Merge tag 'riscv-for-linus-5.19-rc7' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/sysfs.h>
71 #include <linux/types.h>
72 #include <linux/minmax.h>
73 #include <linux/mm.h>
74 #include <linux/cpu.h>
75 #include <linux/kasan.h>
76 #include <linux/percpu.h>
77
78 #include <asm/cpu.h>
79 #include <asm/cpufeature.h>
80 #include <asm/cpu_ops.h>
81 #include <asm/fpsimd.h>
82 #include <asm/insn.h>
83 #include <asm/kvm_host.h>
84 #include <asm/mmu_context.h>
85 #include <asm/mte.h>
86 #include <asm/processor.h>
87 #include <asm/smp.h>
88 #include <asm/sysreg.h>
89 #include <asm/traps.h>
90 #include <asm/vectors.h>
91 #include <asm/virt.h>
92
93 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
94 static unsigned long elf_hwcap __read_mostly;
95
96 #ifdef CONFIG_COMPAT
97 #define COMPAT_ELF_HWCAP_DEFAULT        \
98                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
99                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
100                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
101                                  COMPAT_HWCAP_LPAE)
102 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
103 unsigned int compat_elf_hwcap2 __read_mostly;
104 #endif
105
106 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
107 EXPORT_SYMBOL(cpu_hwcaps);
108 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
109
110 /* Need also bit for ARM64_CB_PATCH */
111 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
112
113 bool arm64_use_ng_mappings = false;
114 EXPORT_SYMBOL(arm64_use_ng_mappings);
115
116 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
117
118 /*
119  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
120  * support it?
121  */
122 static bool __read_mostly allow_mismatched_32bit_el0;
123
124 /*
125  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
126  * seen at least one CPU capable of 32-bit EL0.
127  */
128 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
129
130 /*
131  * Mask of CPUs supporting 32-bit EL0.
132  * Only valid if arm64_mismatched_32bit_el0 is enabled.
133  */
134 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
135
136 /*
137  * Flag to indicate if we have computed the system wide
138  * capabilities based on the boot time active CPUs. This
139  * will be used to determine if a new booting CPU should
140  * go through the verification process to make sure that it
141  * supports the system capabilities, without using a hotplug
142  * notifier. This is also used to decide if we could use
143  * the fast path for checking constant CPU caps.
144  */
145 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
146 EXPORT_SYMBOL(arm64_const_caps_ready);
147 static inline void finalize_system_capabilities(void)
148 {
149         static_branch_enable(&arm64_const_caps_ready);
150 }
151
152 void dump_cpu_features(void)
153 {
154         /* file-wide pr_fmt adds "CPU features: " prefix */
155         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
156 }
157
158 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
159 EXPORT_SYMBOL(cpu_hwcap_keys);
160
161 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
162         {                                               \
163                 .sign = SIGNED,                         \
164                 .visible = VISIBLE,                     \
165                 .strict = STRICT,                       \
166                 .type = TYPE,                           \
167                 .shift = SHIFT,                         \
168                 .width = WIDTH,                         \
169                 .safe_val = SAFE_VAL,                   \
170         }
171
172 /* Define a feature with unsigned values */
173 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
174         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
175
176 /* Define a feature with a signed value */
177 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
178         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
179
180 #define ARM64_FTR_END                                   \
181         {                                               \
182                 .width = 0,                             \
183         }
184
185 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
186
187 static bool __system_matches_cap(unsigned int n);
188
189 /*
190  * NOTE: Any changes to the visibility of features should be kept in
191  * sync with the documentation of the CPU feature register ABI.
192  */
193 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
194         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
199         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
200         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
201         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
203         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
204         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
205         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
206         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
207         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
208         ARM64_FTR_END,
209 };
210
211 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
212         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
215         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
217         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
219                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
220         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
221                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
222         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
223         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
224         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
225         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
226                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
227         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
228                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
229         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
230         ARM64_FTR_END,
231 };
232
233 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
234         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_CLEARBHB_SHIFT, 4, 0),
235         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
236                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_APA3_SHIFT, 4, 0),
237         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
238                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_GPA3_SHIFT, 4, 0),
239         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_RPRES_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_WFXT_SHIFT, 4, 0),
241         ARM64_FTR_END,
242 };
243
244 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
245         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
246         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
247         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
248         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
249         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
250         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
251         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
252                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
253         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
254         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
255         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
256         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
257         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
258         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
259         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
260         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
261         ARM64_FTR_END,
262 };
263
264 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
265         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
266                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SME_SHIFT, 4, 0),
267         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
268         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
269         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
270                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
271         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
272         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
273                                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
274         ARM64_FTR_END,
275 };
276
277 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
278         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
279                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
280         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
281                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
282         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
283                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
284         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
285                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
286         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
287                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
288         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
289                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
290         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
291                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
292         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
293                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
294         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
295                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
296         ARM64_FTR_END,
297 };
298
299 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
300         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
301                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_FA64_SHIFT, 1, 0),
302         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
303                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_I16I64_SHIFT, 4, 0),
304         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
305                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F64F64_SHIFT, 1, 0),
306         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
307                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_I8I32_SHIFT, 4, 0),
308         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
309                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F16F32_SHIFT, 1, 0),
310         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
311                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_B16F32_SHIFT, 1, 0),
312         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
313                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F32F32_SHIFT, 1, 0),
314         ARM64_FTR_END,
315 };
316
317 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
318         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
319         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
320         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
321         /*
322          * Page size not being supported at Stage-2 is not fatal. You
323          * just give up KVM if PAGE_SIZE isn't supported there. Go fix
324          * your favourite nesting hypervisor.
325          *
326          * There is a small corner case where the hypervisor explicitly
327          * advertises a given granule size at Stage-2 (value 2) on some
328          * vCPUs, and uses the fallback to Stage-1 (value 0) for other
329          * vCPUs. Although this is not forbidden by the architecture, it
330          * indicates that the hypervisor is being silly (or buggy).
331          *
332          * We make no effort to cope with this and pretend that if these
333          * fields are inconsistent across vCPUs, then it isn't worth
334          * trying to bring KVM up.
335          */
336         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
337         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
338         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
339         /*
340          * We already refuse to boot CPUs that don't support our configured
341          * page size, so we can only detect mismatches for a page size other
342          * than the one we're currently using. Unfortunately, SoCs like this
343          * exist in the wild so, even though we don't like it, we'll have to go
344          * along with it and treat them as non-strict.
345          */
346         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
347         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
348         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
349
350         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
351         /* Linux shouldn't care about secure memory */
352         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
353         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
354         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
355         /*
356          * Differing PARange is fine as long as all peripherals and memory are mapped
357          * within the minimum PARange of all CPUs
358          */
359         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
360         ARM64_FTR_END,
361 };
362
363 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
364         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_AFP_SHIFT, 4, 0),
365         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
366         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
367         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
368         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
369         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
370         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
371         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
372         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
373         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
374         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
375         ARM64_FTR_END,
376 };
377
378 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
379         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
380         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
381         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
382         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
383         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
384         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
385         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
386         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
387         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
388         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
389         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
390         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
391         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
392         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
393         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
394         ARM64_FTR_END,
395 };
396
397 static const struct arm64_ftr_bits ftr_ctr[] = {
398         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
399         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
400         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
401         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
402         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
403         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
404         /*
405          * Linux can handle differing I-cache policies. Userspace JITs will
406          * make use of *minLine.
407          * If we have differing I-cache policies, report it as the weakest - VIPT.
408          */
409         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),   /* L1Ip */
410         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
411         ARM64_FTR_END,
412 };
413
414 static struct arm64_ftr_override __ro_after_init no_override = { };
415
416 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
417         .name           = "SYS_CTR_EL0",
418         .ftr_bits       = ftr_ctr,
419         .override       = &no_override,
420 };
421
422 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
423         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
424         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
425         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
426         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
427         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
428         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
429         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
430         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
431         ARM64_FTR_END,
432 };
433
434 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
435         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
436         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
437         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
438         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
439         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
440         /*
441          * We can instantiate multiple PMU instances with different levels
442          * of support.
443          */
444         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
445         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
446         ARM64_FTR_END,
447 };
448
449 static const struct arm64_ftr_bits ftr_mvfr2[] = {
450         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
451         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
452         ARM64_FTR_END,
453 };
454
455 static const struct arm64_ftr_bits ftr_dczid[] = {
456         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
457         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
458         ARM64_FTR_END,
459 };
460
461 static const struct arm64_ftr_bits ftr_gmid[] = {
462         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, SYS_GMID_EL1_BS_SHIFT, 4, 0),
463         ARM64_FTR_END,
464 };
465
466 static const struct arm64_ftr_bits ftr_id_isar0[] = {
467         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
468         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
469         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
470         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
471         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
472         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
473         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
474         ARM64_FTR_END,
475 };
476
477 static const struct arm64_ftr_bits ftr_id_isar5[] = {
478         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
479         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
480         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
481         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
482         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
483         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
484         ARM64_FTR_END,
485 };
486
487 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
488         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
489         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
490         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
491         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
492         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
493         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
494         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
495
496         /*
497          * SpecSEI = 1 indicates that the PE might generate an SError on an
498          * external abort on speculative read. It is safe to assume that an
499          * SError might be generated than it will not be. Hence it has been
500          * classified as FTR_HIGHER_SAFE.
501          */
502         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
503         ARM64_FTR_END,
504 };
505
506 static const struct arm64_ftr_bits ftr_id_isar4[] = {
507         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
508         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
509         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
510         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
511         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
512         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
513         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
514         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
515         ARM64_FTR_END,
516 };
517
518 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
519         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
520         ARM64_FTR_END,
521 };
522
523 static const struct arm64_ftr_bits ftr_id_isar6[] = {
524         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
525         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
526         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
527         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
528         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
529         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
530         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
531         ARM64_FTR_END,
532 };
533
534 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
535         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
536         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
537         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
538         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
539         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
540         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
541         ARM64_FTR_END,
542 };
543
544 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
545         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
546         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
547         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
548         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
549         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
550         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
551         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
552         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
553         ARM64_FTR_END,
554 };
555
556 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
557         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
558         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
559         ARM64_FTR_END,
560 };
561
562 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
563         /* [31:28] TraceFilt */
564         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
565         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
566         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
567         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
568         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
569         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
570         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
571         ARM64_FTR_END,
572 };
573
574 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
575         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
576         ARM64_FTR_END,
577 };
578
579 static const struct arm64_ftr_bits ftr_zcr[] = {
580         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
581                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0),       /* LEN */
582         ARM64_FTR_END,
583 };
584
585 static const struct arm64_ftr_bits ftr_smcr[] = {
586         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
587                 SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0),     /* LEN */
588         ARM64_FTR_END,
589 };
590
591 /*
592  * Common ftr bits for a 32bit register with all hidden, strict
593  * attributes, with 4bit feature fields and a default safe value of
594  * 0. Covers the following 32bit registers:
595  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
596  */
597 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
598         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
599         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
600         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
601         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
602         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
603         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
604         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
605         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
606         ARM64_FTR_END,
607 };
608
609 /* Table for a single 32bit feature value */
610 static const struct arm64_ftr_bits ftr_single32[] = {
611         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
612         ARM64_FTR_END,
613 };
614
615 static const struct arm64_ftr_bits ftr_raz[] = {
616         ARM64_FTR_END,
617 };
618
619 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {      \
620                 .sys_id = id,                                   \
621                 .reg =  &(struct arm64_ftr_reg){                \
622                         .name = id_str,                         \
623                         .override = (ovr),                      \
624                         .ftr_bits = &((table)[0]),              \
625         }}
626
627 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)  \
628         __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
629
630 #define ARM64_FTR_REG(id, table)                \
631         __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
632
633 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
634 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
635 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
636 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
637
638 static const struct __ftr_reg_entry {
639         u32                     sys_id;
640         struct arm64_ftr_reg    *reg;
641 } arm64_ftr_regs[] = {
642
643         /* Op1 = 0, CRn = 0, CRm = 1 */
644         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
645         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
646         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
647         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
648         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
649         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
650         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
651
652         /* Op1 = 0, CRn = 0, CRm = 2 */
653         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
654         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
655         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
656         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
657         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
658         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
659         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
660         ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
661
662         /* Op1 = 0, CRn = 0, CRm = 3 */
663         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
664         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
665         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
666         ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
667         ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
668         ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
669
670         /* Op1 = 0, CRn = 0, CRm = 4 */
671         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
672         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
673                                &id_aa64pfr1_override),
674         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
675         ARM64_FTR_REG(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0),
676
677         /* Op1 = 0, CRn = 0, CRm = 5 */
678         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
679         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
680
681         /* Op1 = 0, CRn = 0, CRm = 6 */
682         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
683         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
684                                &id_aa64isar1_override),
685         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
686                                &id_aa64isar2_override),
687
688         /* Op1 = 0, CRn = 0, CRm = 7 */
689         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
690         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
691                                &id_aa64mmfr1_override),
692         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
693
694         /* Op1 = 0, CRn = 1, CRm = 2 */
695         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
696         ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
697
698         /* Op1 = 1, CRn = 0, CRm = 0 */
699         ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
700
701         /* Op1 = 3, CRn = 0, CRm = 0 */
702         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
703         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
704
705         /* Op1 = 3, CRn = 14, CRm = 0 */
706         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
707 };
708
709 static int search_cmp_ftr_reg(const void *id, const void *regp)
710 {
711         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
712 }
713
714 /*
715  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
716  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
717  * ascending order of sys_id, we use binary search to find a matching
718  * entry.
719  *
720  * returns - Upon success,  matching ftr_reg entry for id.
721  *         - NULL on failure. It is upto the caller to decide
722  *           the impact of a failure.
723  */
724 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
725 {
726         const struct __ftr_reg_entry *ret;
727
728         ret = bsearch((const void *)(unsigned long)sys_id,
729                         arm64_ftr_regs,
730                         ARRAY_SIZE(arm64_ftr_regs),
731                         sizeof(arm64_ftr_regs[0]),
732                         search_cmp_ftr_reg);
733         if (ret)
734                 return ret->reg;
735         return NULL;
736 }
737
738 /*
739  * get_arm64_ftr_reg - Looks up a feature register entry using
740  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
741  *
742  * returns - Upon success,  matching ftr_reg entry for id.
743  *         - NULL on failure but with an WARN_ON().
744  */
745 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
746 {
747         struct arm64_ftr_reg *reg;
748
749         reg = get_arm64_ftr_reg_nowarn(sys_id);
750
751         /*
752          * Requesting a non-existent register search is an error. Warn
753          * and let the caller handle it.
754          */
755         WARN_ON(!reg);
756         return reg;
757 }
758
759 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
760                                s64 ftr_val)
761 {
762         u64 mask = arm64_ftr_mask(ftrp);
763
764         reg &= ~mask;
765         reg |= (ftr_val << ftrp->shift) & mask;
766         return reg;
767 }
768
769 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
770                                 s64 cur)
771 {
772         s64 ret = 0;
773
774         switch (ftrp->type) {
775         case FTR_EXACT:
776                 ret = ftrp->safe_val;
777                 break;
778         case FTR_LOWER_SAFE:
779                 ret = min(new, cur);
780                 break;
781         case FTR_HIGHER_OR_ZERO_SAFE:
782                 if (!cur || !new)
783                         break;
784                 fallthrough;
785         case FTR_HIGHER_SAFE:
786                 ret = max(new, cur);
787                 break;
788         default:
789                 BUG();
790         }
791
792         return ret;
793 }
794
795 static void __init sort_ftr_regs(void)
796 {
797         unsigned int i;
798
799         for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
800                 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
801                 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
802                 unsigned int j = 0;
803
804                 /*
805                  * Features here must be sorted in descending order with respect
806                  * to their shift values and should not overlap with each other.
807                  */
808                 for (; ftr_bits->width != 0; ftr_bits++, j++) {
809                         unsigned int width = ftr_reg->ftr_bits[j].width;
810                         unsigned int shift = ftr_reg->ftr_bits[j].shift;
811                         unsigned int prev_shift;
812
813                         WARN((shift  + width) > 64,
814                                 "%s has invalid feature at shift %d\n",
815                                 ftr_reg->name, shift);
816
817                         /*
818                          * Skip the first feature. There is nothing to
819                          * compare against for now.
820                          */
821                         if (j == 0)
822                                 continue;
823
824                         prev_shift = ftr_reg->ftr_bits[j - 1].shift;
825                         WARN((shift + width) > prev_shift,
826                                 "%s has feature overlap at shift %d\n",
827                                 ftr_reg->name, shift);
828                 }
829
830                 /*
831                  * Skip the first register. There is nothing to
832                  * compare against for now.
833                  */
834                 if (i == 0)
835                         continue;
836                 /*
837                  * Registers here must be sorted in ascending order with respect
838                  * to sys_id for subsequent binary search in get_arm64_ftr_reg()
839                  * to work correctly.
840                  */
841                 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
842         }
843 }
844
845 /*
846  * Initialise the CPU feature register from Boot CPU values.
847  * Also initiliases the strict_mask for the register.
848  * Any bits that are not covered by an arm64_ftr_bits entry are considered
849  * RES0 for the system-wide value, and must strictly match.
850  */
851 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
852 {
853         u64 val = 0;
854         u64 strict_mask = ~0x0ULL;
855         u64 user_mask = 0;
856         u64 valid_mask = 0;
857
858         const struct arm64_ftr_bits *ftrp;
859         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
860
861         if (!reg)
862                 return;
863
864         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
865                 u64 ftr_mask = arm64_ftr_mask(ftrp);
866                 s64 ftr_new = arm64_ftr_value(ftrp, new);
867                 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
868
869                 if ((ftr_mask & reg->override->mask) == ftr_mask) {
870                         s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
871                         char *str = NULL;
872
873                         if (ftr_ovr != tmp) {
874                                 /* Unsafe, remove the override */
875                                 reg->override->mask &= ~ftr_mask;
876                                 reg->override->val &= ~ftr_mask;
877                                 tmp = ftr_ovr;
878                                 str = "ignoring override";
879                         } else if (ftr_new != tmp) {
880                                 /* Override was valid */
881                                 ftr_new = tmp;
882                                 str = "forced";
883                         } else if (ftr_ovr == tmp) {
884                                 /* Override was the safe value */
885                                 str = "already set";
886                         }
887
888                         if (str)
889                                 pr_warn("%s[%d:%d]: %s to %llx\n",
890                                         reg->name,
891                                         ftrp->shift + ftrp->width - 1,
892                                         ftrp->shift, str, tmp);
893                 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
894                         reg->override->val &= ~ftr_mask;
895                         pr_warn("%s[%d:%d]: impossible override, ignored\n",
896                                 reg->name,
897                                 ftrp->shift + ftrp->width - 1,
898                                 ftrp->shift);
899                 }
900
901                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
902
903                 valid_mask |= ftr_mask;
904                 if (!ftrp->strict)
905                         strict_mask &= ~ftr_mask;
906                 if (ftrp->visible)
907                         user_mask |= ftr_mask;
908                 else
909                         reg->user_val = arm64_ftr_set_value(ftrp,
910                                                             reg->user_val,
911                                                             ftrp->safe_val);
912         }
913
914         val &= valid_mask;
915
916         reg->sys_val = val;
917         reg->strict_mask = strict_mask;
918         reg->user_mask = user_mask;
919 }
920
921 extern const struct arm64_cpu_capabilities arm64_errata[];
922 static const struct arm64_cpu_capabilities arm64_features[];
923
924 static void __init
925 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
926 {
927         for (; caps->matches; caps++) {
928                 if (WARN(caps->capability >= ARM64_NCAPS,
929                         "Invalid capability %d\n", caps->capability))
930                         continue;
931                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
932                         "Duplicate entry for capability %d\n",
933                         caps->capability))
934                         continue;
935                 cpu_hwcaps_ptrs[caps->capability] = caps;
936         }
937 }
938
939 static void __init init_cpu_hwcaps_indirect_list(void)
940 {
941         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
942         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
943 }
944
945 static void __init setup_boot_cpu_capabilities(void);
946
947 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
948 {
949         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
950         init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
951         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
952         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
953         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
954         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
955         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
956         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
957         init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
958         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
959         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
960         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
961         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
962         init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
963         init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
964         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
965         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
966         init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
967         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
968         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
969         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
970 }
971
972 void __init init_cpu_features(struct cpuinfo_arm64 *info)
973 {
974         /* Before we start using the tables, make sure it is sorted */
975         sort_ftr_regs();
976
977         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
978         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
979         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
980         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
981         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
982         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
983         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
984         init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
985         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
986         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
987         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
988         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
989         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
990         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
991         init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
992
993         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
994                 init_32bit_cpu_features(&info->aarch32);
995
996         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
997                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
998                 vec_init_vq_map(ARM64_VEC_SVE);
999         }
1000
1001         if (id_aa64pfr1_sme(info->reg_id_aa64pfr1)) {
1002                 init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
1003                 if (IS_ENABLED(CONFIG_ARM64_SME))
1004                         vec_init_vq_map(ARM64_VEC_SME);
1005         }
1006
1007         if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1008                 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1009
1010         /*
1011          * Initialize the indirect array of CPU hwcaps capabilities pointers
1012          * before we handle the boot CPU below.
1013          */
1014         init_cpu_hwcaps_indirect_list();
1015
1016         /*
1017          * Detect and enable early CPU capabilities based on the boot CPU,
1018          * after we have initialised the CPU feature infrastructure.
1019          */
1020         setup_boot_cpu_capabilities();
1021 }
1022
1023 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1024 {
1025         const struct arm64_ftr_bits *ftrp;
1026
1027         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1028                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1029                 s64 ftr_new = arm64_ftr_value(ftrp, new);
1030
1031                 if (ftr_cur == ftr_new)
1032                         continue;
1033                 /* Find a safe value */
1034                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1035                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1036         }
1037
1038 }
1039
1040 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1041 {
1042         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1043
1044         if (!regp)
1045                 return 0;
1046
1047         update_cpu_ftr_reg(regp, val);
1048         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1049                 return 0;
1050         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1051                         regp->name, boot, cpu, val);
1052         return 1;
1053 }
1054
1055 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1056 {
1057         const struct arm64_ftr_bits *ftrp;
1058         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1059
1060         if (!regp)
1061                 return;
1062
1063         for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1064                 if (ftrp->shift == field) {
1065                         regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1066                         break;
1067                 }
1068         }
1069
1070         /* Bogus field? */
1071         WARN_ON(!ftrp->width);
1072 }
1073
1074 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1075                                          struct cpuinfo_arm64 *boot)
1076 {
1077         static bool boot_cpu_32bit_regs_overridden = false;
1078
1079         if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1080                 return;
1081
1082         if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1083                 return;
1084
1085         boot->aarch32 = info->aarch32;
1086         init_32bit_cpu_features(&boot->aarch32);
1087         boot_cpu_32bit_regs_overridden = true;
1088 }
1089
1090 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1091                                      struct cpuinfo_32bit *boot)
1092 {
1093         int taint = 0;
1094         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1095
1096         /*
1097          * If we don't have AArch32 at EL1, then relax the strictness of
1098          * EL1-dependent register fields to avoid spurious sanity check fails.
1099          */
1100         if (!id_aa64pfr0_32bit_el1(pfr0)) {
1101                 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
1102                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
1103                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
1104                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
1105                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
1106                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
1107         }
1108
1109         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1110                                       info->reg_id_dfr0, boot->reg_id_dfr0);
1111         taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1112                                       info->reg_id_dfr1, boot->reg_id_dfr1);
1113         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1114                                       info->reg_id_isar0, boot->reg_id_isar0);
1115         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1116                                       info->reg_id_isar1, boot->reg_id_isar1);
1117         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1118                                       info->reg_id_isar2, boot->reg_id_isar2);
1119         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1120                                       info->reg_id_isar3, boot->reg_id_isar3);
1121         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1122                                       info->reg_id_isar4, boot->reg_id_isar4);
1123         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1124                                       info->reg_id_isar5, boot->reg_id_isar5);
1125         taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1126                                       info->reg_id_isar6, boot->reg_id_isar6);
1127
1128         /*
1129          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1130          * ACTLR formats could differ across CPUs and therefore would have to
1131          * be trapped for virtualization anyway.
1132          */
1133         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1134                                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
1135         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1136                                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
1137         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1138                                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
1139         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1140                                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
1141         taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1142                                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
1143         taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1144                                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
1145         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1146                                       info->reg_id_pfr0, boot->reg_id_pfr0);
1147         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1148                                       info->reg_id_pfr1, boot->reg_id_pfr1);
1149         taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1150                                       info->reg_id_pfr2, boot->reg_id_pfr2);
1151         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1152                                       info->reg_mvfr0, boot->reg_mvfr0);
1153         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1154                                       info->reg_mvfr1, boot->reg_mvfr1);
1155         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1156                                       info->reg_mvfr2, boot->reg_mvfr2);
1157
1158         return taint;
1159 }
1160
1161 /*
1162  * Update system wide CPU feature registers with the values from a
1163  * non-boot CPU. Also performs SANITY checks to make sure that there
1164  * aren't any insane variations from that of the boot CPU.
1165  */
1166 void update_cpu_features(int cpu,
1167                          struct cpuinfo_arm64 *info,
1168                          struct cpuinfo_arm64 *boot)
1169 {
1170         int taint = 0;
1171
1172         /*
1173          * The kernel can handle differing I-cache policies, but otherwise
1174          * caches should look identical. Userspace JITs will make use of
1175          * *minLine.
1176          */
1177         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1178                                       info->reg_ctr, boot->reg_ctr);
1179
1180         /*
1181          * Userspace may perform DC ZVA instructions. Mismatched block sizes
1182          * could result in too much or too little memory being zeroed if a
1183          * process is preempted and migrated between CPUs.
1184          */
1185         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1186                                       info->reg_dczid, boot->reg_dczid);
1187
1188         /* If different, timekeeping will be broken (especially with KVM) */
1189         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1190                                       info->reg_cntfrq, boot->reg_cntfrq);
1191
1192         /*
1193          * The kernel uses self-hosted debug features and expects CPUs to
1194          * support identical debug features. We presently need CTX_CMPs, WRPs,
1195          * and BRPs to be identical.
1196          * ID_AA64DFR1 is currently RES0.
1197          */
1198         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1199                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1200         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1201                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1202         /*
1203          * Even in big.LITTLE, processors should be identical instruction-set
1204          * wise.
1205          */
1206         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1207                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1208         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1209                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1210         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1211                                       info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1212
1213         /*
1214          * Differing PARange support is fine as long as all peripherals and
1215          * memory are mapped within the minimum PARange of all CPUs.
1216          * Linux should not care about secure memory.
1217          */
1218         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1219                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1220         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1221                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1222         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1223                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1224
1225         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1226                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1227         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1228                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1229
1230         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1231                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1232
1233         taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1234                                       info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1235
1236         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1237                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1238                                         info->reg_zcr, boot->reg_zcr);
1239
1240                 /* Probe vector lengths, unless we already gave up on SVE */
1241                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1242                     !system_capabilities_finalized())
1243                         vec_update_vq_map(ARM64_VEC_SVE);
1244         }
1245
1246         if (id_aa64pfr1_sme(info->reg_id_aa64pfr1)) {
1247                 taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
1248                                         info->reg_smcr, boot->reg_smcr);
1249
1250                 /* Probe vector lengths, unless we already gave up on SME */
1251                 if (id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1)) &&
1252                     !system_capabilities_finalized())
1253                         vec_update_vq_map(ARM64_VEC_SME);
1254         }
1255
1256         /*
1257          * The kernel uses the LDGM/STGM instructions and the number of tags
1258          * they read/write depends on the GMID_EL1.BS field. Check that the
1259          * value is the same on all CPUs.
1260          */
1261         if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1262             id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1263                 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1264                                               info->reg_gmid, boot->reg_gmid);
1265         }
1266
1267         /*
1268          * If we don't have AArch32 at all then skip the checks entirely
1269          * as the register values may be UNKNOWN and we're not going to be
1270          * using them for anything.
1271          *
1272          * This relies on a sanitised view of the AArch64 ID registers
1273          * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1274          */
1275         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1276                 lazy_init_32bit_cpu_features(info, boot);
1277                 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1278                                                    &boot->aarch32);
1279         }
1280
1281         /*
1282          * Mismatched CPU features are a recipe for disaster. Don't even
1283          * pretend to support them.
1284          */
1285         if (taint) {
1286                 pr_warn_once("Unsupported CPU feature variation detected.\n");
1287                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1288         }
1289 }
1290
1291 u64 read_sanitised_ftr_reg(u32 id)
1292 {
1293         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1294
1295         if (!regp)
1296                 return 0;
1297         return regp->sys_val;
1298 }
1299 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1300
1301 #define read_sysreg_case(r)     \
1302         case r:         val = read_sysreg_s(r); break;
1303
1304 /*
1305  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1306  * Read the system register on the current CPU
1307  */
1308 u64 __read_sysreg_by_encoding(u32 sys_id)
1309 {
1310         struct arm64_ftr_reg *regp;
1311         u64 val;
1312
1313         switch (sys_id) {
1314         read_sysreg_case(SYS_ID_PFR0_EL1);
1315         read_sysreg_case(SYS_ID_PFR1_EL1);
1316         read_sysreg_case(SYS_ID_PFR2_EL1);
1317         read_sysreg_case(SYS_ID_DFR0_EL1);
1318         read_sysreg_case(SYS_ID_DFR1_EL1);
1319         read_sysreg_case(SYS_ID_MMFR0_EL1);
1320         read_sysreg_case(SYS_ID_MMFR1_EL1);
1321         read_sysreg_case(SYS_ID_MMFR2_EL1);
1322         read_sysreg_case(SYS_ID_MMFR3_EL1);
1323         read_sysreg_case(SYS_ID_MMFR4_EL1);
1324         read_sysreg_case(SYS_ID_MMFR5_EL1);
1325         read_sysreg_case(SYS_ID_ISAR0_EL1);
1326         read_sysreg_case(SYS_ID_ISAR1_EL1);
1327         read_sysreg_case(SYS_ID_ISAR2_EL1);
1328         read_sysreg_case(SYS_ID_ISAR3_EL1);
1329         read_sysreg_case(SYS_ID_ISAR4_EL1);
1330         read_sysreg_case(SYS_ID_ISAR5_EL1);
1331         read_sysreg_case(SYS_ID_ISAR6_EL1);
1332         read_sysreg_case(SYS_MVFR0_EL1);
1333         read_sysreg_case(SYS_MVFR1_EL1);
1334         read_sysreg_case(SYS_MVFR2_EL1);
1335
1336         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1337         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1338         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1339         read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1340         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1341         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1342         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1343         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1344         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1345         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1346         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1347         read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1348
1349         read_sysreg_case(SYS_CNTFRQ_EL0);
1350         read_sysreg_case(SYS_CTR_EL0);
1351         read_sysreg_case(SYS_DCZID_EL0);
1352
1353         default:
1354                 BUG();
1355                 return 0;
1356         }
1357
1358         regp  = get_arm64_ftr_reg(sys_id);
1359         if (regp) {
1360                 val &= ~regp->override->mask;
1361                 val |= (regp->override->val & regp->override->mask);
1362         }
1363
1364         return val;
1365 }
1366
1367 #include <linux/irqchip/arm-gic-v3.h>
1368
1369 static bool
1370 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1371 {
1372         int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1373                                                     entry->field_width,
1374                                                     entry->sign);
1375
1376         return val >= entry->min_field_value;
1377 }
1378
1379 static bool
1380 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1381 {
1382         u64 val;
1383
1384         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1385         if (scope == SCOPE_SYSTEM)
1386                 val = read_sanitised_ftr_reg(entry->sys_reg);
1387         else
1388                 val = __read_sysreg_by_encoding(entry->sys_reg);
1389
1390         return feature_matches(val, entry);
1391 }
1392
1393 const struct cpumask *system_32bit_el0_cpumask(void)
1394 {
1395         if (!system_supports_32bit_el0())
1396                 return cpu_none_mask;
1397
1398         if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1399                 return cpu_32bit_el0_mask;
1400
1401         return cpu_possible_mask;
1402 }
1403
1404 static int __init parse_32bit_el0_param(char *str)
1405 {
1406         allow_mismatched_32bit_el0 = true;
1407         return 0;
1408 }
1409 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1410
1411 static ssize_t aarch32_el0_show(struct device *dev,
1412                                 struct device_attribute *attr, char *buf)
1413 {
1414         const struct cpumask *mask = system_32bit_el0_cpumask();
1415
1416         return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1417 }
1418 static const DEVICE_ATTR_RO(aarch32_el0);
1419
1420 static int __init aarch32_el0_sysfs_init(void)
1421 {
1422         if (!allow_mismatched_32bit_el0)
1423                 return 0;
1424
1425         return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
1426 }
1427 device_initcall(aarch32_el0_sysfs_init);
1428
1429 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1430 {
1431         if (!has_cpuid_feature(entry, scope))
1432                 return allow_mismatched_32bit_el0;
1433
1434         if (scope == SCOPE_SYSTEM)
1435                 pr_info("detected: 32-bit EL0 Support\n");
1436
1437         return true;
1438 }
1439
1440 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1441 {
1442         bool has_sre;
1443
1444         if (!has_cpuid_feature(entry, scope))
1445                 return false;
1446
1447         has_sre = gic_enable_sre();
1448         if (!has_sre)
1449                 pr_warn_once("%s present but disabled by higher exception level\n",
1450                              entry->desc);
1451
1452         return has_sre;
1453 }
1454
1455 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1456 {
1457         u32 midr = read_cpuid_id();
1458
1459         /* Cavium ThunderX pass 1.x and 2.x */
1460         return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1461                 MIDR_CPU_VAR_REV(0, 0),
1462                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1463 }
1464
1465 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1466 {
1467         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1468
1469         return cpuid_feature_extract_signed_field(pfr0,
1470                                         ID_AA64PFR0_FP_SHIFT) < 0;
1471 }
1472
1473 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1474                           int scope)
1475 {
1476         u64 ctr;
1477
1478         if (scope == SCOPE_SYSTEM)
1479                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1480         else
1481                 ctr = read_cpuid_effective_cachetype();
1482
1483         return ctr & BIT(CTR_IDC_SHIFT);
1484 }
1485
1486 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1487 {
1488         /*
1489          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1490          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1491          * to the CTR_EL0 on this CPU and emulate it with the real/safe
1492          * value.
1493          */
1494         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1495                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1496 }
1497
1498 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1499                           int scope)
1500 {
1501         u64 ctr;
1502
1503         if (scope == SCOPE_SYSTEM)
1504                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1505         else
1506                 ctr = read_cpuid_cachetype();
1507
1508         return ctr & BIT(CTR_DIC_SHIFT);
1509 }
1510
1511 static bool __maybe_unused
1512 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1513 {
1514         /*
1515          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1516          * may share TLB entries with a CPU stuck in the crashed
1517          * kernel.
1518          */
1519         if (is_kdump_kernel())
1520                 return false;
1521
1522         if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1523                 return false;
1524
1525         return has_cpuid_feature(entry, scope);
1526 }
1527
1528 /*
1529  * This check is triggered during the early boot before the cpufeature
1530  * is initialised. Checking the status on the local CPU allows the boot
1531  * CPU to detect the need for non-global mappings and thus avoiding a
1532  * pagetable re-write after all the CPUs are booted. This check will be
1533  * anyway run on individual CPUs, allowing us to get the consistent
1534  * state once the SMP CPUs are up and thus make the switch to non-global
1535  * mappings if required.
1536  */
1537 bool kaslr_requires_kpti(void)
1538 {
1539         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1540                 return false;
1541
1542         /*
1543          * E0PD does a similar job to KPTI so can be used instead
1544          * where available.
1545          */
1546         if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1547                 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1548                 if (cpuid_feature_extract_unsigned_field(mmfr2,
1549                                                 ID_AA64MMFR2_E0PD_SHIFT))
1550                         return false;
1551         }
1552
1553         /*
1554          * Systems affected by Cavium erratum 24756 are incompatible
1555          * with KPTI.
1556          */
1557         if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1558                 extern const struct midr_range cavium_erratum_27456_cpus[];
1559
1560                 if (is_midr_in_range_list(read_cpuid_id(),
1561                                           cavium_erratum_27456_cpus))
1562                         return false;
1563         }
1564
1565         return kaslr_offset() > 0;
1566 }
1567
1568 static bool __meltdown_safe = true;
1569 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1570
1571 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1572                                 int scope)
1573 {
1574         /* List of CPUs that are not vulnerable and don't need KPTI */
1575         static const struct midr_range kpti_safe_list[] = {
1576                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1577                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1578                 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1579                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1580                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1581                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1582                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1583                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1584                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1585                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1586                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1587                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1588                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1589                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1590                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1591                 { /* sentinel */ }
1592         };
1593         char const *str = "kpti command line option";
1594         bool meltdown_safe;
1595
1596         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1597
1598         /* Defer to CPU feature registers */
1599         if (has_cpuid_feature(entry, scope))
1600                 meltdown_safe = true;
1601
1602         if (!meltdown_safe)
1603                 __meltdown_safe = false;
1604
1605         /*
1606          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1607          * ThunderX leads to apparent I-cache corruption of kernel text, which
1608          * ends as well as you might imagine. Don't even try. We cannot rely
1609          * on the cpus_have_*cap() helpers here to detect the CPU erratum
1610          * because cpucap detection order may change. However, since we know
1611          * affected CPUs are always in a homogeneous configuration, it is
1612          * safe to rely on this_cpu_has_cap() here.
1613          */
1614         if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1615                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1616                 __kpti_forced = -1;
1617         }
1618
1619         /* Useful for KASLR robustness */
1620         if (kaslr_requires_kpti()) {
1621                 if (!__kpti_forced) {
1622                         str = "KASLR";
1623                         __kpti_forced = 1;
1624                 }
1625         }
1626
1627         if (cpu_mitigations_off() && !__kpti_forced) {
1628                 str = "mitigations=off";
1629                 __kpti_forced = -1;
1630         }
1631
1632         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1633                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1634                 return false;
1635         }
1636
1637         /* Forced? */
1638         if (__kpti_forced) {
1639                 pr_info_once("kernel page table isolation forced %s by %s\n",
1640                              __kpti_forced > 0 ? "ON" : "OFF", str);
1641                 return __kpti_forced > 0;
1642         }
1643
1644         return !meltdown_safe;
1645 }
1646
1647 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1648 static void __nocfi
1649 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1650 {
1651         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1652         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1653         kpti_remap_fn *remap_fn;
1654
1655         int cpu = smp_processor_id();
1656
1657         if (__this_cpu_read(this_cpu_vector) == vectors) {
1658                 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1659
1660                 __this_cpu_write(this_cpu_vector, v);
1661         }
1662
1663         /*
1664          * We don't need to rewrite the page-tables if either we've done
1665          * it already or we have KASLR enabled and therefore have not
1666          * created any global mappings at all.
1667          */
1668         if (arm64_use_ng_mappings)
1669                 return;
1670
1671         remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings));
1672
1673         cpu_install_idmap();
1674         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1675         cpu_uninstall_idmap();
1676
1677         if (!cpu)
1678                 arm64_use_ng_mappings = true;
1679 }
1680 #else
1681 static void
1682 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1683 {
1684 }
1685 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1686
1687 static int __init parse_kpti(char *str)
1688 {
1689         bool enabled;
1690         int ret = strtobool(str, &enabled);
1691
1692         if (ret)
1693                 return ret;
1694
1695         __kpti_forced = enabled ? 1 : -1;
1696         return 0;
1697 }
1698 early_param("kpti", parse_kpti);
1699
1700 #ifdef CONFIG_ARM64_HW_AFDBM
1701 static inline void __cpu_enable_hw_dbm(void)
1702 {
1703         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1704
1705         write_sysreg(tcr, tcr_el1);
1706         isb();
1707         local_flush_tlb_all();
1708 }
1709
1710 static bool cpu_has_broken_dbm(void)
1711 {
1712         /* List of CPUs which have broken DBM support. */
1713         static const struct midr_range cpus[] = {
1714 #ifdef CONFIG_ARM64_ERRATUM_1024718
1715                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1716                 /* Kryo4xx Silver (rdpe => r1p0) */
1717                 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1718 #endif
1719 #ifdef CONFIG_ARM64_ERRATUM_2051678
1720                 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1721 #endif
1722                 {},
1723         };
1724
1725         return is_midr_in_range_list(read_cpuid_id(), cpus);
1726 }
1727
1728 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1729 {
1730         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1731                !cpu_has_broken_dbm();
1732 }
1733
1734 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1735 {
1736         if (cpu_can_use_dbm(cap))
1737                 __cpu_enable_hw_dbm();
1738 }
1739
1740 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1741                        int __unused)
1742 {
1743         static bool detected = false;
1744         /*
1745          * DBM is a non-conflicting feature. i.e, the kernel can safely
1746          * run a mix of CPUs with and without the feature. So, we
1747          * unconditionally enable the capability to allow any late CPU
1748          * to use the feature. We only enable the control bits on the
1749          * CPU, if it actually supports.
1750          *
1751          * We have to make sure we print the "feature" detection only
1752          * when at least one CPU actually uses it. So check if this CPU
1753          * can actually use it and print the message exactly once.
1754          *
1755          * This is safe as all CPUs (including secondary CPUs - due to the
1756          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1757          * goes through the "matches" check exactly once. Also if a CPU
1758          * matches the criteria, it is guaranteed that the CPU will turn
1759          * the DBM on, as the capability is unconditionally enabled.
1760          */
1761         if (!detected && cpu_can_use_dbm(cap)) {
1762                 detected = true;
1763                 pr_info("detected: Hardware dirty bit management\n");
1764         }
1765
1766         return true;
1767 }
1768
1769 #endif
1770
1771 #ifdef CONFIG_ARM64_AMU_EXTN
1772
1773 /*
1774  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1775  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1776  * information regarding all the events that it supports. When a CPU bit is
1777  * set in the cpumask, the user of this feature can only rely on the presence
1778  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1779  * counters are enabled or access to these counters is enabled by code
1780  * executed at higher exception levels (firmware).
1781  */
1782 static struct cpumask amu_cpus __read_mostly;
1783
1784 bool cpu_has_amu_feat(int cpu)
1785 {
1786         return cpumask_test_cpu(cpu, &amu_cpus);
1787 }
1788
1789 int get_cpu_with_amu_feat(void)
1790 {
1791         return cpumask_any(&amu_cpus);
1792 }
1793
1794 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1795 {
1796         if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1797                 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1798                         smp_processor_id());
1799                 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1800                 update_freq_counters_refs();
1801         }
1802 }
1803
1804 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1805                     int __unused)
1806 {
1807         /*
1808          * The AMU extension is a non-conflicting feature: the kernel can
1809          * safely run a mix of CPUs with and without support for the
1810          * activity monitors extension. Therefore, unconditionally enable
1811          * the capability to allow any late CPU to use the feature.
1812          *
1813          * With this feature unconditionally enabled, the cpu_enable
1814          * function will be called for all CPUs that match the criteria,
1815          * including secondary and hotplugged, marking this feature as
1816          * present on that respective CPU. The enable function will also
1817          * print a detection message.
1818          */
1819
1820         return true;
1821 }
1822 #else
1823 int get_cpu_with_amu_feat(void)
1824 {
1825         return nr_cpu_ids;
1826 }
1827 #endif
1828
1829 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1830 {
1831         return is_kernel_in_hyp_mode();
1832 }
1833
1834 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1835 {
1836         /*
1837          * Copy register values that aren't redirected by hardware.
1838          *
1839          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1840          * this value to tpidr_el2 before we patch the code. Once we've done
1841          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1842          * do anything here.
1843          */
1844         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1845                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1846 }
1847
1848 #ifdef CONFIG_ARM64_PAN
1849 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1850 {
1851         /*
1852          * We modify PSTATE. This won't work from irq context as the PSTATE
1853          * is discarded once we return from the exception.
1854          */
1855         WARN_ON_ONCE(in_interrupt());
1856
1857         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1858         set_pstate_pan(1);
1859 }
1860 #endif /* CONFIG_ARM64_PAN */
1861
1862 #ifdef CONFIG_ARM64_RAS_EXTN
1863 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1864 {
1865         /* Firmware may have left a deferred SError in this register. */
1866         write_sysreg_s(0, SYS_DISR_EL1);
1867 }
1868 #endif /* CONFIG_ARM64_RAS_EXTN */
1869
1870 #ifdef CONFIG_ARM64_PTR_AUTH
1871 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1872 {
1873         int boot_val, sec_val;
1874
1875         /* We don't expect to be called with SCOPE_SYSTEM */
1876         WARN_ON(scope == SCOPE_SYSTEM);
1877         /*
1878          * The ptr-auth feature levels are not intercompatible with lower
1879          * levels. Hence we must match ptr-auth feature level of the secondary
1880          * CPUs with that of the boot CPU. The level of boot cpu is fetched
1881          * from the sanitised register whereas direct register read is done for
1882          * the secondary CPUs.
1883          * The sanitised feature state is guaranteed to match that of the
1884          * boot CPU as a mismatched secondary CPU is parked before it gets
1885          * a chance to update the state, with the capability.
1886          */
1887         boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1888                                                entry->field_pos, entry->sign);
1889         if (scope & SCOPE_BOOT_CPU)
1890                 return boot_val >= entry->min_field_value;
1891         /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1892         sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1893                                               entry->field_pos, entry->sign);
1894         return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
1895 }
1896
1897 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1898                                      int scope)
1899 {
1900         bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1901         bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
1902         bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
1903
1904         return apa || apa3 || api;
1905 }
1906
1907 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1908                              int __unused)
1909 {
1910         bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1911         bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
1912         bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
1913
1914         return gpa || gpa3 || gpi;
1915 }
1916 #endif /* CONFIG_ARM64_PTR_AUTH */
1917
1918 #ifdef CONFIG_ARM64_E0PD
1919 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1920 {
1921         if (this_cpu_has_cap(ARM64_HAS_E0PD))
1922                 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1923 }
1924 #endif /* CONFIG_ARM64_E0PD */
1925
1926 #ifdef CONFIG_ARM64_PSEUDO_NMI
1927 static bool enable_pseudo_nmi;
1928
1929 static int __init early_enable_pseudo_nmi(char *p)
1930 {
1931         return strtobool(p, &enable_pseudo_nmi);
1932 }
1933 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1934
1935 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1936                                    int scope)
1937 {
1938         return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1939 }
1940 #endif
1941
1942 #ifdef CONFIG_ARM64_BTI
1943 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1944 {
1945         /*
1946          * Use of X16/X17 for tail-calls and trampolines that jump to
1947          * function entry points using BR is a requirement for
1948          * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1949          * So, be strict and forbid other BRs using other registers to
1950          * jump onto a PACIxSP instruction:
1951          */
1952         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1953         isb();
1954 }
1955 #endif /* CONFIG_ARM64_BTI */
1956
1957 #ifdef CONFIG_ARM64_MTE
1958 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1959 {
1960         sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
1961         isb();
1962
1963         /*
1964          * Clear the tags in the zero page. This needs to be done via the
1965          * linear map which has the Tagged attribute.
1966          */
1967         if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
1968                 mte_clear_page_tags(lm_alias(empty_zero_page));
1969
1970         kasan_init_hw_tags_cpu();
1971 }
1972 #endif /* CONFIG_ARM64_MTE */
1973
1974 #ifdef CONFIG_KVM
1975 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1976 {
1977         return kvm_get_mode() == KVM_MODE_PROTECTED;
1978 }
1979 #endif /* CONFIG_KVM */
1980
1981 /* Internal helper functions to match cpu capability type */
1982 static bool
1983 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1984 {
1985         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1986 }
1987
1988 static bool
1989 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1990 {
1991         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1992 }
1993
1994 static bool
1995 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1996 {
1997         return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1998 }
1999
2000 static const struct arm64_cpu_capabilities arm64_features[] = {
2001         {
2002                 .desc = "GIC system register CPU interface",
2003                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
2004                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2005                 .matches = has_useable_gicv3_cpuif,
2006                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2007                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2008                 .field_width = 4,
2009                 .sign = FTR_UNSIGNED,
2010                 .min_field_value = 1,
2011         },
2012         {
2013                 .desc = "Enhanced Counter Virtualization",
2014                 .capability = ARM64_HAS_ECV,
2015                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2016                 .matches = has_cpuid_feature,
2017                 .sys_reg = SYS_ID_AA64MMFR0_EL1,
2018                 .field_pos = ID_AA64MMFR0_ECV_SHIFT,
2019                 .field_width = 4,
2020                 .sign = FTR_UNSIGNED,
2021                 .min_field_value = 1,
2022         },
2023 #ifdef CONFIG_ARM64_PAN
2024         {
2025                 .desc = "Privileged Access Never",
2026                 .capability = ARM64_HAS_PAN,
2027                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2028                 .matches = has_cpuid_feature,
2029                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
2030                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
2031                 .field_width = 4,
2032                 .sign = FTR_UNSIGNED,
2033                 .min_field_value = 1,
2034                 .cpu_enable = cpu_enable_pan,
2035         },
2036 #endif /* CONFIG_ARM64_PAN */
2037 #ifdef CONFIG_ARM64_EPAN
2038         {
2039                 .desc = "Enhanced Privileged Access Never",
2040                 .capability = ARM64_HAS_EPAN,
2041                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2042                 .matches = has_cpuid_feature,
2043                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
2044                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
2045                 .field_width = 4,
2046                 .sign = FTR_UNSIGNED,
2047                 .min_field_value = 3,
2048         },
2049 #endif /* CONFIG_ARM64_EPAN */
2050 #ifdef CONFIG_ARM64_LSE_ATOMICS
2051         {
2052                 .desc = "LSE atomic instructions",
2053                 .capability = ARM64_HAS_LSE_ATOMICS,
2054                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2055                 .matches = has_cpuid_feature,
2056                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2057                 .field_pos = ID_AA64ISAR0_EL1_ATOMIC_SHIFT,
2058                 .field_width = 4,
2059                 .sign = FTR_UNSIGNED,
2060                 .min_field_value = 2,
2061         },
2062 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2063         {
2064                 .desc = "Software prefetching using PRFM",
2065                 .capability = ARM64_HAS_NO_HW_PREFETCH,
2066                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2067                 .matches = has_no_hw_prefetch,
2068         },
2069         {
2070                 .desc = "Virtualization Host Extensions",
2071                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2072                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2073                 .matches = runs_at_el2,
2074                 .cpu_enable = cpu_copy_el2regs,
2075         },
2076         {
2077                 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2078                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2079                 .matches = has_32bit_el0,
2080                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2081                 .sign = FTR_UNSIGNED,
2082                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
2083                 .field_width = 4,
2084                 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2085         },
2086 #ifdef CONFIG_KVM
2087         {
2088                 .desc = "32-bit EL1 Support",
2089                 .capability = ARM64_HAS_32BIT_EL1,
2090                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2091                 .matches = has_cpuid_feature,
2092                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2093                 .sign = FTR_UNSIGNED,
2094                 .field_pos = ID_AA64PFR0_EL1_SHIFT,
2095                 .field_width = 4,
2096                 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2097         },
2098         {
2099                 .desc = "Protected KVM",
2100                 .capability = ARM64_KVM_PROTECTED_MODE,
2101                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2102                 .matches = is_kvm_protected_mode,
2103         },
2104 #endif
2105         {
2106                 .desc = "Kernel page table isolation (KPTI)",
2107                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2108                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2109                 /*
2110                  * The ID feature fields below are used to indicate that
2111                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2112                  * more details.
2113                  */
2114                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2115                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
2116                 .field_width = 4,
2117                 .min_field_value = 1,
2118                 .matches = unmap_kernel_at_el0,
2119                 .cpu_enable = kpti_install_ng_mappings,
2120         },
2121         {
2122                 /* FP/SIMD is not implemented */
2123                 .capability = ARM64_HAS_NO_FPSIMD,
2124                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2125                 .min_field_value = 0,
2126                 .matches = has_no_fpsimd,
2127         },
2128 #ifdef CONFIG_ARM64_PMEM
2129         {
2130                 .desc = "Data cache clean to Point of Persistence",
2131                 .capability = ARM64_HAS_DCPOP,
2132                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2133                 .matches = has_cpuid_feature,
2134                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2135                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
2136                 .field_width = 4,
2137                 .min_field_value = 1,
2138         },
2139         {
2140                 .desc = "Data cache clean to Point of Deep Persistence",
2141                 .capability = ARM64_HAS_DCPODP,
2142                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2143                 .matches = has_cpuid_feature,
2144                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2145                 .sign = FTR_UNSIGNED,
2146                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
2147                 .field_width = 4,
2148                 .min_field_value = 2,
2149         },
2150 #endif
2151 #ifdef CONFIG_ARM64_SVE
2152         {
2153                 .desc = "Scalable Vector Extension",
2154                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2155                 .capability = ARM64_SVE,
2156                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2157                 .sign = FTR_UNSIGNED,
2158                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
2159                 .field_width = 4,
2160                 .min_field_value = ID_AA64PFR0_SVE,
2161                 .matches = has_cpuid_feature,
2162                 .cpu_enable = sve_kernel_enable,
2163         },
2164 #endif /* CONFIG_ARM64_SVE */
2165 #ifdef CONFIG_ARM64_RAS_EXTN
2166         {
2167                 .desc = "RAS Extension Support",
2168                 .capability = ARM64_HAS_RAS_EXTN,
2169                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2170                 .matches = has_cpuid_feature,
2171                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2172                 .sign = FTR_UNSIGNED,
2173                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
2174                 .field_width = 4,
2175                 .min_field_value = ID_AA64PFR0_RAS_V1,
2176                 .cpu_enable = cpu_clear_disr,
2177         },
2178 #endif /* CONFIG_ARM64_RAS_EXTN */
2179 #ifdef CONFIG_ARM64_AMU_EXTN
2180         {
2181                 /*
2182                  * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2183                  * Therefore, don't provide .desc as we don't want the detection
2184                  * message to be shown until at least one CPU is detected to
2185                  * support the feature.
2186                  */
2187                 .capability = ARM64_HAS_AMU_EXTN,
2188                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2189                 .matches = has_amu,
2190                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2191                 .sign = FTR_UNSIGNED,
2192                 .field_pos = ID_AA64PFR0_AMU_SHIFT,
2193                 .field_width = 4,
2194                 .min_field_value = ID_AA64PFR0_AMU,
2195                 .cpu_enable = cpu_amu_enable,
2196         },
2197 #endif /* CONFIG_ARM64_AMU_EXTN */
2198         {
2199                 .desc = "Data cache clean to the PoU not required for I/D coherence",
2200                 .capability = ARM64_HAS_CACHE_IDC,
2201                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2202                 .matches = has_cache_idc,
2203                 .cpu_enable = cpu_emulate_effective_ctr,
2204         },
2205         {
2206                 .desc = "Instruction cache invalidation not required for I/D coherence",
2207                 .capability = ARM64_HAS_CACHE_DIC,
2208                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2209                 .matches = has_cache_dic,
2210         },
2211         {
2212                 .desc = "Stage-2 Force Write-Back",
2213                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2214                 .capability = ARM64_HAS_STAGE2_FWB,
2215                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2216                 .sign = FTR_UNSIGNED,
2217                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
2218                 .field_width = 4,
2219                 .min_field_value = 1,
2220                 .matches = has_cpuid_feature,
2221         },
2222         {
2223                 .desc = "ARMv8.4 Translation Table Level",
2224                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2225                 .capability = ARM64_HAS_ARMv8_4_TTL,
2226                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2227                 .sign = FTR_UNSIGNED,
2228                 .field_pos = ID_AA64MMFR2_TTL_SHIFT,
2229                 .field_width = 4,
2230                 .min_field_value = 1,
2231                 .matches = has_cpuid_feature,
2232         },
2233         {
2234                 .desc = "TLB range maintenance instructions",
2235                 .capability = ARM64_HAS_TLB_RANGE,
2236                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2237                 .matches = has_cpuid_feature,
2238                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2239                 .field_pos = ID_AA64ISAR0_EL1_TLB_SHIFT,
2240                 .field_width = 4,
2241                 .sign = FTR_UNSIGNED,
2242                 .min_field_value = ID_AA64ISAR0_EL1_TLB_RANGE,
2243         },
2244 #ifdef CONFIG_ARM64_HW_AFDBM
2245         {
2246                 /*
2247                  * Since we turn this on always, we don't want the user to
2248                  * think that the feature is available when it may not be.
2249                  * So hide the description.
2250                  *
2251                  * .desc = "Hardware pagetable Dirty Bit Management",
2252                  *
2253                  */
2254                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2255                 .capability = ARM64_HW_DBM,
2256                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
2257                 .sign = FTR_UNSIGNED,
2258                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
2259                 .field_width = 4,
2260                 .min_field_value = 2,
2261                 .matches = has_hw_dbm,
2262                 .cpu_enable = cpu_enable_hw_dbm,
2263         },
2264 #endif
2265         {
2266                 .desc = "CRC32 instructions",
2267                 .capability = ARM64_HAS_CRC32,
2268                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2269                 .matches = has_cpuid_feature,
2270                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2271                 .field_pos = ID_AA64ISAR0_EL1_CRC32_SHIFT,
2272                 .field_width = 4,
2273                 .min_field_value = 1,
2274         },
2275         {
2276                 .desc = "Speculative Store Bypassing Safe (SSBS)",
2277                 .capability = ARM64_SSBS,
2278                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2279                 .matches = has_cpuid_feature,
2280                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2281                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
2282                 .field_width = 4,
2283                 .sign = FTR_UNSIGNED,
2284                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
2285         },
2286 #ifdef CONFIG_ARM64_CNP
2287         {
2288                 .desc = "Common not Private translations",
2289                 .capability = ARM64_HAS_CNP,
2290                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2291                 .matches = has_useable_cnp,
2292                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2293                 .sign = FTR_UNSIGNED,
2294                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2295                 .field_width = 4,
2296                 .min_field_value = 1,
2297                 .cpu_enable = cpu_enable_cnp,
2298         },
2299 #endif
2300         {
2301                 .desc = "Speculation barrier (SB)",
2302                 .capability = ARM64_HAS_SB,
2303                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2304                 .matches = has_cpuid_feature,
2305                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2306                 .field_pos = ID_AA64ISAR1_SB_SHIFT,
2307                 .field_width = 4,
2308                 .sign = FTR_UNSIGNED,
2309                 .min_field_value = 1,
2310         },
2311 #ifdef CONFIG_ARM64_PTR_AUTH
2312         {
2313                 .desc = "Address authentication (architected QARMA5 algorithm)",
2314                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2315                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2316                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2317                 .sign = FTR_UNSIGNED,
2318                 .field_pos = ID_AA64ISAR1_APA_SHIFT,
2319                 .field_width = 4,
2320                 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2321                 .matches = has_address_auth_cpucap,
2322         },
2323         {
2324                 .desc = "Address authentication (architected QARMA3 algorithm)",
2325                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2326                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2327                 .sys_reg = SYS_ID_AA64ISAR2_EL1,
2328                 .sign = FTR_UNSIGNED,
2329                 .field_pos = ID_AA64ISAR2_APA3_SHIFT,
2330                 .field_width = 4,
2331                 .min_field_value = ID_AA64ISAR2_APA3_ARCHITECTED,
2332                 .matches = has_address_auth_cpucap,
2333         },
2334         {
2335                 .desc = "Address authentication (IMP DEF algorithm)",
2336                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2337                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2338                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2339                 .sign = FTR_UNSIGNED,
2340                 .field_pos = ID_AA64ISAR1_API_SHIFT,
2341                 .field_width = 4,
2342                 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2343                 .matches = has_address_auth_cpucap,
2344         },
2345         {
2346                 .capability = ARM64_HAS_ADDRESS_AUTH,
2347                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2348                 .matches = has_address_auth_metacap,
2349         },
2350         {
2351                 .desc = "Generic authentication (architected QARMA5 algorithm)",
2352                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2353                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2354                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2355                 .sign = FTR_UNSIGNED,
2356                 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2357                 .field_width = 4,
2358                 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2359                 .matches = has_cpuid_feature,
2360         },
2361         {
2362                 .desc = "Generic authentication (architected QARMA3 algorithm)",
2363                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2364                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2365                 .sys_reg = SYS_ID_AA64ISAR2_EL1,
2366                 .sign = FTR_UNSIGNED,
2367                 .field_pos = ID_AA64ISAR2_GPA3_SHIFT,
2368                 .field_width = 4,
2369                 .min_field_value = ID_AA64ISAR2_GPA3_ARCHITECTED,
2370                 .matches = has_cpuid_feature,
2371         },
2372         {
2373                 .desc = "Generic authentication (IMP DEF algorithm)",
2374                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2375                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2376                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2377                 .sign = FTR_UNSIGNED,
2378                 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2379                 .field_width = 4,
2380                 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2381                 .matches = has_cpuid_feature,
2382         },
2383         {
2384                 .capability = ARM64_HAS_GENERIC_AUTH,
2385                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2386                 .matches = has_generic_auth,
2387         },
2388 #endif /* CONFIG_ARM64_PTR_AUTH */
2389 #ifdef CONFIG_ARM64_PSEUDO_NMI
2390         {
2391                 /*
2392                  * Depends on having GICv3
2393                  */
2394                 .desc = "IRQ priority masking",
2395                 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2396                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2397                 .matches = can_use_gic_priorities,
2398                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2399                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2400                 .field_width = 4,
2401                 .sign = FTR_UNSIGNED,
2402                 .min_field_value = 1,
2403         },
2404 #endif
2405 #ifdef CONFIG_ARM64_E0PD
2406         {
2407                 .desc = "E0PD",
2408                 .capability = ARM64_HAS_E0PD,
2409                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2410                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2411                 .sign = FTR_UNSIGNED,
2412                 .field_width = 4,
2413                 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2414                 .matches = has_cpuid_feature,
2415                 .min_field_value = 1,
2416                 .cpu_enable = cpu_enable_e0pd,
2417         },
2418 #endif
2419 #ifdef CONFIG_ARCH_RANDOM
2420         {
2421                 .desc = "Random Number Generator",
2422                 .capability = ARM64_HAS_RNG,
2423                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2424                 .matches = has_cpuid_feature,
2425                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2426                 .field_pos = ID_AA64ISAR0_EL1_RNDR_SHIFT,
2427                 .field_width = 4,
2428                 .sign = FTR_UNSIGNED,
2429                 .min_field_value = 1,
2430         },
2431 #endif
2432 #ifdef CONFIG_ARM64_BTI
2433         {
2434                 .desc = "Branch Target Identification",
2435                 .capability = ARM64_BTI,
2436 #ifdef CONFIG_ARM64_BTI_KERNEL
2437                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2438 #else
2439                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2440 #endif
2441                 .matches = has_cpuid_feature,
2442                 .cpu_enable = bti_enable,
2443                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2444                 .field_pos = ID_AA64PFR1_BT_SHIFT,
2445                 .field_width = 4,
2446                 .min_field_value = ID_AA64PFR1_BT_BTI,
2447                 .sign = FTR_UNSIGNED,
2448         },
2449 #endif
2450 #ifdef CONFIG_ARM64_MTE
2451         {
2452                 .desc = "Memory Tagging Extension",
2453                 .capability = ARM64_MTE,
2454                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2455                 .matches = has_cpuid_feature,
2456                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2457                 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2458                 .field_width = 4,
2459                 .min_field_value = ID_AA64PFR1_MTE,
2460                 .sign = FTR_UNSIGNED,
2461                 .cpu_enable = cpu_enable_mte,
2462         },
2463         {
2464                 .desc = "Asymmetric MTE Tag Check Fault",
2465                 .capability = ARM64_MTE_ASYMM,
2466                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2467                 .matches = has_cpuid_feature,
2468                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2469                 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2470                 .field_width = 4,
2471                 .min_field_value = ID_AA64PFR1_MTE_ASYMM,
2472                 .sign = FTR_UNSIGNED,
2473         },
2474 #endif /* CONFIG_ARM64_MTE */
2475         {
2476                 .desc = "RCpc load-acquire (LDAPR)",
2477                 .capability = ARM64_HAS_LDAPR,
2478                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2479                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2480                 .sign = FTR_UNSIGNED,
2481                 .field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2482                 .field_width = 4,
2483                 .matches = has_cpuid_feature,
2484                 .min_field_value = 1,
2485         },
2486 #ifdef CONFIG_ARM64_SME
2487         {
2488                 .desc = "Scalable Matrix Extension",
2489                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2490                 .capability = ARM64_SME,
2491                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2492                 .sign = FTR_UNSIGNED,
2493                 .field_pos = ID_AA64PFR1_SME_SHIFT,
2494                 .field_width = 4,
2495                 .min_field_value = ID_AA64PFR1_SME,
2496                 .matches = has_cpuid_feature,
2497                 .cpu_enable = sme_kernel_enable,
2498         },
2499         /* FA64 should be sorted after the base SME capability */
2500         {
2501                 .desc = "FA64",
2502                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2503                 .capability = ARM64_SME_FA64,
2504                 .sys_reg = SYS_ID_AA64SMFR0_EL1,
2505                 .sign = FTR_UNSIGNED,
2506                 .field_pos = ID_AA64SMFR0_FA64_SHIFT,
2507                 .field_width = 1,
2508                 .min_field_value = ID_AA64SMFR0_FA64,
2509                 .matches = has_cpuid_feature,
2510                 .cpu_enable = fa64_kernel_enable,
2511         },
2512 #endif /* CONFIG_ARM64_SME */
2513         {
2514                 .desc = "WFx with timeout",
2515                 .capability = ARM64_HAS_WFXT,
2516                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2517                 .sys_reg = SYS_ID_AA64ISAR2_EL1,
2518                 .sign = FTR_UNSIGNED,
2519                 .field_pos = ID_AA64ISAR2_WFXT_SHIFT,
2520                 .field_width = 4,
2521                 .matches = has_cpuid_feature,
2522                 .min_field_value = ID_AA64ISAR2_WFXT_SUPPORTED,
2523         },
2524         {},
2525 };
2526
2527 #define HWCAP_CPUID_MATCH(reg, field, width, s, min_value)                      \
2528                 .matches = has_cpuid_feature,                                   \
2529                 .sys_reg = reg,                                                 \
2530                 .field_pos = field,                                             \
2531                 .field_width = width,                                           \
2532                 .sign = s,                                                      \
2533                 .min_field_value = min_value,
2534
2535 #define __HWCAP_CAP(name, cap_type, cap)                                        \
2536                 .desc = name,                                                   \
2537                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2538                 .hwcap_type = cap_type,                                         \
2539                 .hwcap = cap,                                                   \
2540
2541 #define HWCAP_CAP(reg, field, width, s, min_value, cap_type, cap)               \
2542         {                                                                       \
2543                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2544                 HWCAP_CPUID_MATCH(reg, field, width, s, min_value)              \
2545         }
2546
2547 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2548         {                                                                       \
2549                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2550                 .matches = cpucap_multi_entry_cap_matches,                      \
2551                 .match_list = list,                                             \
2552         }
2553
2554 #define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2555         {                                                                       \
2556                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2557                 .matches = match,                                               \
2558         }
2559
2560 #ifdef CONFIG_ARM64_PTR_AUTH
2561 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2562         {
2563                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2564                                   4, FTR_UNSIGNED,
2565                                   ID_AA64ISAR1_APA_ARCHITECTED)
2566         },
2567         {
2568                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_APA3_SHIFT,
2569                                   4, FTR_UNSIGNED, ID_AA64ISAR2_APA3_ARCHITECTED)
2570         },
2571         {
2572                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2573                                   4, FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2574         },
2575         {},
2576 };
2577
2578 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2579         {
2580                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2581                                   4, FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2582         },
2583         {
2584                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_GPA3_SHIFT,
2585                                   4, FTR_UNSIGNED, ID_AA64ISAR2_GPA3_ARCHITECTED)
2586         },
2587         {
2588                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2589                                   4, FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2590         },
2591         {},
2592 };
2593 #endif
2594
2595 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2596         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2597         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2598         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2599         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2600         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2601         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2602         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2603         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2604         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2605         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2606         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2607         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2608         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2609         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2610         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2611         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2612         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2613         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2614         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2615         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2616         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2617         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2618         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2619         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2620         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2621         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2622         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2623         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2624         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2625         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2626         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2627         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2628         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2629 #ifdef CONFIG_ARM64_SVE
2630         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2631         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2632         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2633         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2634         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2635         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2636         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2637         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2638         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2639         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2640         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2641 #endif
2642         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2643 #ifdef CONFIG_ARM64_BTI
2644         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2645 #endif
2646 #ifdef CONFIG_ARM64_PTR_AUTH
2647         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2648         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2649 #endif
2650 #ifdef CONFIG_ARM64_MTE
2651         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2652         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_MTE_ASYMM, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2653 #endif /* CONFIG_ARM64_MTE */
2654         HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_ECV_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV),
2655         HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_AFP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP),
2656         HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_RPRES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2657         HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_WFXT_SHIFT, 4, FTR_UNSIGNED, ID_AA64ISAR2_WFXT_SUPPORTED, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2658 #ifdef CONFIG_ARM64_SME
2659         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SME_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_SME, CAP_HWCAP, KERNEL_HWCAP_SME),
2660         HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_FA64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_FA64, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2661         HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_I16I64_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_I16I64, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2662         HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F64F64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F64F64, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2663         HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_I8I32_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_I8I32, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2664         HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F16F32, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2665         HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_B16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_B16F32, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2666         HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F32F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F32F32, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2667 #endif /* CONFIG_ARM64_SME */
2668         {},
2669 };
2670
2671 #ifdef CONFIG_COMPAT
2672 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2673 {
2674         /*
2675          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2676          * in line with that of arm32 as in vfp_init(). We make sure that the
2677          * check is future proof, by making sure value is non-zero.
2678          */
2679         u32 mvfr1;
2680
2681         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2682         if (scope == SCOPE_SYSTEM)
2683                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2684         else
2685                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2686
2687         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2688                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2689                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2690 }
2691 #endif
2692
2693 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2694 #ifdef CONFIG_COMPAT
2695         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2696         HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2697         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2698         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2699         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2700         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2701         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2702         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2703         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2704         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2705 #endif
2706         {},
2707 };
2708
2709 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2710 {
2711         switch (cap->hwcap_type) {
2712         case CAP_HWCAP:
2713                 cpu_set_feature(cap->hwcap);
2714                 break;
2715 #ifdef CONFIG_COMPAT
2716         case CAP_COMPAT_HWCAP:
2717                 compat_elf_hwcap |= (u32)cap->hwcap;
2718                 break;
2719         case CAP_COMPAT_HWCAP2:
2720                 compat_elf_hwcap2 |= (u32)cap->hwcap;
2721                 break;
2722 #endif
2723         default:
2724                 WARN_ON(1);
2725                 break;
2726         }
2727 }
2728
2729 /* Check if we have a particular HWCAP enabled */
2730 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2731 {
2732         bool rc;
2733
2734         switch (cap->hwcap_type) {
2735         case CAP_HWCAP:
2736                 rc = cpu_have_feature(cap->hwcap);
2737                 break;
2738 #ifdef CONFIG_COMPAT
2739         case CAP_COMPAT_HWCAP:
2740                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2741                 break;
2742         case CAP_COMPAT_HWCAP2:
2743                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2744                 break;
2745 #endif
2746         default:
2747                 WARN_ON(1);
2748                 rc = false;
2749         }
2750
2751         return rc;
2752 }
2753
2754 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2755 {
2756         /* We support emulation of accesses to CPU ID feature registers */
2757         cpu_set_named_feature(CPUID);
2758         for (; hwcaps->matches; hwcaps++)
2759                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2760                         cap_set_elf_hwcap(hwcaps);
2761 }
2762
2763 static void update_cpu_capabilities(u16 scope_mask)
2764 {
2765         int i;
2766         const struct arm64_cpu_capabilities *caps;
2767
2768         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2769         for (i = 0; i < ARM64_NCAPS; i++) {
2770                 caps = cpu_hwcaps_ptrs[i];
2771                 if (!caps || !(caps->type & scope_mask) ||
2772                     cpus_have_cap(caps->capability) ||
2773                     !caps->matches(caps, cpucap_default_scope(caps)))
2774                         continue;
2775
2776                 if (caps->desc)
2777                         pr_info("detected: %s\n", caps->desc);
2778                 cpus_set_cap(caps->capability);
2779
2780                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2781                         set_bit(caps->capability, boot_capabilities);
2782         }
2783 }
2784
2785 /*
2786  * Enable all the available capabilities on this CPU. The capabilities
2787  * with BOOT_CPU scope are handled separately and hence skipped here.
2788  */
2789 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2790 {
2791         int i;
2792         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2793
2794         for_each_available_cap(i) {
2795                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2796
2797                 if (WARN_ON(!cap))
2798                         continue;
2799
2800                 if (!(cap->type & non_boot_scope))
2801                         continue;
2802
2803                 if (cap->cpu_enable)
2804                         cap->cpu_enable(cap);
2805         }
2806         return 0;
2807 }
2808
2809 /*
2810  * Run through the enabled capabilities and enable() it on all active
2811  * CPUs
2812  */
2813 static void __init enable_cpu_capabilities(u16 scope_mask)
2814 {
2815         int i;
2816         const struct arm64_cpu_capabilities *caps;
2817         bool boot_scope;
2818
2819         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2820         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2821
2822         for (i = 0; i < ARM64_NCAPS; i++) {
2823                 unsigned int num;
2824
2825                 caps = cpu_hwcaps_ptrs[i];
2826                 if (!caps || !(caps->type & scope_mask))
2827                         continue;
2828                 num = caps->capability;
2829                 if (!cpus_have_cap(num))
2830                         continue;
2831
2832                 /* Ensure cpus_have_const_cap(num) works */
2833                 static_branch_enable(&cpu_hwcap_keys[num]);
2834
2835                 if (boot_scope && caps->cpu_enable)
2836                         /*
2837                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
2838                          * before any secondary CPU boots. Thus, each secondary
2839                          * will enable the capability as appropriate via
2840                          * check_local_cpu_capabilities(). The only exception is
2841                          * the boot CPU, for which the capability must be
2842                          * enabled here. This approach avoids costly
2843                          * stop_machine() calls for this case.
2844                          */
2845                         caps->cpu_enable(caps);
2846         }
2847
2848         /*
2849          * For all non-boot scope capabilities, use stop_machine()
2850          * as it schedules the work allowing us to modify PSTATE,
2851          * instead of on_each_cpu() which uses an IPI, giving us a
2852          * PSTATE that disappears when we return.
2853          */
2854         if (!boot_scope)
2855                 stop_machine(cpu_enable_non_boot_scope_capabilities,
2856                              NULL, cpu_online_mask);
2857 }
2858
2859 /*
2860  * Run through the list of capabilities to check for conflicts.
2861  * If the system has already detected a capability, take necessary
2862  * action on this CPU.
2863  */
2864 static void verify_local_cpu_caps(u16 scope_mask)
2865 {
2866         int i;
2867         bool cpu_has_cap, system_has_cap;
2868         const struct arm64_cpu_capabilities *caps;
2869
2870         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2871
2872         for (i = 0; i < ARM64_NCAPS; i++) {
2873                 caps = cpu_hwcaps_ptrs[i];
2874                 if (!caps || !(caps->type & scope_mask))
2875                         continue;
2876
2877                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2878                 system_has_cap = cpus_have_cap(caps->capability);
2879
2880                 if (system_has_cap) {
2881                         /*
2882                          * Check if the new CPU misses an advertised feature,
2883                          * which is not safe to miss.
2884                          */
2885                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2886                                 break;
2887                         /*
2888                          * We have to issue cpu_enable() irrespective of
2889                          * whether the CPU has it or not, as it is enabeld
2890                          * system wide. It is upto the call back to take
2891                          * appropriate action on this CPU.
2892                          */
2893                         if (caps->cpu_enable)
2894                                 caps->cpu_enable(caps);
2895                 } else {
2896                         /*
2897                          * Check if the CPU has this capability if it isn't
2898                          * safe to have when the system doesn't.
2899                          */
2900                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2901                                 break;
2902                 }
2903         }
2904
2905         if (i < ARM64_NCAPS) {
2906                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2907                         smp_processor_id(), caps->capability,
2908                         caps->desc, system_has_cap, cpu_has_cap);
2909
2910                 if (cpucap_panic_on_conflict(caps))
2911                         cpu_panic_kernel();
2912                 else
2913                         cpu_die_early();
2914         }
2915 }
2916
2917 /*
2918  * Check for CPU features that are used in early boot
2919  * based on the Boot CPU value.
2920  */
2921 static void check_early_cpu_features(void)
2922 {
2923         verify_cpu_asid_bits();
2924
2925         verify_local_cpu_caps(SCOPE_BOOT_CPU);
2926 }
2927
2928 static void
2929 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2930 {
2931
2932         for (; caps->matches; caps++)
2933                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2934                         pr_crit("CPU%d: missing HWCAP: %s\n",
2935                                         smp_processor_id(), caps->desc);
2936                         cpu_die_early();
2937                 }
2938 }
2939
2940 static void verify_local_elf_hwcaps(void)
2941 {
2942         __verify_local_elf_hwcaps(arm64_elf_hwcaps);
2943
2944         if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
2945                 __verify_local_elf_hwcaps(compat_elf_hwcaps);
2946 }
2947
2948 static void verify_sve_features(void)
2949 {
2950         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2951         u64 zcr = read_zcr_features();
2952
2953         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2954         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2955
2956         if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
2957                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2958                         smp_processor_id());
2959                 cpu_die_early();
2960         }
2961
2962         /* Add checks on other ZCR bits here if necessary */
2963 }
2964
2965 static void verify_sme_features(void)
2966 {
2967         u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
2968         u64 smcr = read_smcr_features();
2969
2970         unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
2971         unsigned int len = smcr & SMCR_ELx_LEN_MASK;
2972
2973         if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
2974                 pr_crit("CPU%d: SME: vector length support mismatch\n",
2975                         smp_processor_id());
2976                 cpu_die_early();
2977         }
2978
2979         /* Add checks on other SMCR bits here if necessary */
2980 }
2981
2982 static void verify_hyp_capabilities(void)
2983 {
2984         u64 safe_mmfr1, mmfr0, mmfr1;
2985         int parange, ipa_max;
2986         unsigned int safe_vmid_bits, vmid_bits;
2987
2988         if (!IS_ENABLED(CONFIG_KVM))
2989                 return;
2990
2991         safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2992         mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2993         mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2994
2995         /* Verify VMID bits */
2996         safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2997         vmid_bits = get_vmid_bits(mmfr1);
2998         if (vmid_bits < safe_vmid_bits) {
2999                 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3000                 cpu_die_early();
3001         }
3002
3003         /* Verify IPA range */
3004         parange = cpuid_feature_extract_unsigned_field(mmfr0,
3005                                 ID_AA64MMFR0_PARANGE_SHIFT);
3006         ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3007         if (ipa_max < get_kvm_ipa_limit()) {
3008                 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3009                 cpu_die_early();
3010         }
3011 }
3012
3013 /*
3014  * Run through the enabled system capabilities and enable() it on this CPU.
3015  * The capabilities were decided based on the available CPUs at the boot time.
3016  * Any new CPU should match the system wide status of the capability. If the
3017  * new CPU doesn't have a capability which the system now has enabled, we
3018  * cannot do anything to fix it up and could cause unexpected failures. So
3019  * we park the CPU.
3020  */
3021 static void verify_local_cpu_capabilities(void)
3022 {
3023         /*
3024          * The capabilities with SCOPE_BOOT_CPU are checked from
3025          * check_early_cpu_features(), as they need to be verified
3026          * on all secondary CPUs.
3027          */
3028         verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3029         verify_local_elf_hwcaps();
3030
3031         if (system_supports_sve())
3032                 verify_sve_features();
3033
3034         if (system_supports_sme())
3035                 verify_sme_features();
3036
3037         if (is_hyp_mode_available())
3038                 verify_hyp_capabilities();
3039 }
3040
3041 void check_local_cpu_capabilities(void)
3042 {
3043         /*
3044          * All secondary CPUs should conform to the early CPU features
3045          * in use by the kernel based on boot CPU.
3046          */
3047         check_early_cpu_features();
3048
3049         /*
3050          * If we haven't finalised the system capabilities, this CPU gets
3051          * a chance to update the errata work arounds and local features.
3052          * Otherwise, this CPU should verify that it has all the system
3053          * advertised capabilities.
3054          */
3055         if (!system_capabilities_finalized())
3056                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3057         else
3058                 verify_local_cpu_capabilities();
3059 }
3060
3061 static void __init setup_boot_cpu_capabilities(void)
3062 {
3063         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3064         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3065         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3066         enable_cpu_capabilities(SCOPE_BOOT_CPU);
3067 }
3068
3069 bool this_cpu_has_cap(unsigned int n)
3070 {
3071         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3072                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3073
3074                 if (cap)
3075                         return cap->matches(cap, SCOPE_LOCAL_CPU);
3076         }
3077
3078         return false;
3079 }
3080 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3081
3082 /*
3083  * This helper function is used in a narrow window when,
3084  * - The system wide safe registers are set with all the SMP CPUs and,
3085  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
3086  * In all other cases cpus_have_{const_}cap() should be used.
3087  */
3088 static bool __maybe_unused __system_matches_cap(unsigned int n)
3089 {
3090         if (n < ARM64_NCAPS) {
3091                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3092
3093                 if (cap)
3094                         return cap->matches(cap, SCOPE_SYSTEM);
3095         }
3096         return false;
3097 }
3098
3099 void cpu_set_feature(unsigned int num)
3100 {
3101         WARN_ON(num >= MAX_CPU_FEATURES);
3102         elf_hwcap |= BIT(num);
3103 }
3104
3105 bool cpu_have_feature(unsigned int num)
3106 {
3107         WARN_ON(num >= MAX_CPU_FEATURES);
3108         return elf_hwcap & BIT(num);
3109 }
3110 EXPORT_SYMBOL_GPL(cpu_have_feature);
3111
3112 unsigned long cpu_get_elf_hwcap(void)
3113 {
3114         /*
3115          * We currently only populate the first 32 bits of AT_HWCAP. Please
3116          * note that for userspace compatibility we guarantee that bits 62
3117          * and 63 will always be returned as 0.
3118          */
3119         return lower_32_bits(elf_hwcap);
3120 }
3121
3122 unsigned long cpu_get_elf_hwcap2(void)
3123 {
3124         return upper_32_bits(elf_hwcap);
3125 }
3126
3127 static void __init setup_system_capabilities(void)
3128 {
3129         /*
3130          * We have finalised the system-wide safe feature
3131          * registers, finalise the capabilities that depend
3132          * on it. Also enable all the available capabilities,
3133          * that are not enabled already.
3134          */
3135         update_cpu_capabilities(SCOPE_SYSTEM);
3136         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3137 }
3138
3139 void __init setup_cpu_features(void)
3140 {
3141         u32 cwg;
3142
3143         setup_system_capabilities();
3144         setup_elf_hwcaps(arm64_elf_hwcaps);
3145
3146         if (system_supports_32bit_el0())
3147                 setup_elf_hwcaps(compat_elf_hwcaps);
3148
3149         if (system_uses_ttbr0_pan())
3150                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3151
3152         sve_setup();
3153         sme_setup();
3154         minsigstksz_setup();
3155
3156         /* Advertise that we have computed the system capabilities */
3157         finalize_system_capabilities();
3158
3159         /*
3160          * Check for sane CTR_EL0.CWG value.
3161          */
3162         cwg = cache_type_cwg();
3163         if (!cwg)
3164                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3165                         ARCH_DMA_MINALIGN);
3166 }
3167
3168 static int enable_mismatched_32bit_el0(unsigned int cpu)
3169 {
3170         /*
3171          * The first 32-bit-capable CPU we detected and so can no longer
3172          * be offlined by userspace. -1 indicates we haven't yet onlined
3173          * a 32-bit-capable CPU.
3174          */
3175         static int lucky_winner = -1;
3176
3177         struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3178         bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3179
3180         if (cpu_32bit) {
3181                 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3182                 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3183         }
3184
3185         if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3186                 return 0;
3187
3188         if (lucky_winner >= 0)
3189                 return 0;
3190
3191         /*
3192          * We've detected a mismatch. We need to keep one of our CPUs with
3193          * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3194          * every CPU in the system for a 32-bit task.
3195          */
3196         lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3197                                                          cpu_active_mask);
3198         get_cpu_device(lucky_winner)->offline_disabled = true;
3199         setup_elf_hwcaps(compat_elf_hwcaps);
3200         pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3201                 cpu, lucky_winner);
3202         return 0;
3203 }
3204
3205 static int __init init_32bit_el0_mask(void)
3206 {
3207         if (!allow_mismatched_32bit_el0)
3208                 return 0;
3209
3210         if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3211                 return -ENOMEM;
3212
3213         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3214                                  "arm64/mismatched_32bit_el0:online",
3215                                  enable_mismatched_32bit_el0, NULL);
3216 }
3217 subsys_initcall_sync(init_32bit_el0_mask);
3218
3219 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3220 {
3221         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
3222 }
3223
3224 /*
3225  * We emulate only the following system register space.
3226  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
3227  * See Table C5-6 System instruction encodings for System register accesses,
3228  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3229  */
3230 static inline bool __attribute_const__ is_emulated(u32 id)
3231 {
3232         return (sys_reg_Op0(id) == 0x3 &&
3233                 sys_reg_CRn(id) == 0x0 &&
3234                 sys_reg_Op1(id) == 0x0 &&
3235                 (sys_reg_CRm(id) == 0 ||
3236                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
3237 }
3238
3239 /*
3240  * With CRm == 0, reg should be one of :
3241  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3242  */
3243 static inline int emulate_id_reg(u32 id, u64 *valp)
3244 {
3245         switch (id) {
3246         case SYS_MIDR_EL1:
3247                 *valp = read_cpuid_id();
3248                 break;
3249         case SYS_MPIDR_EL1:
3250                 *valp = SYS_MPIDR_SAFE_VAL;
3251                 break;
3252         case SYS_REVIDR_EL1:
3253                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3254                 *valp = 0;
3255                 break;
3256         default:
3257                 return -EINVAL;
3258         }
3259
3260         return 0;
3261 }
3262
3263 static int emulate_sys_reg(u32 id, u64 *valp)
3264 {
3265         struct arm64_ftr_reg *regp;
3266
3267         if (!is_emulated(id))
3268                 return -EINVAL;
3269
3270         if (sys_reg_CRm(id) == 0)
3271                 return emulate_id_reg(id, valp);
3272
3273         regp = get_arm64_ftr_reg_nowarn(id);
3274         if (regp)
3275                 *valp = arm64_ftr_reg_user_value(regp);
3276         else
3277                 /*
3278                  * The untracked registers are either IMPLEMENTATION DEFINED
3279                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
3280                  */
3281                 *valp = 0;
3282         return 0;
3283 }
3284
3285 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3286 {
3287         int rc;
3288         u64 val;
3289
3290         rc = emulate_sys_reg(sys_reg, &val);
3291         if (!rc) {
3292                 pt_regs_write_reg(regs, rt, val);
3293                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3294         }
3295         return rc;
3296 }
3297
3298 static int emulate_mrs(struct pt_regs *regs, u32 insn)
3299 {
3300         u32 sys_reg, rt;
3301
3302         /*
3303          * sys_reg values are defined as used in mrs/msr instruction.
3304          * shift the imm value to get the encoding.
3305          */
3306         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3307         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3308         return do_emulate_mrs(regs, sys_reg, rt);
3309 }
3310
3311 static struct undef_hook mrs_hook = {
3312         .instr_mask = 0xffff0000,
3313         .instr_val  = 0xd5380000,
3314         .pstate_mask = PSR_AA32_MODE_MASK,
3315         .pstate_val = PSR_MODE_EL0t,
3316         .fn = emulate_mrs,
3317 };
3318
3319 static int __init enable_mrs_emulation(void)
3320 {
3321         register_undef_hook(&mrs_hook);
3322         return 0;
3323 }
3324
3325 core_initcall(enable_mrs_emulation);
3326
3327 enum mitigation_state arm64_get_meltdown_state(void)
3328 {
3329         if (__meltdown_safe)
3330                 return SPECTRE_UNAFFECTED;
3331
3332         if (arm64_kernel_unmapped_at_el0())
3333                 return SPECTRE_MITIGATED;
3334
3335         return SPECTRE_VULNERABLE;
3336 }
3337
3338 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3339                           char *buf)
3340 {
3341         switch (arm64_get_meltdown_state()) {
3342         case SPECTRE_UNAFFECTED:
3343                 return sprintf(buf, "Not affected\n");
3344
3345         case SPECTRE_MITIGATED:
3346                 return sprintf(buf, "Mitigation: PTI\n");
3347
3348         default:
3349                 return sprintf(buf, "Vulnerable\n");
3350         }
3351 }