel image? */
329         for (i = 0; i < kexec_crash_image->nr_segments; i++)
330                 if (addr >= kexec_crash_image->segment[i].mem &&
331                                 addr < (kexec_crash_image->segment[i].mem +
332                                         kexec_crash_image->segment[i].memsz))
333                         return false;
334
335         return true;
336 }
337
338 void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
339 {
340         unsigned long addr;
341         struct page *page;
342
343         for (addr = begin; addr < end; addr += PAGE_SIZE) {
344                 page = phys_to_page(addr);
345                 free_reserved_page(page);
346         }
347 }
348 #endif /* CONFIG_HIBERNATION */