arm64: Allow ID_AA64MMFR1_EL1.VH to be overridden from the command line
[linux-2.6-microblaze.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/types.h>
71 #include <linux/mm.h>
72 #include <linux/cpu.h>
73 #include <linux/kasan.h>
74 #include <asm/cpu.h>
75 #include <asm/cpufeature.h>
76 #include <asm/cpu_ops.h>
77 #include <asm/fpsimd.h>
78 #include <asm/kvm_host.h>
79 #include <asm/mmu_context.h>
80 #include <asm/mte.h>
81 #include <asm/processor.h>
82 #include <asm/sysreg.h>
83 #include <asm/traps.h>
84 #include <asm/virt.h>
85
86 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
87 static unsigned long elf_hwcap __read_mostly;
88
89 #ifdef CONFIG_COMPAT
90 #define COMPAT_ELF_HWCAP_DEFAULT        \
91                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
92                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
93                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
94                                  COMPAT_HWCAP_LPAE)
95 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
96 unsigned int compat_elf_hwcap2 __read_mostly;
97 #endif
98
99 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
100 EXPORT_SYMBOL(cpu_hwcaps);
101 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
102
103 /* Need also bit for ARM64_CB_PATCH */
104 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
105
106 bool arm64_use_ng_mappings = false;
107 EXPORT_SYMBOL(arm64_use_ng_mappings);
108
109 /*
110  * Flag to indicate if we have computed the system wide
111  * capabilities based on the boot time active CPUs. This
112  * will be used to determine if a new booting CPU should
113  * go through the verification process to make sure that it
114  * supports the system capabilities, without using a hotplug
115  * notifier. This is also used to decide if we could use
116  * the fast path for checking constant CPU caps.
117  */
118 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
119 EXPORT_SYMBOL(arm64_const_caps_ready);
120 static inline void finalize_system_capabilities(void)
121 {
122         static_branch_enable(&arm64_const_caps_ready);
123 }
124
125 void dump_cpu_features(void)
126 {
127         /* file-wide pr_fmt adds "CPU features: " prefix */
128         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
129 }
130
131 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
132 EXPORT_SYMBOL(cpu_hwcap_keys);
133
134 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
135         {                                               \
136                 .sign = SIGNED,                         \
137                 .visible = VISIBLE,                     \
138                 .strict = STRICT,                       \
139                 .type = TYPE,                           \
140                 .shift = SHIFT,                         \
141                 .width = WIDTH,                         \
142                 .safe_val = SAFE_VAL,                   \
143         }
144
145 /* Define a feature with unsigned values */
146 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
147         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
148
149 /* Define a feature with a signed value */
150 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
151         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
152
153 #define ARM64_FTR_END                                   \
154         {                                               \
155                 .width = 0,                             \
156         }
157
158 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
159
160 static bool __system_matches_cap(unsigned int n);
161
162 /*
163  * NOTE: Any changes to the visibility of features should be kept in
164  * sync with the documentation of the CPU feature register ABI.
165  */
166 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
167         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
169         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
170         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
171         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
172         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
173         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
174         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
175         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
176         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
177         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
178         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
179         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
180         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
181         ARM64_FTR_END,
182 };
183
184 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
185         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
189         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
192                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
194                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
199                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
200         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
201                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
203         ARM64_FTR_END,
204 };
205
206 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
207         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
208         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
210         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
214                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
215         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
217         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
218         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
219         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
220         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
221         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
222         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
223         ARM64_FTR_END,
224 };
225
226 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
227         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
228         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
229         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
230                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
231         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
232         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
233                                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
234         ARM64_FTR_END,
235 };
236
237 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
238         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
239                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
241                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
243                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
244         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
245                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
246         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
247                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
248         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
249                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
250         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
251                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
252         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
253                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
254         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
255                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
256         ARM64_FTR_END,
257 };
258
259 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
260         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
262         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
263         /*
264          * Page size not being supported at Stage-2 is not fatal. You
265          * just give up KVM if PAGE_SIZE isn't supported there. Go fix
266          * your favourite nesting hypervisor.
267          *
268          * There is a small corner case where the hypervisor explicitly
269          * advertises a given granule size at Stage-2 (value 2) on some
270          * vCPUs, and uses the fallback to Stage-1 (value 0) for other
271          * vCPUs. Although this is not forbidden by the architecture, it
272          * indicates that the hypervisor is being silly (or buggy).
273          *
274          * We make no effort to cope with this and pretend that if these
275          * fields are inconsistent across vCPUs, then it isn't worth
276          * trying to bring KVM up.
277          */
278         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
279         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
280         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
281         /*
282          * We already refuse to boot CPUs that don't support our configured
283          * page size, so we can only detect mismatches for a page size other
284          * than the one we're currently using. Unfortunately, SoCs like this
285          * exist in the wild so, even though we don't like it, we'll have to go
286          * along with it and treat them as non-strict.
287          */
288         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
289         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
290         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
291
292         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
293         /* Linux shouldn't care about secure memory */
294         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
295         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
296         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
297         /*
298          * Differing PARange is fine as long as all peripherals and memory are mapped
299          * within the minimum PARange of all CPUs
300          */
301         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
302         ARM64_FTR_END,
303 };
304
305 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
306         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
307         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
308         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
309         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
310         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
311         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
313         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
314         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
315         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
316         ARM64_FTR_END,
317 };
318
319 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
320         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
321         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
322         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
323         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
324         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
325         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
326         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
327         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
328         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
329         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
330         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
331         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
332         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
333         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
334         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
335         ARM64_FTR_END,
336 };
337
338 static const struct arm64_ftr_bits ftr_ctr[] = {
339         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
340         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
341         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
342         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
343         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
344         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
345         /*
346          * Linux can handle differing I-cache policies. Userspace JITs will
347          * make use of *minLine.
348          * If we have differing I-cache policies, report it as the weakest - VIPT.
349          */
350         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),   /* L1Ip */
351         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
352         ARM64_FTR_END,
353 };
354
355 static struct arm64_ftr_override __ro_after_init no_override = { };
356
357 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
358         .name           = "SYS_CTR_EL0",
359         .ftr_bits       = ftr_ctr,
360         .override       = &no_override,
361 };
362
363 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
364         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
365         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
366         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
367         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
368         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
369         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
370         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
371         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
372         ARM64_FTR_END,
373 };
374
375 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
376         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
377         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
378         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
379         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
380         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
381         /*
382          * We can instantiate multiple PMU instances with different levels
383          * of support.
384          */
385         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
386         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
387         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
388         ARM64_FTR_END,
389 };
390
391 static const struct arm64_ftr_bits ftr_mvfr2[] = {
392         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
393         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
394         ARM64_FTR_END,
395 };
396
397 static const struct arm64_ftr_bits ftr_dczid[] = {
398         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
399         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
400         ARM64_FTR_END,
401 };
402
403 static const struct arm64_ftr_bits ftr_id_isar0[] = {
404         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
405         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
406         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
407         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
408         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
409         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
410         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
411         ARM64_FTR_END,
412 };
413
414 static const struct arm64_ftr_bits ftr_id_isar5[] = {
415         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
416         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
417         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
418         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
419         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
420         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
421         ARM64_FTR_END,
422 };
423
424 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
425         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
426         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
427         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
428         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
429         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
430         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
431         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
432
433         /*
434          * SpecSEI = 1 indicates that the PE might generate an SError on an
435          * external abort on speculative read. It is safe to assume that an
436          * SError might be generated than it will not be. Hence it has been
437          * classified as FTR_HIGHER_SAFE.
438          */
439         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
440         ARM64_FTR_END,
441 };
442
443 static const struct arm64_ftr_bits ftr_id_isar4[] = {
444         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
445         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
446         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
447         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
448         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
449         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
450         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
451         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
452         ARM64_FTR_END,
453 };
454
455 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
456         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
457         ARM64_FTR_END,
458 };
459
460 static const struct arm64_ftr_bits ftr_id_isar6[] = {
461         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
462         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
463         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
464         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
465         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
466         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
467         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
468         ARM64_FTR_END,
469 };
470
471 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
472         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
473         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
474         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
475         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
476         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
477         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
478         ARM64_FTR_END,
479 };
480
481 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
482         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
483         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
484         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
485         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
486         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
487         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
488         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
489         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
490         ARM64_FTR_END,
491 };
492
493 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
494         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
495         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
496         ARM64_FTR_END,
497 };
498
499 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
500         /* [31:28] TraceFilt */
501         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
502         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
503         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
504         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
505         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
506         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
507         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
508         ARM64_FTR_END,
509 };
510
511 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
512         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
513         ARM64_FTR_END,
514 };
515
516 static const struct arm64_ftr_bits ftr_zcr[] = {
517         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
518                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
519         ARM64_FTR_END,
520 };
521
522 /*
523  * Common ftr bits for a 32bit register with all hidden, strict
524  * attributes, with 4bit feature fields and a default safe value of
525  * 0. Covers the following 32bit registers:
526  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
527  */
528 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
529         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
530         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
531         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
532         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
533         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
534         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
535         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
536         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
537         ARM64_FTR_END,
538 };
539
540 /* Table for a single 32bit feature value */
541 static const struct arm64_ftr_bits ftr_single32[] = {
542         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
543         ARM64_FTR_END,
544 };
545
546 static const struct arm64_ftr_bits ftr_raz[] = {
547         ARM64_FTR_END,
548 };
549
550 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) {                \
551                 .sys_id = id,                                   \
552                 .reg =  &(struct arm64_ftr_reg){                \
553                         .name = #id,                            \
554                         .override = (ovr),                      \
555                         .ftr_bits = &((table)[0]),              \
556         }}
557
558 #define ARM64_FTR_REG(id, table) ARM64_FTR_REG_OVERRIDE(id, table, &no_override)
559
560 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
561
562 static const struct __ftr_reg_entry {
563         u32                     sys_id;
564         struct arm64_ftr_reg    *reg;
565 } arm64_ftr_regs[] = {
566
567         /* Op1 = 0, CRn = 0, CRm = 1 */
568         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
569         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
570         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
571         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
572         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
573         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
574         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
575
576         /* Op1 = 0, CRn = 0, CRm = 2 */
577         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
578         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
579         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
580         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
581         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
582         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
583         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
584         ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
585
586         /* Op1 = 0, CRn = 0, CRm = 3 */
587         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
588         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
589         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
590         ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
591         ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
592         ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
593
594         /* Op1 = 0, CRn = 0, CRm = 4 */
595         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
596         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
597         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
598
599         /* Op1 = 0, CRn = 0, CRm = 5 */
600         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
601         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
602
603         /* Op1 = 0, CRn = 0, CRm = 6 */
604         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
605         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
606
607         /* Op1 = 0, CRn = 0, CRm = 7 */
608         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
609         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
610                                &id_aa64mmfr1_override),
611         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
612
613         /* Op1 = 0, CRn = 1, CRm = 2 */
614         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
615
616         /* Op1 = 3, CRn = 0, CRm = 0 */
617         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
618         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
619
620         /* Op1 = 3, CRn = 14, CRm = 0 */
621         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
622 };
623
624 static int search_cmp_ftr_reg(const void *id, const void *regp)
625 {
626         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
627 }
628
629 /*
630  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
631  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
632  * ascending order of sys_id, we use binary search to find a matching
633  * entry.
634  *
635  * returns - Upon success,  matching ftr_reg entry for id.
636  *         - NULL on failure. It is upto the caller to decide
637  *           the impact of a failure.
638  */
639 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
640 {
641         const struct __ftr_reg_entry *ret;
642
643         ret = bsearch((const void *)(unsigned long)sys_id,
644                         arm64_ftr_regs,
645                         ARRAY_SIZE(arm64_ftr_regs),
646                         sizeof(arm64_ftr_regs[0]),
647                         search_cmp_ftr_reg);
648         if (ret)
649                 return ret->reg;
650         return NULL;
651 }
652
653 /*
654  * get_arm64_ftr_reg - Looks up a feature register entry using
655  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
656  *
657  * returns - Upon success,  matching ftr_reg entry for id.
658  *         - NULL on failure but with an WARN_ON().
659  */
660 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
661 {
662         struct arm64_ftr_reg *reg;
663
664         reg = get_arm64_ftr_reg_nowarn(sys_id);
665
666         /*
667          * Requesting a non-existent register search is an error. Warn
668          * and let the caller handle it.
669          */
670         WARN_ON(!reg);
671         return reg;
672 }
673
674 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
675                                s64 ftr_val)
676 {
677         u64 mask = arm64_ftr_mask(ftrp);
678
679         reg &= ~mask;
680         reg |= (ftr_val << ftrp->shift) & mask;
681         return reg;
682 }
683
684 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
685                                 s64 cur)
686 {
687         s64 ret = 0;
688
689         switch (ftrp->type) {
690         case FTR_EXACT:
691                 ret = ftrp->safe_val;
692                 break;
693         case FTR_LOWER_SAFE:
694                 ret = new < cur ? new : cur;
695                 break;
696         case FTR_HIGHER_OR_ZERO_SAFE:
697                 if (!cur || !new)
698                         break;
699                 fallthrough;
700         case FTR_HIGHER_SAFE:
701                 ret = new > cur ? new : cur;
702                 break;
703         default:
704                 BUG();
705         }
706
707         return ret;
708 }
709
710 static void __init sort_ftr_regs(void)
711 {
712         unsigned int i;
713
714         for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
715                 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
716                 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
717                 unsigned int j = 0;
718
719                 /*
720                  * Features here must be sorted in descending order with respect
721                  * to their shift values and should not overlap with each other.
722                  */
723                 for (; ftr_bits->width != 0; ftr_bits++, j++) {
724                         unsigned int width = ftr_reg->ftr_bits[j].width;
725                         unsigned int shift = ftr_reg->ftr_bits[j].shift;
726                         unsigned int prev_shift;
727
728                         WARN((shift  + width) > 64,
729                                 "%s has invalid feature at shift %d\n",
730                                 ftr_reg->name, shift);
731
732                         /*
733                          * Skip the first feature. There is nothing to
734                          * compare against for now.
735                          */
736                         if (j == 0)
737                                 continue;
738
739                         prev_shift = ftr_reg->ftr_bits[j - 1].shift;
740                         WARN((shift + width) > prev_shift,
741                                 "%s has feature overlap at shift %d\n",
742                                 ftr_reg->name, shift);
743                 }
744
745                 /*
746                  * Skip the first register. There is nothing to
747                  * compare against for now.
748                  */
749                 if (i == 0)
750                         continue;
751                 /*
752                  * Registers here must be sorted in ascending order with respect
753                  * to sys_id for subsequent binary search in get_arm64_ftr_reg()
754                  * to work correctly.
755                  */
756                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
757         }
758 }
759
760 /*
761  * Initialise the CPU feature register from Boot CPU values.
762  * Also initiliases the strict_mask for the register.
763  * Any bits that are not covered by an arm64_ftr_bits entry are considered
764  * RES0 for the system-wide value, and must strictly match.
765  */
766 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
767 {
768         u64 val = 0;
769         u64 strict_mask = ~0x0ULL;
770         u64 user_mask = 0;
771         u64 valid_mask = 0;
772
773         const struct arm64_ftr_bits *ftrp;
774         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
775
776         if (!reg)
777                 return;
778
779         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
780                 u64 ftr_mask = arm64_ftr_mask(ftrp);
781                 s64 ftr_new = arm64_ftr_value(ftrp, new);
782                 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
783
784                 if ((ftr_mask & reg->override->mask) == ftr_mask) {
785                         s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
786                         char *str = NULL;
787
788                         if (ftr_ovr != tmp) {
789                                 /* Unsafe, remove the override */
790                                 reg->override->mask &= ~ftr_mask;
791                                 reg->override->val &= ~ftr_mask;
792                                 tmp = ftr_ovr;
793                                 str = "ignoring override";
794                         } else if (ftr_new != tmp) {
795                                 /* Override was valid */
796                                 ftr_new = tmp;
797                                 str = "forced";
798                         } else if (ftr_ovr == tmp) {
799                                 /* Override was the safe value */
800                                 str = "already set";
801                         }
802
803                         if (str)
804                                 pr_warn("%s[%d:%d]: %s to %llx\n",
805                                         reg->name,
806                                         ftrp->shift + ftrp->width - 1,
807                                         ftrp->shift, str, tmp);
808                 }
809
810                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
811
812                 valid_mask |= ftr_mask;
813                 if (!ftrp->strict)
814                         strict_mask &= ~ftr_mask;
815                 if (ftrp->visible)
816                         user_mask |= ftr_mask;
817                 else
818                         reg->user_val = arm64_ftr_set_value(ftrp,
819                                                             reg->user_val,
820                                                             ftrp->safe_val);
821         }
822
823         val &= valid_mask;
824
825         reg->sys_val = val;
826         reg->strict_mask = strict_mask;
827         reg->user_mask = user_mask;
828 }
829
830 extern const struct arm64_cpu_capabilities arm64_errata[];
831 static const struct arm64_cpu_capabilities arm64_features[];
832
833 static void __init
834 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
835 {
836         for (; caps->matches; caps++) {
837                 if (WARN(caps->capability >= ARM64_NCAPS,
838                         "Invalid capability %d\n", caps->capability))
839                         continue;
840                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
841                         "Duplicate entry for capability %d\n",
842                         caps->capability))
843                         continue;
844                 cpu_hwcaps_ptrs[caps->capability] = caps;
845         }
846 }
847
848 static void __init init_cpu_hwcaps_indirect_list(void)
849 {
850         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
851         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
852 }
853
854 static void __init setup_boot_cpu_capabilities(void);
855
856 void __init init_cpu_features(struct cpuinfo_arm64 *info)
857 {
858         /* Before we start using the tables, make sure it is sorted */
859         sort_ftr_regs();
860
861         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
862         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
863         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
864         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
865         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
866         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
867         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
868         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
869         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
870         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
871         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
872         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
873         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
874
875         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
876                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
877                 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
878                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
879                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
880                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
881                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
882                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
883                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
884                 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
885                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
886                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
887                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
888                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
889                 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
890                 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
891                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
892                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
893                 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
894                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
895                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
896                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
897         }
898
899         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
900                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
901                 sve_init_vq_map();
902         }
903
904         /*
905          * Initialize the indirect array of CPU hwcaps capabilities pointers
906          * before we handle the boot CPU below.
907          */
908         init_cpu_hwcaps_indirect_list();
909
910         /*
911          * Detect and enable early CPU capabilities based on the boot CPU,
912          * after we have initialised the CPU feature infrastructure.
913          */
914         setup_boot_cpu_capabilities();
915 }
916
917 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
918 {
919         const struct arm64_ftr_bits *ftrp;
920
921         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
922                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
923                 s64 ftr_new = arm64_ftr_value(ftrp, new);
924
925                 if (ftr_cur == ftr_new)
926                         continue;
927                 /* Find a safe value */
928                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
929                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
930         }
931
932 }
933
934 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
935 {
936         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
937
938         if (!regp)
939                 return 0;
940
941         update_cpu_ftr_reg(regp, val);
942         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
943                 return 0;
944         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
945                         regp->name, boot, cpu, val);
946         return 1;
947 }
948
949 static void relax_cpu_ftr_reg(u32 sys_id, int field)
950 {
951         const struct arm64_ftr_bits *ftrp;
952         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
953
954         if (!regp)
955                 return;
956
957         for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
958                 if (ftrp->shift == field) {
959                         regp->strict_mask &= ~arm64_ftr_mask(ftrp);
960                         break;
961                 }
962         }
963
964         /* Bogus field? */
965         WARN_ON(!ftrp->width);
966 }
967
968 static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info,
969                                      struct cpuinfo_arm64 *boot)
970 {
971         int taint = 0;
972         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
973
974         /*
975          * If we don't have AArch32 at all then skip the checks entirely
976          * as the register values may be UNKNOWN and we're not going to be
977          * using them for anything.
978          */
979         if (!id_aa64pfr0_32bit_el0(pfr0))
980                 return taint;
981
982         /*
983          * If we don't have AArch32 at EL1, then relax the strictness of
984          * EL1-dependent register fields to avoid spurious sanity check fails.
985          */
986         if (!id_aa64pfr0_32bit_el1(pfr0)) {
987                 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
988                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
989                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
990                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
991                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
992                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
993         }
994
995         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
996                                       info->reg_id_dfr0, boot->reg_id_dfr0);
997         taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
998                                       info->reg_id_dfr1, boot->reg_id_dfr1);
999         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1000                                       info->reg_id_isar0, boot->reg_id_isar0);
1001         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1002                                       info->reg_id_isar1, boot->reg_id_isar1);
1003         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1004                                       info->reg_id_isar2, boot->reg_id_isar2);
1005         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1006                                       info->reg_id_isar3, boot->reg_id_isar3);
1007         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1008                                       info->reg_id_isar4, boot->reg_id_isar4);
1009         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1010                                       info->reg_id_isar5, boot->reg_id_isar5);
1011         taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1012                                       info->reg_id_isar6, boot->reg_id_isar6);
1013
1014         /*
1015          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1016          * ACTLR formats could differ across CPUs and therefore would have to
1017          * be trapped for virtualization anyway.
1018          */
1019         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1020                                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
1021         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1022                                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
1023         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1024                                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
1025         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1026                                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
1027         taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1028                                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
1029         taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1030                                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
1031         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1032                                       info->reg_id_pfr0, boot->reg_id_pfr0);
1033         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1034                                       info->reg_id_pfr1, boot->reg_id_pfr1);
1035         taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1036                                       info->reg_id_pfr2, boot->reg_id_pfr2);
1037         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1038                                       info->reg_mvfr0, boot->reg_mvfr0);
1039         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1040                                       info->reg_mvfr1, boot->reg_mvfr1);
1041         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1042                                       info->reg_mvfr2, boot->reg_mvfr2);
1043
1044         return taint;
1045 }
1046
1047 /*
1048  * Update system wide CPU feature registers with the values from a
1049  * non-boot CPU. Also performs SANITY checks to make sure that there
1050  * aren't any insane variations from that of the boot CPU.
1051  */
1052 void update_cpu_features(int cpu,
1053                          struct cpuinfo_arm64 *info,
1054                          struct cpuinfo_arm64 *boot)
1055 {
1056         int taint = 0;
1057
1058         /*
1059          * The kernel can handle differing I-cache policies, but otherwise
1060          * caches should look identical. Userspace JITs will make use of
1061          * *minLine.
1062          */
1063         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1064                                       info->reg_ctr, boot->reg_ctr);
1065
1066         /*
1067          * Userspace may perform DC ZVA instructions. Mismatched block sizes
1068          * could result in too much or too little memory being zeroed if a
1069          * process is preempted and migrated between CPUs.
1070          */
1071         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1072                                       info->reg_dczid, boot->reg_dczid);
1073
1074         /* If different, timekeeping will be broken (especially with KVM) */
1075         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1076                                       info->reg_cntfrq, boot->reg_cntfrq);
1077
1078         /*
1079          * The kernel uses self-hosted debug features and expects CPUs to
1080          * support identical debug features. We presently need CTX_CMPs, WRPs,
1081          * and BRPs to be identical.
1082          * ID_AA64DFR1 is currently RES0.
1083          */
1084         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1085                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1086         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1087                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1088         /*
1089          * Even in big.LITTLE, processors should be identical instruction-set
1090          * wise.
1091          */
1092         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1093                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1094         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1095                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1096
1097         /*
1098          * Differing PARange support is fine as long as all peripherals and
1099          * memory are mapped within the minimum PARange of all CPUs.
1100          * Linux should not care about secure memory.
1101          */
1102         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1103                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1104         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1105                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1106         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1107                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1108
1109         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1110                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1111         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1112                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1113
1114         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1115                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1116
1117         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1118                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1119                                         info->reg_zcr, boot->reg_zcr);
1120
1121                 /* Probe vector lengths, unless we already gave up on SVE */
1122                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1123                     !system_capabilities_finalized())
1124                         sve_update_vq_map();
1125         }
1126
1127         /*
1128          * This relies on a sanitised view of the AArch64 ID registers
1129          * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1130          */
1131         taint |= update_32bit_cpu_features(cpu, info, boot);
1132
1133         /*
1134          * Mismatched CPU features are a recipe for disaster. Don't even
1135          * pretend to support them.
1136          */
1137         if (taint) {
1138                 pr_warn_once("Unsupported CPU feature variation detected.\n");
1139                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1140         }
1141 }
1142
1143 u64 read_sanitised_ftr_reg(u32 id)
1144 {
1145         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1146
1147         if (!regp)
1148                 return 0;
1149         return regp->sys_val;
1150 }
1151 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1152
1153 #define read_sysreg_case(r)     \
1154         case r:         val = read_sysreg_s(r); break;
1155
1156 /*
1157  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1158  * Read the system register on the current CPU
1159  */
1160 u64 __read_sysreg_by_encoding(u32 sys_id)
1161 {
1162         struct arm64_ftr_reg *regp;
1163         u64 val;
1164
1165         switch (sys_id) {
1166         read_sysreg_case(SYS_ID_PFR0_EL1);
1167         read_sysreg_case(SYS_ID_PFR1_EL1);
1168         read_sysreg_case(SYS_ID_PFR2_EL1);
1169         read_sysreg_case(SYS_ID_DFR0_EL1);
1170         read_sysreg_case(SYS_ID_DFR1_EL1);
1171         read_sysreg_case(SYS_ID_MMFR0_EL1);
1172         read_sysreg_case(SYS_ID_MMFR1_EL1);
1173         read_sysreg_case(SYS_ID_MMFR2_EL1);
1174         read_sysreg_case(SYS_ID_MMFR3_EL1);
1175         read_sysreg_case(SYS_ID_MMFR4_EL1);
1176         read_sysreg_case(SYS_ID_MMFR5_EL1);
1177         read_sysreg_case(SYS_ID_ISAR0_EL1);
1178         read_sysreg_case(SYS_ID_ISAR1_EL1);
1179         read_sysreg_case(SYS_ID_ISAR2_EL1);
1180         read_sysreg_case(SYS_ID_ISAR3_EL1);
1181         read_sysreg_case(SYS_ID_ISAR4_EL1);
1182         read_sysreg_case(SYS_ID_ISAR5_EL1);
1183         read_sysreg_case(SYS_ID_ISAR6_EL1);
1184         read_sysreg_case(SYS_MVFR0_EL1);
1185         read_sysreg_case(SYS_MVFR1_EL1);
1186         read_sysreg_case(SYS_MVFR2_EL1);
1187
1188         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1189         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1190         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1191         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1192         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1193         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1194         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1195         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1196         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1197         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1198
1199         read_sysreg_case(SYS_CNTFRQ_EL0);
1200         read_sysreg_case(SYS_CTR_EL0);
1201         read_sysreg_case(SYS_DCZID_EL0);
1202
1203         default:
1204                 BUG();
1205                 return 0;
1206         }
1207
1208         regp  = get_arm64_ftr_reg(sys_id);
1209         if (regp) {
1210                 val &= ~regp->override->mask;
1211                 val |= (regp->override->val & regp->override->mask);
1212         }
1213
1214         return val;
1215 }
1216
1217 #include <linux/irqchip/arm-gic-v3.h>
1218
1219 static bool
1220 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1221 {
1222         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1223
1224         return val >= entry->min_field_value;
1225 }
1226
1227 static bool
1228 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1229 {
1230         u64 val;
1231
1232         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1233         if (scope == SCOPE_SYSTEM)
1234                 val = read_sanitised_ftr_reg(entry->sys_reg);
1235         else
1236                 val = __read_sysreg_by_encoding(entry->sys_reg);
1237
1238         return feature_matches(val, entry);
1239 }
1240
1241 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1242 {
1243         bool has_sre;
1244
1245         if (!has_cpuid_feature(entry, scope))
1246                 return false;
1247
1248         has_sre = gic_enable_sre();
1249         if (!has_sre)
1250                 pr_warn_once("%s present but disabled by higher exception level\n",
1251                              entry->desc);
1252
1253         return has_sre;
1254 }
1255
1256 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1257 {
1258         u32 midr = read_cpuid_id();
1259
1260         /* Cavium ThunderX pass 1.x and 2.x */
1261         return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1262                 MIDR_CPU_VAR_REV(0, 0),
1263                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1264 }
1265
1266 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1267 {
1268         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1269
1270         return cpuid_feature_extract_signed_field(pfr0,
1271                                         ID_AA64PFR0_FP_SHIFT) < 0;
1272 }
1273
1274 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1275                           int scope)
1276 {
1277         u64 ctr;
1278
1279         if (scope == SCOPE_SYSTEM)
1280                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1281         else
1282                 ctr = read_cpuid_effective_cachetype();
1283
1284         return ctr & BIT(CTR_IDC_SHIFT);
1285 }
1286
1287 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1288 {
1289         /*
1290          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1291          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1292          * to the CTR_EL0 on this CPU and emulate it with the real/safe
1293          * value.
1294          */
1295         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1296                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1297 }
1298
1299 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1300                           int scope)
1301 {
1302         u64 ctr;
1303
1304         if (scope == SCOPE_SYSTEM)
1305                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1306         else
1307                 ctr = read_cpuid_cachetype();
1308
1309         return ctr & BIT(CTR_DIC_SHIFT);
1310 }
1311
1312 static bool __maybe_unused
1313 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1314 {
1315         /*
1316          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1317          * may share TLB entries with a CPU stuck in the crashed
1318          * kernel.
1319          */
1320          if (is_kdump_kernel())
1321                 return false;
1322
1323         return has_cpuid_feature(entry, scope);
1324 }
1325
1326 /*
1327  * This check is triggered during the early boot before the cpufeature
1328  * is initialised. Checking the status on the local CPU allows the boot
1329  * CPU to detect the need for non-global mappings and thus avoiding a
1330  * pagetable re-write after all the CPUs are booted. This check will be
1331  * anyway run on individual CPUs, allowing us to get the consistent
1332  * state once the SMP CPUs are up and thus make the switch to non-global
1333  * mappings if required.
1334  */
1335 bool kaslr_requires_kpti(void)
1336 {
1337         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1338                 return false;
1339
1340         /*
1341          * E0PD does a similar job to KPTI so can be used instead
1342          * where available.
1343          */
1344         if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1345                 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1346                 if (cpuid_feature_extract_unsigned_field(mmfr2,
1347                                                 ID_AA64MMFR2_E0PD_SHIFT))
1348                         return false;
1349         }
1350
1351         /*
1352          * Systems affected by Cavium erratum 24756 are incompatible
1353          * with KPTI.
1354          */
1355         if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1356                 extern const struct midr_range cavium_erratum_27456_cpus[];
1357
1358                 if (is_midr_in_range_list(read_cpuid_id(),
1359                                           cavium_erratum_27456_cpus))
1360                         return false;
1361         }
1362
1363         return kaslr_offset() > 0;
1364 }
1365
1366 static bool __meltdown_safe = true;
1367 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1368
1369 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1370                                 int scope)
1371 {
1372         /* List of CPUs that are not vulnerable and don't need KPTI */
1373         static const struct midr_range kpti_safe_list[] = {
1374                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1375                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1376                 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1377                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1378                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1379                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1380                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1381                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1382                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1383                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1384                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1385                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1386                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1387                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1388                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1389                 { /* sentinel */ }
1390         };
1391         char const *str = "kpti command line option";
1392         bool meltdown_safe;
1393
1394         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1395
1396         /* Defer to CPU feature registers */
1397         if (has_cpuid_feature(entry, scope))
1398                 meltdown_safe = true;
1399
1400         if (!meltdown_safe)
1401                 __meltdown_safe = false;
1402
1403         /*
1404          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1405          * ThunderX leads to apparent I-cache corruption of kernel text, which
1406          * ends as well as you might imagine. Don't even try.
1407          */
1408         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1409                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1410                 __kpti_forced = -1;
1411         }
1412
1413         /* Useful for KASLR robustness */
1414         if (kaslr_requires_kpti()) {
1415                 if (!__kpti_forced) {
1416                         str = "KASLR";
1417                         __kpti_forced = 1;
1418                 }
1419         }
1420
1421         if (cpu_mitigations_off() && !__kpti_forced) {
1422                 str = "mitigations=off";
1423                 __kpti_forced = -1;
1424         }
1425
1426         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1427                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1428                 return false;
1429         }
1430
1431         /* Forced? */
1432         if (__kpti_forced) {
1433                 pr_info_once("kernel page table isolation forced %s by %s\n",
1434                              __kpti_forced > 0 ? "ON" : "OFF", str);
1435                 return __kpti_forced > 0;
1436         }
1437
1438         return !meltdown_safe;
1439 }
1440
1441 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1442 static void
1443 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1444 {
1445         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1446         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1447         kpti_remap_fn *remap_fn;
1448
1449         int cpu = smp_processor_id();
1450
1451         /*
1452          * We don't need to rewrite the page-tables if either we've done
1453          * it already or we have KASLR enabled and therefore have not
1454          * created any global mappings at all.
1455          */
1456         if (arm64_use_ng_mappings)
1457                 return;
1458
1459         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1460
1461         cpu_install_idmap();
1462         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1463         cpu_uninstall_idmap();
1464
1465         if (!cpu)
1466                 arm64_use_ng_mappings = true;
1467
1468         return;
1469 }
1470 #else
1471 static void
1472 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1473 {
1474 }
1475 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1476
1477 static int __init parse_kpti(char *str)
1478 {
1479         bool enabled;
1480         int ret = strtobool(str, &enabled);
1481
1482         if (ret)
1483                 return ret;
1484
1485         __kpti_forced = enabled ? 1 : -1;
1486         return 0;
1487 }
1488 early_param("kpti", parse_kpti);
1489
1490 #ifdef CONFIG_ARM64_HW_AFDBM
1491 static inline void __cpu_enable_hw_dbm(void)
1492 {
1493         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1494
1495         write_sysreg(tcr, tcr_el1);
1496         isb();
1497         local_flush_tlb_all();
1498 }
1499
1500 static bool cpu_has_broken_dbm(void)
1501 {
1502         /* List of CPUs which have broken DBM support. */
1503         static const struct midr_range cpus[] = {
1504 #ifdef CONFIG_ARM64_ERRATUM_1024718
1505                 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1506                 /* Kryo4xx Silver (rdpe => r1p0) */
1507                 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1508 #endif
1509                 {},
1510         };
1511
1512         return is_midr_in_range_list(read_cpuid_id(), cpus);
1513 }
1514
1515 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1516 {
1517         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1518                !cpu_has_broken_dbm();
1519 }
1520
1521 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1522 {
1523         if (cpu_can_use_dbm(cap))
1524                 __cpu_enable_hw_dbm();
1525 }
1526
1527 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1528                        int __unused)
1529 {
1530         static bool detected = false;
1531         /*
1532          * DBM is a non-conflicting feature. i.e, the kernel can safely
1533          * run a mix of CPUs with and without the feature. So, we
1534          * unconditionally enable the capability to allow any late CPU
1535          * to use the feature. We only enable the control bits on the
1536          * CPU, if it actually supports.
1537          *
1538          * We have to make sure we print the "feature" detection only
1539          * when at least one CPU actually uses it. So check if this CPU
1540          * can actually use it and print the message exactly once.
1541          *
1542          * This is safe as all CPUs (including secondary CPUs - due to the
1543          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1544          * goes through the "matches" check exactly once. Also if a CPU
1545          * matches the criteria, it is guaranteed that the CPU will turn
1546          * the DBM on, as the capability is unconditionally enabled.
1547          */
1548         if (!detected && cpu_can_use_dbm(cap)) {
1549                 detected = true;
1550                 pr_info("detected: Hardware dirty bit management\n");
1551         }
1552
1553         return true;
1554 }
1555
1556 #endif
1557
1558 #ifdef CONFIG_ARM64_AMU_EXTN
1559
1560 /*
1561  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1562  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1563  * information regarding all the events that it supports. When a CPU bit is
1564  * set in the cpumask, the user of this feature can only rely on the presence
1565  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1566  * counters are enabled or access to these counters is enabled by code
1567  * executed at higher exception levels (firmware).
1568  */
1569 static struct cpumask amu_cpus __read_mostly;
1570
1571 bool cpu_has_amu_feat(int cpu)
1572 {
1573         return cpumask_test_cpu(cpu, &amu_cpus);
1574 }
1575
1576 int get_cpu_with_amu_feat(void)
1577 {
1578         return cpumask_any(&amu_cpus);
1579 }
1580
1581 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1582 {
1583         if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1584                 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1585                         smp_processor_id());
1586                 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1587                 update_freq_counters_refs();
1588         }
1589 }
1590
1591 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1592                     int __unused)
1593 {
1594         /*
1595          * The AMU extension is a non-conflicting feature: the kernel can
1596          * safely run a mix of CPUs with and without support for the
1597          * activity monitors extension. Therefore, unconditionally enable
1598          * the capability to allow any late CPU to use the feature.
1599          *
1600          * With this feature unconditionally enabled, the cpu_enable
1601          * function will be called for all CPUs that match the criteria,
1602          * including secondary and hotplugged, marking this feature as
1603          * present on that respective CPU. The enable function will also
1604          * print a detection message.
1605          */
1606
1607         return true;
1608 }
1609 #else
1610 int get_cpu_with_amu_feat(void)
1611 {
1612         return nr_cpu_ids;
1613 }
1614 #endif
1615
1616 #ifdef CONFIG_ARM64_VHE
1617 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1618 {
1619         return is_kernel_in_hyp_mode();
1620 }
1621
1622 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1623 {
1624         /*
1625          * Copy register values that aren't redirected by hardware.
1626          *
1627          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1628          * this value to tpidr_el2 before we patch the code. Once we've done
1629          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1630          * do anything here.
1631          */
1632         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1633                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1634 }
1635 #endif
1636
1637 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1638 {
1639         u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1640
1641         /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1642         WARN_ON(val & (7 << 27 | 7 << 21));
1643 }
1644
1645 #ifdef CONFIG_ARM64_PAN
1646 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1647 {
1648         /*
1649          * We modify PSTATE. This won't work from irq context as the PSTATE
1650          * is discarded once we return from the exception.
1651          */
1652         WARN_ON_ONCE(in_interrupt());
1653
1654         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1655         set_pstate_pan(1);
1656 }
1657 #endif /* CONFIG_ARM64_PAN */
1658
1659 #ifdef CONFIG_ARM64_RAS_EXTN
1660 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1661 {
1662         /* Firmware may have left a deferred SError in this register. */
1663         write_sysreg_s(0, SYS_DISR_EL1);
1664 }
1665 #endif /* CONFIG_ARM64_RAS_EXTN */
1666
1667 #ifdef CONFIG_ARM64_PTR_AUTH
1668 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1669 {
1670         int boot_val, sec_val;
1671
1672         /* We don't expect to be called with SCOPE_SYSTEM */
1673         WARN_ON(scope == SCOPE_SYSTEM);
1674         /*
1675          * The ptr-auth feature levels are not intercompatible with lower
1676          * levels. Hence we must match ptr-auth feature level of the secondary
1677          * CPUs with that of the boot CPU. The level of boot cpu is fetched
1678          * from the sanitised register whereas direct register read is done for
1679          * the secondary CPUs.
1680          * The sanitised feature state is guaranteed to match that of the
1681          * boot CPU as a mismatched secondary CPU is parked before it gets
1682          * a chance to update the state, with the capability.
1683          */
1684         boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1685                                                entry->field_pos, entry->sign);
1686         if (scope & SCOPE_BOOT_CPU)
1687                 return boot_val >= entry->min_field_value;
1688         /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1689         sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1690                                               entry->field_pos, entry->sign);
1691         return sec_val == boot_val;
1692 }
1693
1694 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1695                                      int scope)
1696 {
1697         return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
1698                has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1699 }
1700
1701 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1702                              int __unused)
1703 {
1704         return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1705                __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1706 }
1707 #endif /* CONFIG_ARM64_PTR_AUTH */
1708
1709 #ifdef CONFIG_ARM64_E0PD
1710 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1711 {
1712         if (this_cpu_has_cap(ARM64_HAS_E0PD))
1713                 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1714 }
1715 #endif /* CONFIG_ARM64_E0PD */
1716
1717 #ifdef CONFIG_ARM64_PSEUDO_NMI
1718 static bool enable_pseudo_nmi;
1719
1720 static int __init early_enable_pseudo_nmi(char *p)
1721 {
1722         return strtobool(p, &enable_pseudo_nmi);
1723 }
1724 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1725
1726 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1727                                    int scope)
1728 {
1729         return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1730 }
1731 #endif
1732
1733 #ifdef CONFIG_ARM64_BTI
1734 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1735 {
1736         /*
1737          * Use of X16/X17 for tail-calls and trampolines that jump to
1738          * function entry points using BR is a requirement for
1739          * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1740          * So, be strict and forbid other BRs using other registers to
1741          * jump onto a PACIxSP instruction:
1742          */
1743         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1744         isb();
1745 }
1746 #endif /* CONFIG_ARM64_BTI */
1747
1748 #ifdef CONFIG_ARM64_MTE
1749 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1750 {
1751         static bool cleared_zero_page = false;
1752
1753         /*
1754          * Clear the tags in the zero page. This needs to be done via the
1755          * linear map which has the Tagged attribute.
1756          */
1757         if (!cleared_zero_page) {
1758                 cleared_zero_page = true;
1759                 mte_clear_page_tags(lm_alias(empty_zero_page));
1760         }
1761
1762         kasan_init_hw_tags_cpu();
1763 }
1764 #endif /* CONFIG_ARM64_MTE */
1765
1766 #ifdef CONFIG_KVM
1767 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1768 {
1769         if (kvm_get_mode() != KVM_MODE_PROTECTED)
1770                 return false;
1771
1772         if (is_kernel_in_hyp_mode()) {
1773                 pr_warn("Protected KVM not available with VHE\n");
1774                 return false;
1775         }
1776
1777         return true;
1778 }
1779 #endif /* CONFIG_KVM */
1780
1781 /* Internal helper functions to match cpu capability type */
1782 static bool
1783 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1784 {
1785         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1786 }
1787
1788 static bool
1789 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1790 {
1791         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1792 }
1793
1794 static bool
1795 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1796 {
1797         return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1798 }
1799
1800 static const struct arm64_cpu_capabilities arm64_features[] = {
1801         {
1802                 .desc = "GIC system register CPU interface",
1803                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1804                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1805                 .matches = has_useable_gicv3_cpuif,
1806                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1807                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1808                 .sign = FTR_UNSIGNED,
1809                 .min_field_value = 1,
1810         },
1811 #ifdef CONFIG_ARM64_PAN
1812         {
1813                 .desc = "Privileged Access Never",
1814                 .capability = ARM64_HAS_PAN,
1815                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1816                 .matches = has_cpuid_feature,
1817                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1818                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1819                 .sign = FTR_UNSIGNED,
1820                 .min_field_value = 1,
1821                 .cpu_enable = cpu_enable_pan,
1822         },
1823 #endif /* CONFIG_ARM64_PAN */
1824 #ifdef CONFIG_ARM64_LSE_ATOMICS
1825         {
1826                 .desc = "LSE atomic instructions",
1827                 .capability = ARM64_HAS_LSE_ATOMICS,
1828                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1829                 .matches = has_cpuid_feature,
1830                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1831                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1832                 .sign = FTR_UNSIGNED,
1833                 .min_field_value = 2,
1834         },
1835 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1836         {
1837                 .desc = "Software prefetching using PRFM",
1838                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1839                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1840                 .matches = has_no_hw_prefetch,
1841         },
1842 #ifdef CONFIG_ARM64_VHE
1843         {
1844                 .desc = "Virtualization Host Extensions",
1845                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1846                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1847                 .matches = runs_at_el2,
1848                 .cpu_enable = cpu_copy_el2regs,
1849         },
1850 #endif  /* CONFIG_ARM64_VHE */
1851         {
1852                 .desc = "32-bit EL0 Support",
1853                 .capability = ARM64_HAS_32BIT_EL0,
1854                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1855                 .matches = has_cpuid_feature,
1856                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1857                 .sign = FTR_UNSIGNED,
1858                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1859                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1860         },
1861 #ifdef CONFIG_KVM
1862         {
1863                 .desc = "32-bit EL1 Support",
1864                 .capability = ARM64_HAS_32BIT_EL1,
1865                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1866                 .matches = has_cpuid_feature,
1867                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1868                 .sign = FTR_UNSIGNED,
1869                 .field_pos = ID_AA64PFR0_EL1_SHIFT,
1870                 .min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
1871         },
1872         {
1873                 .desc = "Protected KVM",
1874                 .capability = ARM64_KVM_PROTECTED_MODE,
1875                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1876                 .matches = is_kvm_protected_mode,
1877         },
1878 #endif
1879         {
1880                 .desc = "Kernel page table isolation (KPTI)",
1881                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1882                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1883                 /*
1884                  * The ID feature fields below are used to indicate that
1885                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1886                  * more details.
1887                  */
1888                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1889                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1890                 .min_field_value = 1,
1891                 .matches = unmap_kernel_at_el0,
1892                 .cpu_enable = kpti_install_ng_mappings,
1893         },
1894         {
1895                 /* FP/SIMD is not implemented */
1896                 .capability = ARM64_HAS_NO_FPSIMD,
1897                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1898                 .min_field_value = 0,
1899                 .matches = has_no_fpsimd,
1900         },
1901 #ifdef CONFIG_ARM64_PMEM
1902         {
1903                 .desc = "Data cache clean to Point of Persistence",
1904                 .capability = ARM64_HAS_DCPOP,
1905                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1906                 .matches = has_cpuid_feature,
1907                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1908                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1909                 .min_field_value = 1,
1910         },
1911         {
1912                 .desc = "Data cache clean to Point of Deep Persistence",
1913                 .capability = ARM64_HAS_DCPODP,
1914                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1915                 .matches = has_cpuid_feature,
1916                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1917                 .sign = FTR_UNSIGNED,
1918                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1919                 .min_field_value = 2,
1920         },
1921 #endif
1922 #ifdef CONFIG_ARM64_SVE
1923         {
1924                 .desc = "Scalable Vector Extension",
1925                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1926                 .capability = ARM64_SVE,
1927                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1928                 .sign = FTR_UNSIGNED,
1929                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1930                 .min_field_value = ID_AA64PFR0_SVE,
1931                 .matches = has_cpuid_feature,
1932                 .cpu_enable = sve_kernel_enable,
1933         },
1934 #endif /* CONFIG_ARM64_SVE */
1935 #ifdef CONFIG_ARM64_RAS_EXTN
1936         {
1937                 .desc = "RAS Extension Support",
1938                 .capability = ARM64_HAS_RAS_EXTN,
1939                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1940                 .matches = has_cpuid_feature,
1941                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1942                 .sign = FTR_UNSIGNED,
1943                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1944                 .min_field_value = ID_AA64PFR0_RAS_V1,
1945                 .cpu_enable = cpu_clear_disr,
1946         },
1947 #endif /* CONFIG_ARM64_RAS_EXTN */
1948 #ifdef CONFIG_ARM64_AMU_EXTN
1949         {
1950                 /*
1951                  * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1952                  * Therefore, don't provide .desc as we don't want the detection
1953                  * message to be shown until at least one CPU is detected to
1954                  * support the feature.
1955                  */
1956                 .capability = ARM64_HAS_AMU_EXTN,
1957                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1958                 .matches = has_amu,
1959                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1960                 .sign = FTR_UNSIGNED,
1961                 .field_pos = ID_AA64PFR0_AMU_SHIFT,
1962                 .min_field_value = ID_AA64PFR0_AMU,
1963                 .cpu_enable = cpu_amu_enable,
1964         },
1965 #endif /* CONFIG_ARM64_AMU_EXTN */
1966         {
1967                 .desc = "Data cache clean to the PoU not required for I/D coherence",
1968                 .capability = ARM64_HAS_CACHE_IDC,
1969                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1970                 .matches = has_cache_idc,
1971                 .cpu_enable = cpu_emulate_effective_ctr,
1972         },
1973         {
1974                 .desc = "Instruction cache invalidation not required for I/D coherence",
1975                 .capability = ARM64_HAS_CACHE_DIC,
1976                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1977                 .matches = has_cache_dic,
1978         },
1979         {
1980                 .desc = "Stage-2 Force Write-Back",
1981                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1982                 .capability = ARM64_HAS_STAGE2_FWB,
1983                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1984                 .sign = FTR_UNSIGNED,
1985                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1986                 .min_field_value = 1,
1987                 .matches = has_cpuid_feature,
1988                 .cpu_enable = cpu_has_fwb,
1989         },
1990         {
1991                 .desc = "ARMv8.4 Translation Table Level",
1992                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1993                 .capability = ARM64_HAS_ARMv8_4_TTL,
1994                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1995                 .sign = FTR_UNSIGNED,
1996                 .field_pos = ID_AA64MMFR2_TTL_SHIFT,
1997                 .min_field_value = 1,
1998                 .matches = has_cpuid_feature,
1999         },
2000         {
2001                 .desc = "TLB range maintenance instructions",
2002                 .capability = ARM64_HAS_TLB_RANGE,
2003                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2004                 .matches = has_cpuid_feature,
2005                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2006                 .field_pos = ID_AA64ISAR0_TLB_SHIFT,
2007                 .sign = FTR_UNSIGNED,
2008                 .min_field_value = ID_AA64ISAR0_TLB_RANGE,
2009         },
2010 #ifdef CONFIG_ARM64_HW_AFDBM
2011         {
2012                 /*
2013                  * Since we turn this on always, we don't want the user to
2014                  * think that the feature is available when it may not be.
2015                  * So hide the description.
2016                  *
2017                  * .desc = "Hardware pagetable Dirty Bit Management",
2018                  *
2019                  */
2020                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2021                 .capability = ARM64_HW_DBM,
2022                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
2023                 .sign = FTR_UNSIGNED,
2024                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
2025                 .min_field_value = 2,
2026                 .matches = has_hw_dbm,
2027                 .cpu_enable = cpu_enable_hw_dbm,
2028         },
2029 #endif
2030         {
2031                 .desc = "CRC32 instructions",
2032                 .capability = ARM64_HAS_CRC32,
2033                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2034                 .matches = has_cpuid_feature,
2035                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2036                 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
2037                 .min_field_value = 1,
2038         },
2039         {
2040                 .desc = "Speculative Store Bypassing Safe (SSBS)",
2041                 .capability = ARM64_SSBS,
2042                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2043                 .matches = has_cpuid_feature,
2044                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2045                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
2046                 .sign = FTR_UNSIGNED,
2047                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
2048         },
2049 #ifdef CONFIG_ARM64_CNP
2050         {
2051                 .desc = "Common not Private translations",
2052                 .capability = ARM64_HAS_CNP,
2053                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2054                 .matches = has_useable_cnp,
2055                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2056                 .sign = FTR_UNSIGNED,
2057                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2058                 .min_field_value = 1,
2059                 .cpu_enable = cpu_enable_cnp,
2060         },
2061 #endif
2062         {
2063                 .desc = "Speculation barrier (SB)",
2064                 .capability = ARM64_HAS_SB,
2065                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2066                 .matches = has_cpuid_feature,
2067                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2068                 .field_pos = ID_AA64ISAR1_SB_SHIFT,
2069                 .sign = FTR_UNSIGNED,
2070                 .min_field_value = 1,
2071         },
2072 #ifdef CONFIG_ARM64_PTR_AUTH
2073         {
2074                 .desc = "Address authentication (architected algorithm)",
2075                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
2076                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2077                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2078                 .sign = FTR_UNSIGNED,
2079                 .field_pos = ID_AA64ISAR1_APA_SHIFT,
2080                 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2081                 .matches = has_address_auth_cpucap,
2082         },
2083         {
2084                 .desc = "Address authentication (IMP DEF algorithm)",
2085                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2086                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2087                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2088                 .sign = FTR_UNSIGNED,
2089                 .field_pos = ID_AA64ISAR1_API_SHIFT,
2090                 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2091                 .matches = has_address_auth_cpucap,
2092         },
2093         {
2094                 .capability = ARM64_HAS_ADDRESS_AUTH,
2095                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2096                 .matches = has_address_auth_metacap,
2097         },
2098         {
2099                 .desc = "Generic authentication (architected algorithm)",
2100                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2101                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2102                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2103                 .sign = FTR_UNSIGNED,
2104                 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2105                 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2106                 .matches = has_cpuid_feature,
2107         },
2108         {
2109                 .desc = "Generic authentication (IMP DEF algorithm)",
2110                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2111                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2112                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2113                 .sign = FTR_UNSIGNED,
2114                 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2115                 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2116                 .matches = has_cpuid_feature,
2117         },
2118         {
2119                 .capability = ARM64_HAS_GENERIC_AUTH,
2120                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2121                 .matches = has_generic_auth,
2122         },
2123 #endif /* CONFIG_ARM64_PTR_AUTH */
2124 #ifdef CONFIG_ARM64_PSEUDO_NMI
2125         {
2126                 /*
2127                  * Depends on having GICv3
2128                  */
2129                 .desc = "IRQ priority masking",
2130                 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2131                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2132                 .matches = can_use_gic_priorities,
2133                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2134                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2135                 .sign = FTR_UNSIGNED,
2136                 .min_field_value = 1,
2137         },
2138 #endif
2139 #ifdef CONFIG_ARM64_E0PD
2140         {
2141                 .desc = "E0PD",
2142                 .capability = ARM64_HAS_E0PD,
2143                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2144                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2145                 .sign = FTR_UNSIGNED,
2146                 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2147                 .matches = has_cpuid_feature,
2148                 .min_field_value = 1,
2149                 .cpu_enable = cpu_enable_e0pd,
2150         },
2151 #endif
2152 #ifdef CONFIG_ARCH_RANDOM
2153         {
2154                 .desc = "Random Number Generator",
2155                 .capability = ARM64_HAS_RNG,
2156                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2157                 .matches = has_cpuid_feature,
2158                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2159                 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2160                 .sign = FTR_UNSIGNED,
2161                 .min_field_value = 1,
2162         },
2163 #endif
2164 #ifdef CONFIG_ARM64_BTI
2165         {
2166                 .desc = "Branch Target Identification",
2167                 .capability = ARM64_BTI,
2168 #ifdef CONFIG_ARM64_BTI_KERNEL
2169                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2170 #else
2171                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2172 #endif
2173                 .matches = has_cpuid_feature,
2174                 .cpu_enable = bti_enable,
2175                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2176                 .field_pos = ID_AA64PFR1_BT_SHIFT,
2177                 .min_field_value = ID_AA64PFR1_BT_BTI,
2178                 .sign = FTR_UNSIGNED,
2179         },
2180 #endif
2181 #ifdef CONFIG_ARM64_MTE
2182         {
2183                 .desc = "Memory Tagging Extension",
2184                 .capability = ARM64_MTE,
2185                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2186                 .matches = has_cpuid_feature,
2187                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2188                 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2189                 .min_field_value = ID_AA64PFR1_MTE,
2190                 .sign = FTR_UNSIGNED,
2191                 .cpu_enable = cpu_enable_mte,
2192         },
2193 #endif /* CONFIG_ARM64_MTE */
2194         {
2195                 .desc = "RCpc load-acquire (LDAPR)",
2196                 .capability = ARM64_HAS_LDAPR,
2197                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2198                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2199                 .sign = FTR_UNSIGNED,
2200                 .field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2201                 .matches = has_cpuid_feature,
2202                 .min_field_value = 1,
2203         },
2204         {},
2205 };
2206
2207 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
2208                 .matches = has_cpuid_feature,                                   \
2209                 .sys_reg = reg,                                                 \
2210                 .field_pos = field,                                             \
2211                 .sign = s,                                                      \
2212                 .min_field_value = min_value,
2213
2214 #define __HWCAP_CAP(name, cap_type, cap)                                        \
2215                 .desc = name,                                                   \
2216                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2217                 .hwcap_type = cap_type,                                         \
2218                 .hwcap = cap,                                                   \
2219
2220 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
2221         {                                                                       \
2222                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2223                 HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
2224         }
2225
2226 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2227         {                                                                       \
2228                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2229                 .matches = cpucap_multi_entry_cap_matches,                      \
2230                 .match_list = list,                                             \
2231         }
2232
2233 #define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2234         {                                                                       \
2235                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2236                 .matches = match,                                               \
2237         }
2238
2239 #ifdef CONFIG_ARM64_PTR_AUTH
2240 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2241         {
2242                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2243                                   FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2244         },
2245         {
2246                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2247                                   FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2248         },
2249         {},
2250 };
2251
2252 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2253         {
2254                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2255                                   FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2256         },
2257         {
2258                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2259                                   FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2260         },
2261         {},
2262 };
2263 #endif
2264
2265 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2266         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2267         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2268         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2269         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2270         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2271         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2272         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2273         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2274         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2275         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2276         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2277         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2278         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2279         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2280         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2281         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2282         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2283         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2284         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2285         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2286         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2287         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2288         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2289         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2290         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2291         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2292         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2293         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2294         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2295         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2296         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2297         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2298         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2299 #ifdef CONFIG_ARM64_SVE
2300         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2301         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2302         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2303         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2304         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2305         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2306         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2307         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2308         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2309         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2310         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2311 #endif
2312         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2313 #ifdef CONFIG_ARM64_BTI
2314         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2315 #endif
2316 #ifdef CONFIG_ARM64_PTR_AUTH
2317         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2318         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2319 #endif
2320 #ifdef CONFIG_ARM64_MTE
2321         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2322 #endif /* CONFIG_ARM64_MTE */
2323         {},
2324 };
2325
2326 #ifdef CONFIG_COMPAT
2327 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2328 {
2329         /*
2330          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2331          * in line with that of arm32 as in vfp_init(). We make sure that the
2332          * check is future proof, by making sure value is non-zero.
2333          */
2334         u32 mvfr1;
2335
2336         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2337         if (scope == SCOPE_SYSTEM)
2338                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2339         else
2340                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2341
2342         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2343                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2344                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2345 }
2346 #endif
2347
2348 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2349 #ifdef CONFIG_COMPAT
2350         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2351         HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2352         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2353         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2354         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2355         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2356         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2357         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2358         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2359         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2360 #endif
2361         {},
2362 };
2363
2364 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2365 {
2366         switch (cap->hwcap_type) {
2367         case CAP_HWCAP:
2368                 cpu_set_feature(cap->hwcap);
2369                 break;
2370 #ifdef CONFIG_COMPAT
2371         case CAP_COMPAT_HWCAP:
2372                 compat_elf_hwcap |= (u32)cap->hwcap;
2373                 break;
2374         case CAP_COMPAT_HWCAP2:
2375                 compat_elf_hwcap2 |= (u32)cap->hwcap;
2376                 break;
2377 #endif
2378         default:
2379                 WARN_ON(1);
2380                 break;
2381         }
2382 }
2383
2384 /* Check if we have a particular HWCAP enabled */
2385 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2386 {
2387         bool rc;
2388
2389         switch (cap->hwcap_type) {
2390         case CAP_HWCAP:
2391                 rc = cpu_have_feature(cap->hwcap);
2392                 break;
2393 #ifdef CONFIG_COMPAT
2394         case CAP_COMPAT_HWCAP:
2395                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2396                 break;
2397         case CAP_COMPAT_HWCAP2:
2398                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2399                 break;
2400 #endif
2401         default:
2402                 WARN_ON(1);
2403                 rc = false;
2404         }
2405
2406         return rc;
2407 }
2408
2409 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2410 {
2411         /* We support emulation of accesses to CPU ID feature registers */
2412         cpu_set_named_feature(CPUID);
2413         for (; hwcaps->matches; hwcaps++)
2414                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2415                         cap_set_elf_hwcap(hwcaps);
2416 }
2417
2418 static void update_cpu_capabilities(u16 scope_mask)
2419 {
2420         int i;
2421         const struct arm64_cpu_capabilities *caps;
2422
2423         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2424         for (i = 0; i < ARM64_NCAPS; i++) {
2425                 caps = cpu_hwcaps_ptrs[i];
2426                 if (!caps || !(caps->type & scope_mask) ||
2427                     cpus_have_cap(caps->capability) ||
2428                     !caps->matches(caps, cpucap_default_scope(caps)))
2429                         continue;
2430
2431                 if (caps->desc)
2432                         pr_info("detected: %s\n", caps->desc);
2433                 cpus_set_cap(caps->capability);
2434
2435                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2436                         set_bit(caps->capability, boot_capabilities);
2437         }
2438 }
2439
2440 /*
2441  * Enable all the available capabilities on this CPU. The capabilities
2442  * with BOOT_CPU scope are handled separately and hence skipped here.
2443  */
2444 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2445 {
2446         int i;
2447         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2448
2449         for_each_available_cap(i) {
2450                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2451
2452                 if (WARN_ON(!cap))
2453                         continue;
2454
2455                 if (!(cap->type & non_boot_scope))
2456                         continue;
2457
2458                 if (cap->cpu_enable)
2459                         cap->cpu_enable(cap);
2460         }
2461         return 0;
2462 }
2463
2464 /*
2465  * Run through the enabled capabilities and enable() it on all active
2466  * CPUs
2467  */
2468 static void __init enable_cpu_capabilities(u16 scope_mask)
2469 {
2470         int i;
2471         const struct arm64_cpu_capabilities *caps;
2472         bool boot_scope;
2473
2474         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2475         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2476
2477         for (i = 0; i < ARM64_NCAPS; i++) {
2478                 unsigned int num;
2479
2480                 caps = cpu_hwcaps_ptrs[i];
2481                 if (!caps || !(caps->type & scope_mask))
2482                         continue;
2483                 num = caps->capability;
2484                 if (!cpus_have_cap(num))
2485                         continue;
2486
2487                 /* Ensure cpus_have_const_cap(num) works */
2488                 static_branch_enable(&cpu_hwcap_keys[num]);
2489
2490                 if (boot_scope && caps->cpu_enable)
2491                         /*
2492                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
2493                          * before any secondary CPU boots. Thus, each secondary
2494                          * will enable the capability as appropriate via
2495                          * check_local_cpu_capabilities(). The only exception is
2496                          * the boot CPU, for which the capability must be
2497                          * enabled here. This approach avoids costly
2498                          * stop_machine() calls for this case.
2499                          */
2500                         caps->cpu_enable(caps);
2501         }
2502
2503         /*
2504          * For all non-boot scope capabilities, use stop_machine()
2505          * as it schedules the work allowing us to modify PSTATE,
2506          * instead of on_each_cpu() which uses an IPI, giving us a
2507          * PSTATE that disappears when we return.
2508          */
2509         if (!boot_scope)
2510                 stop_machine(cpu_enable_non_boot_scope_capabilities,
2511                              NULL, cpu_online_mask);
2512 }
2513
2514 /*
2515  * Run through the list of capabilities to check for conflicts.
2516  * If the system has already detected a capability, take necessary
2517  * action on this CPU.
2518  */
2519 static void verify_local_cpu_caps(u16 scope_mask)
2520 {
2521         int i;
2522         bool cpu_has_cap, system_has_cap;
2523         const struct arm64_cpu_capabilities *caps;
2524
2525         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2526
2527         for (i = 0; i < ARM64_NCAPS; i++) {
2528                 caps = cpu_hwcaps_ptrs[i];
2529                 if (!caps || !(caps->type & scope_mask))
2530                         continue;
2531
2532                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2533                 system_has_cap = cpus_have_cap(caps->capability);
2534
2535                 if (system_has_cap) {
2536                         /*
2537                          * Check if the new CPU misses an advertised feature,
2538                          * which is not safe to miss.
2539                          */
2540                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2541                                 break;
2542                         /*
2543                          * We have to issue cpu_enable() irrespective of
2544                          * whether the CPU has it or not, as it is enabeld
2545                          * system wide. It is upto the call back to take
2546                          * appropriate action on this CPU.
2547                          */
2548                         if (caps->cpu_enable)
2549                                 caps->cpu_enable(caps);
2550                 } else {
2551                         /*
2552                          * Check if the CPU has this capability if it isn't
2553                          * safe to have when the system doesn't.
2554                          */
2555                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2556                                 break;
2557                 }
2558         }
2559
2560         if (i < ARM64_NCAPS) {
2561                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2562                         smp_processor_id(), caps->capability,
2563                         caps->desc, system_has_cap, cpu_has_cap);
2564
2565                 if (cpucap_panic_on_conflict(caps))
2566                         cpu_panic_kernel();
2567                 else
2568                         cpu_die_early();
2569         }
2570 }
2571
2572 /*
2573  * Check for CPU features that are used in early boot
2574  * based on the Boot CPU value.
2575  */
2576 static void check_early_cpu_features(void)
2577 {
2578         verify_cpu_asid_bits();
2579
2580         verify_local_cpu_caps(SCOPE_BOOT_CPU);
2581 }
2582
2583 static void
2584 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2585 {
2586
2587         for (; caps->matches; caps++)
2588                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2589                         pr_crit("CPU%d: missing HWCAP: %s\n",
2590                                         smp_processor_id(), caps->desc);
2591                         cpu_die_early();
2592                 }
2593 }
2594
2595 static void verify_sve_features(void)
2596 {
2597         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2598         u64 zcr = read_zcr_features();
2599
2600         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2601         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2602
2603         if (len < safe_len || sve_verify_vq_map()) {
2604                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2605                         smp_processor_id());
2606                 cpu_die_early();
2607         }
2608
2609         /* Add checks on other ZCR bits here if necessary */
2610 }
2611
2612 static void verify_hyp_capabilities(void)
2613 {
2614         u64 safe_mmfr1, mmfr0, mmfr1;
2615         int parange, ipa_max;
2616         unsigned int safe_vmid_bits, vmid_bits;
2617
2618         if (!IS_ENABLED(CONFIG_KVM))
2619                 return;
2620
2621         safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2622         mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2623         mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2624
2625         /* Verify VMID bits */
2626         safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2627         vmid_bits = get_vmid_bits(mmfr1);
2628         if (vmid_bits < safe_vmid_bits) {
2629                 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2630                 cpu_die_early();
2631         }
2632
2633         /* Verify IPA range */
2634         parange = cpuid_feature_extract_unsigned_field(mmfr0,
2635                                 ID_AA64MMFR0_PARANGE_SHIFT);
2636         ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2637         if (ipa_max < get_kvm_ipa_limit()) {
2638                 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2639                 cpu_die_early();
2640         }
2641 }
2642
2643 /*
2644  * Run through the enabled system capabilities and enable() it on this CPU.
2645  * The capabilities were decided based on the available CPUs at the boot time.
2646  * Any new CPU should match the system wide status of the capability. If the
2647  * new CPU doesn't have a capability which the system now has enabled, we
2648  * cannot do anything to fix it up and could cause unexpected failures. So
2649  * we park the CPU.
2650  */
2651 static void verify_local_cpu_capabilities(void)
2652 {
2653         /*
2654          * The capabilities with SCOPE_BOOT_CPU are checked from
2655          * check_early_cpu_features(), as they need to be verified
2656          * on all secondary CPUs.
2657          */
2658         verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2659
2660         verify_local_elf_hwcaps(arm64_elf_hwcaps);
2661
2662         if (system_supports_32bit_el0())
2663                 verify_local_elf_hwcaps(compat_elf_hwcaps);
2664
2665         if (system_supports_sve())
2666                 verify_sve_features();
2667
2668         if (is_hyp_mode_available())
2669                 verify_hyp_capabilities();
2670 }
2671
2672 void check_local_cpu_capabilities(void)
2673 {
2674         /*
2675          * All secondary CPUs should conform to the early CPU features
2676          * in use by the kernel based on boot CPU.
2677          */
2678         check_early_cpu_features();
2679
2680         /*
2681          * If we haven't finalised the system capabilities, this CPU gets
2682          * a chance to update the errata work arounds and local features.
2683          * Otherwise, this CPU should verify that it has all the system
2684          * advertised capabilities.
2685          */
2686         if (!system_capabilities_finalized())
2687                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2688         else
2689                 verify_local_cpu_capabilities();
2690 }
2691
2692 static void __init setup_boot_cpu_capabilities(void)
2693 {
2694         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2695         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2696         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2697         enable_cpu_capabilities(SCOPE_BOOT_CPU);
2698 }
2699
2700 bool this_cpu_has_cap(unsigned int n)
2701 {
2702         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2703                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2704
2705                 if (cap)
2706                         return cap->matches(cap, SCOPE_LOCAL_CPU);
2707         }
2708
2709         return false;
2710 }
2711
2712 /*
2713  * This helper function is used in a narrow window when,
2714  * - The system wide safe registers are set with all the SMP CPUs and,
2715  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2716  * In all other cases cpus_have_{const_}cap() should be used.
2717  */
2718 static bool __maybe_unused __system_matches_cap(unsigned int n)
2719 {
2720         if (n < ARM64_NCAPS) {
2721                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2722
2723                 if (cap)
2724                         return cap->matches(cap, SCOPE_SYSTEM);
2725         }
2726         return false;
2727 }
2728
2729 void cpu_set_feature(unsigned int num)
2730 {
2731         WARN_ON(num >= MAX_CPU_FEATURES);
2732         elf_hwcap |= BIT(num);
2733 }
2734 EXPORT_SYMBOL_GPL(cpu_set_feature);
2735
2736 bool cpu_have_feature(unsigned int num)
2737 {
2738         WARN_ON(num >= MAX_CPU_FEATURES);
2739         return elf_hwcap & BIT(num);
2740 }
2741 EXPORT_SYMBOL_GPL(cpu_have_feature);
2742
2743 unsigned long cpu_get_elf_hwcap(void)
2744 {
2745         /*
2746          * We currently only populate the first 32 bits of AT_HWCAP. Please
2747          * note that for userspace compatibility we guarantee that bits 62
2748          * and 63 will always be returned as 0.
2749          */
2750         return lower_32_bits(elf_hwcap);
2751 }
2752
2753 unsigned long cpu_get_elf_hwcap2(void)
2754 {
2755         return upper_32_bits(elf_hwcap);
2756 }
2757
2758 static void __init setup_system_capabilities(void)
2759 {
2760         /*
2761          * We have finalised the system-wide safe feature
2762          * registers, finalise the capabilities that depend
2763          * on it. Also enable all the available capabilities,
2764          * that are not enabled already.
2765          */
2766         update_cpu_capabilities(SCOPE_SYSTEM);
2767         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2768 }
2769
2770 void __init setup_cpu_features(void)
2771 {
2772         u32 cwg;
2773
2774         setup_system_capabilities();
2775         setup_elf_hwcaps(arm64_elf_hwcaps);
2776
2777         if (system_supports_32bit_el0())
2778                 setup_elf_hwcaps(compat_elf_hwcaps);
2779
2780         if (system_uses_ttbr0_pan())
2781                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2782
2783         sve_setup();
2784         minsigstksz_setup();
2785
2786         /* Advertise that we have computed the system capabilities */
2787         finalize_system_capabilities();
2788
2789         /*
2790          * Check for sane CTR_EL0.CWG value.
2791          */
2792         cwg = cache_type_cwg();
2793         if (!cwg)
2794                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2795                         ARCH_DMA_MINALIGN);
2796 }
2797
2798 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2799 {
2800         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2801 }
2802
2803 /*
2804  * We emulate only the following system register space.
2805  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2806  * See Table C5-6 System instruction encodings for System register accesses,
2807  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2808  */
2809 static inline bool __attribute_const__ is_emulated(u32 id)
2810 {
2811         return (sys_reg_Op0(id) == 0x3 &&
2812                 sys_reg_CRn(id) == 0x0 &&
2813                 sys_reg_Op1(id) == 0x0 &&
2814                 (sys_reg_CRm(id) == 0 ||
2815                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2816 }
2817
2818 /*
2819  * With CRm == 0, reg should be one of :
2820  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2821  */
2822 static inline int emulate_id_reg(u32 id, u64 *valp)
2823 {
2824         switch (id) {
2825         case SYS_MIDR_EL1:
2826                 *valp = read_cpuid_id();
2827                 break;
2828         case SYS_MPIDR_EL1:
2829                 *valp = SYS_MPIDR_SAFE_VAL;
2830                 break;
2831         case SYS_REVIDR_EL1:
2832                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2833                 *valp = 0;
2834                 break;
2835         default:
2836                 return -EINVAL;
2837         }
2838
2839         return 0;
2840 }
2841
2842 static int emulate_sys_reg(u32 id, u64 *valp)
2843 {
2844         struct arm64_ftr_reg *regp;
2845
2846         if (!is_emulated(id))
2847                 return -EINVAL;
2848
2849         if (sys_reg_CRm(id) == 0)
2850                 return emulate_id_reg(id, valp);
2851
2852         regp = get_arm64_ftr_reg_nowarn(id);
2853         if (regp)
2854                 *valp = arm64_ftr_reg_user_value(regp);
2855         else
2856                 /*
2857                  * The untracked registers are either IMPLEMENTATION DEFINED
2858                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
2859                  */
2860                 *valp = 0;
2861         return 0;
2862 }
2863
2864 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2865 {
2866         int rc;
2867         u64 val;
2868
2869         rc = emulate_sys_reg(sys_reg, &val);
2870         if (!rc) {
2871                 pt_regs_write_reg(regs, rt, val);
2872                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2873         }
2874         return rc;
2875 }
2876
2877 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2878 {
2879         u32 sys_reg, rt;
2880
2881         /*
2882          * sys_reg values are defined as used in mrs/msr instruction.
2883          * shift the imm value to get the encoding.
2884          */
2885         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2886         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2887         return do_emulate_mrs(regs, sys_reg, rt);
2888 }
2889
2890 static struct undef_hook mrs_hook = {
2891         .instr_mask = 0xfff00000,
2892         .instr_val  = 0xd5300000,
2893         .pstate_mask = PSR_AA32_MODE_MASK,
2894         .pstate_val = PSR_MODE_EL0t,
2895         .fn = emulate_mrs,
2896 };
2897
2898 static int __init enable_mrs_emulation(void)
2899 {
2900         register_undef_hook(&mrs_hook);
2901         return 0;
2902 }
2903
2904 core_initcall(enable_mrs_emulation);
2905
2906 enum mitigation_state arm64_get_meltdown_state(void)
2907 {
2908         if (__meltdown_safe)
2909                 return SPECTRE_UNAFFECTED;
2910
2911         if (arm64_kernel_unmapped_at_el0())
2912                 return SPECTRE_MITIGATED;
2913
2914         return SPECTRE_VULNERABLE;
2915 }
2916
2917 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2918                           char *buf)
2919 {
2920         switch (arm64_get_meltdown_state()) {
2921         case SPECTRE_UNAFFECTED:
2922                 return sprintf(buf, "Not affected\n");
2923
2924         case SPECTRE_MITIGATED:
2925                 return sprintf(buf, "Mitigation: PTI\n");
2926
2927         default:
2928                 return sprintf(buf, "Vulnerable\n");
2929         }
2930 }