Merge tag 'block-5.13-2021-05-14' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/types.h>
71 #include <linux/minmax.h>
72 #include <linux/mm.h>
73 #include <linux/cpu.h>
74 #include <linux/kasan.h>
75 #include <asm/cpu.h>
76 #include <asm/cpufeature.h>
77 #include <asm/cpu_ops.h>
78 #include <asm/fpsimd.h>
79 #include <asm/kvm_host.h>
80 #include <asm/mmu_context.h>
81 #include <asm/mte.h>
82 #include <asm/processor.h>
83 #include <asm/sysreg.h>
84 #include <asm/traps.h>
85 #include <asm/virt.h>
86
87 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
88 static unsigned long elf_hwcap __read_mostly;
89
90 #ifdef CONFIG_COMPAT
91 #define COMPAT_ELF_HWCAP_DEFAULT        \
92                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
93                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
94                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
95                                  COMPAT_HWCAP_LPAE)
96 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
97 unsigned int compat_elf_hwcap2 __read_mostly;
98 #endif
99
100 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
101 EXPORT_SYMBOL(cpu_hwcaps);
102 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
103
104 /* Need also bit for ARM64_CB_PATCH */
105 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
106
107 bool arm64_use_ng_mappings = false;
108 EXPORT_SYMBOL(arm64_use_ng_mappings);
109
110 /*
111  * Flag to indicate if we have computed the system wide
112  * capabilities based on the boot time active CPUs. This
113  * will be used to determine if a new booting CPU should
114  * go through the verification process to make sure that it
115  * supports the system capabilities, without using a hotplug
116  * notifier. This is also used to decide if we could use
117  * the fast path for checking constant CPU caps.
118  */
119 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
120 EXPORT_SYMBOL(arm64_const_caps_ready);
121 static inline void finalize_system_capabilities(void)
122 {
123         static_branch_enable(&arm64_const_caps_ready);
124 }
125
126 void dump_cpu_features(void)
127 {
128         /* file-wide pr_fmt adds "CPU features: " prefix */
129         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
130 }
131
132 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
133 EXPORT_SYMBOL(cpu_hwcap_keys);
134
135 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
136         {                                               \
137                 .sign = SIGNED,                         \
138                 .visible = VISIBLE,                     \
139                 .strict = STRICT,                       \
140                 .type = TYPE,                           \
141                 .shift = SHIFT,                         \
142                 .width = WIDTH,                         \
143                 .safe_val = SAFE_VAL,                   \
144         }
145
146 /* Define a feature with unsigned values */
147 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
148         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
149
150 /* Define a feature with a signed value */
151 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
152         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
153
154 #define ARM64_FTR_END                                   \
155         {                                               \
156                 .width = 0,                             \
157         }
158
159 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
160
161 static bool __system_matches_cap(unsigned int n);
162
163 /*
164  * NOTE: Any changes to the visibility of features should be kept in
165  * sync with the documentation of the CPU feature register ABI.
166  */
167 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
168         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
169         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
170         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
171         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
172         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
173         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
174         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
175         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
176         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
177         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
178         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
179         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
180         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
181         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
182         ARM64_FTR_END,
183 };
184
185 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
186         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
189         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
193                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
195                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
199         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
200                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
201         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
202                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
203         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
204         ARM64_FTR_END,
205 };
206
207 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
208         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
210         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
215                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
217         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
218         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
219         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
220         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
221         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
222         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
223         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
224         ARM64_FTR_END,
225 };
226
227 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
228         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
229         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
230         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
231                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
232         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
233         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
234                                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
235         ARM64_FTR_END,
236 };
237
238 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
239         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
240                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
241         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
242                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
243         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
244                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
245         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
246                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
247         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
248                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
249         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
250                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
251         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
252                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
253         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
254                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
255         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
256                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
257         ARM64_FTR_END,
258 };
259
260 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
262         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
263         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
264         /*
265          * Page size not being supported at Stage-2 is not fatal. You
266          * just give up KVM if PAGE_SIZE isn't supported there. Go fix
267          * your favourite nesting hypervisor.
268          *
269          * There is a small corner case where the hypervisor explicitly
270          * advertises a given granule size at Stage-2 (value 2) on some
271          * vCPUs, and uses the fallback to Stage-1 (value 0) for other
272          * vCPUs. Although this is not forbidden by the architecture, it
273          * indicates that the hypervisor is being silly (or buggy).
274          *
275          * We make no effort to cope with this and pretend that if these
276          * fields are inconsistent across vCPUs, then it isn't worth
277          * trying to bring KVM up.
278          */
279         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
280         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
281         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
282         /*
283          * We already refuse to boot CPUs that don't support our configured
284          * page size, so we can only detect mismatches for a page size other
285          * than the one we're currently using. Unfortunately, SoCs like this
286          * exist in the wild so, even though we don't like it, we'll have to go
287          * along with it and treat them as non-strict.
288          */
289         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
290         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
291         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
292
293         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
294         /* Linux shouldn't care about secure memory */
295         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
296         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
297         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
298         /*
299          * Differing PARange is fine as long as all peripherals and memory are mapped
300          * within the minimum PARange of all CPUs
301          */
302         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
303         ARM64_FTR_END,
304 };
305
306 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
307         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
308         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
309         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
310         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
311         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
313         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
314         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
315         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
316         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
317         ARM64_FTR_END,
318 };
319
320 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
321         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
322         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
323         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
324         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
325         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
326         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
327         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
328         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
329         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
330         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
331         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
332         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
333         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
334         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
335         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
336         ARM64_FTR_END,
337 };
338
339 static const struct arm64_ftr_bits ftr_ctr[] = {
340         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
341         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
342         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
343         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
344         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
345         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
346         /*
347          * Linux can handle differing I-cache policies. Userspace JITs will
348          * make use of *minLine.
349          * If we have differing I-cache policies, report it as the weakest - VIPT.
350          */
351         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),   /* L1Ip */
352         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
353         ARM64_FTR_END,
354 };
355
356 static struct arm64_ftr_override __ro_after_init no_override = { };
357
358 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
359         .name           = "SYS_CTR_EL0",
360         .ftr_bits       = ftr_ctr,
361         .override       = &no_override,
362 };
363
364 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
365         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
366         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
367         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
368         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
369         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
370         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
371         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
372         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
373         ARM64_FTR_END,
374 };
375
376 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
377         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
378         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
379         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
380         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
381         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
382         /*
383          * We can instantiate multiple PMU instances with different levels
384          * of support.
385          */
386         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
387         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
388         ARM64_FTR_END,
389 };
390
391 static const struct arm64_ftr_bits ftr_mvfr2[] = {
392         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
393         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
394         ARM64_FTR_END,
395 };
396
397 static const struct arm64_ftr_bits ftr_dczid[] = {
398         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
399         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
400         ARM64_FTR_END,
401 };
402
403 static const struct arm64_ftr_bits ftr_id_isar0[] = {
404         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
405         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
406         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
407         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
408         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
409         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
410         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
411         ARM64_FTR_END,
412 };
413
414 static const struct arm64_ftr_bits ftr_id_isar5[] = {
415         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
416         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
417         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
418         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
419         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
420         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
421         ARM64_FTR_END,
422 };
423
424 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
425         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
426         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
427         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
428         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
429         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
430         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
431         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
432
433         /*
434          * SpecSEI = 1 indicates that the PE might generate an SError on an
435          * external abort on speculative read. It is safe to assume that an
436          * SError might be generated than it will not be. Hence it has been
437          * classified as FTR_HIGHER_SAFE.
438          */
439         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
440         ARM64_FTR_END,
441 };
442
443 static const struct arm64_ftr_bits ftr_id_isar4[] = {
444         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
445         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
446         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
447         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
448         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
449         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
450         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
451         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
452         ARM64_FTR_END,
453 };
454
455 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
456         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
457         ARM64_FTR_END,
458 };
459
460 static const struct arm64_ftr_bits ftr_id_isar6[] = {
461         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
462         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
463         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
464         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
465         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
466         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
467         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
468         ARM64_FTR_END,
469 };
470
471 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
472         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
473         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
474         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
475         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
476         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
477         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
478         ARM64_FTR_END,
479 };
480
481 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
482         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
483         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
484         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
485         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
486         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
487         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
488         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
489         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
490         ARM64_FTR_END,
491 };
492
493 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
494         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
495         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
496         ARM64_FTR_END,
497 };
498
499 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
500         /* [31:28] TraceFilt */
501         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
502         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
503         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
504         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
505         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
506         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
507         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
508         ARM64_FTR_END,
509 };
510
511 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
512         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
513         ARM64_FTR_END,
514 };
515
516 static const struct arm64_ftr_bits ftr_zcr[] = {
517         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
518                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
519         ARM64_FTR_END,
520 };
521
522 /*
523  * Common ftr bits for a 32bit register with all hidden, strict
524  * attributes, with 4bit feature fields and a default safe value of
525  * 0. Covers the following 32bit registers:
526  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
527  */
528 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
529         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
530         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
531         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
532         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
533         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
534         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
535         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
536         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
537         ARM64_FTR_END,
538 };
539
540 /* Table for a single 32bit feature value */
541 static const struct arm64_ftr_bits ftr_single32[] = {
542         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
543         ARM64_FTR_END,
544 };
545
546 static const struct arm64_ftr_bits ftr_raz[] = {
547         ARM64_FTR_END,
548 };
549
550 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) {                \
551                 .sys_id = id,                                   \
552                 .reg =  &(struct arm64_ftr_reg){                \
553                         .name = #id,                            \
554                         .override = (ovr),                      \
555                         .ftr_bits = &((table)[0]),              \
556         }}
557
558 #define ARM64_FTR_REG(id, table) ARM64_FTR_REG_OVERRIDE(id, table, &no_override)
559
560 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
561 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
562 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
563
564 static const struct __ftr_reg_entry {
565         u32                     sys_id;
566         struct arm64_ftr_reg    *reg;
567 } arm64_ftr_regs[] = {
568
569         /* Op1 = 0, CRn = 0, CRm = 1 */
570         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
571         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
572         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
573         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
574         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
575         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
576         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
577
578         /* Op1 = 0, CRn = 0, CRm = 2 */
579         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
580         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
581         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
582         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
583         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
584         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
585         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
586         ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
587
588         /* Op1 = 0, CRn = 0, CRm = 3 */
589         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
590         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
591         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
592         ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
593         ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
594         ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
595
596         /* Op1 = 0, CRn = 0, CRm = 4 */
597         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
598         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
599                                &id_aa64pfr1_override),
600         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
601
602         /* Op1 = 0, CRn = 0, CRm = 5 */
603         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
604         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
605
606         /* Op1 = 0, CRn = 0, CRm = 6 */
607         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
608         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
609                                &id_aa64isar1_override),
610
611         /* Op1 = 0, CRn = 0, CRm = 7 */
612         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
613         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
614                                &id_aa64mmfr1_override),
615         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
616
617         /* Op1 = 0, CRn = 1, CRm = 2 */
618         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
619
620         /* Op1 = 3, CRn = 0, CRm = 0 */
621         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
622         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
623
624         /* Op1 = 3, CRn = 14, CRm = 0 */
625         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
626 };
627
628 static int search_cmp_ftr_reg(const void *id, const void *regp)
629 {
630         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
631 }
632
633 /*
634  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
635  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
636  * ascending order of sys_id, we use binary search to find a matching
637  * entry.
638  *
639  * returns - Upon success,  matching ftr_reg entry for id.
640  *         - NULL on failure. It is upto the caller to decide
641  *           the impact of a failure.
642  */
643 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
644 {
645         const struct __ftr_reg_entry *ret;
646
647         ret = bsearch((const void *)(unsigned long)sys_id,
648                         arm64_ftr_regs,
649                         ARRAY_SIZE(arm64_ftr_regs),
650                         sizeof(arm64_ftr_regs[0]),
651                         search_cmp_ftr_reg);
652         if (ret)
653                 return ret->reg;
654         return NULL;
655 }
656
657 /*
658  * get_arm64_ftr_reg - Looks up a feature register entry using
659  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
660  *
661  * returns - Upon success,  matching ftr_reg entry for id.
662  *         - NULL on failure but with an WARN_ON().
663  */
664 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
665 {
666         struct arm64_ftr_reg *reg;
667
668         reg = get_arm64_ftr_reg_nowarn(sys_id);
669
670         /*
671          * Requesting a non-existent register search is an error. Warn
672          * and let the caller handle it.
673          */
674         WARN_ON(!reg);
675         return reg;
676 }
677
678 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
679                                s64 ftr_val)
680 {
681         u64 mask = arm64_ftr_mask(ftrp);
682
683         reg &= ~mask;
684         reg |= (ftr_val << ftrp->shift) & mask;
685         return reg;
686 }
687
688 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
689                                 s64 cur)
690 {
691         s64 ret = 0;
692
693         switch (ftrp->type) {
694         case FTR_EXACT:
695                 ret = ftrp->safe_val;
696                 break;
697         case FTR_LOWER_SAFE:
698                 ret = min(new, cur);
699                 break;
700         case FTR_HIGHER_OR_ZERO_SAFE:
701                 if (!cur || !new)
702                         break;
703                 fallthrough;
704         case FTR_HIGHER_SAFE:
705                 ret = max(new, cur);
706                 break;
707         default:
708                 BUG();
709         }
710
711         return ret;
712 }
713
714 static void __init sort_ftr_regs(void)
715 {
716         unsigned int i;
717
718         for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
719                 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
720                 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
721                 unsigned int j = 0;
722
723                 /*
724                  * Features here must be sorted in descending order with respect
725                  * to their shift values and should not overlap with each other.
726                  */
727                 for (; ftr_bits->width != 0; ftr_bits++, j++) {
728                         unsigned int width = ftr_reg->ftr_bits[j].width;
729                         unsigned int shift = ftr_reg->ftr_bits[j].shift;
730                         unsigned int prev_shift;
731
732                         WARN((shift  + width) > 64,
733                                 "%s has invalid feature at shift %d\n",
734                                 ftr_reg->name, shift);
735
736                         /*
737                          * Skip the first feature. There is nothing to
738                          * compare against for now.
739                          */
740                         if (j == 0)
741                                 continue;
742
743                         prev_shift = ftr_reg->ftr_bits[j - 1].shift;
744                         WARN((shift + width) > prev_shift,
745                                 "%s has feature overlap at shift %d\n",
746                                 ftr_reg->name, shift);
747                 }
748
749                 /*
750                  * Skip the first register. There is nothing to
751                  * compare against for now.
752                  */
753                 if (i == 0)
754                         continue;
755                 /*
756                  * Registers here must be sorted in ascending order with respect
757                  * to sys_id for subsequent binary search in get_arm64_ftr_reg()
758                  * to work correctly.
759                  */
760                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
761         }
762 }
763
764 /*
765  * Initialise the CPU feature register from Boot CPU values.
766  * Also initiliases the strict_mask for the register.
767  * Any bits that are not covered by an arm64_ftr_bits entry are considered
768  * RES0 for the system-wide value, and must strictly match.
769  */
770 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
771 {
772         u64 val = 0;
773         u64 strict_mask = ~0x0ULL;
774         u64 user_mask = 0;
775         u64 valid_mask = 0;
776
777         const struct arm64_ftr_bits *ftrp;
778         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
779
780         if (!reg)
781                 return;
782
783         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
784                 u64 ftr_mask = arm64_ftr_mask(ftrp);
785                 s64 ftr_new = arm64_ftr_value(ftrp, new);
786                 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
787
788                 if ((ftr_mask & reg->override->mask) == ftr_mask) {
789                         s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
790                         char *str = NULL;
791
792                         if (ftr_ovr != tmp) {
793                                 /* Unsafe, remove the override */
794                                 reg->override->mask &= ~ftr_mask;
795                                 reg->override->val &= ~ftr_mask;
796                                 tmp = ftr_ovr;
797                                 str = "ignoring override";
798                         } else if (ftr_new != tmp) {
799                                 /* Override was valid */
800                                 ftr_new = tmp;
801                                 str = "forced";
802                         } else if (ftr_ovr == tmp) {
803                                 /* Override was the safe value */
804                                 str = "already set";
805                         }
806
807                         if (str)
808                                 pr_warn("%s[%d:%d]: %s to %llx\n",
809                                         reg->name,
810                                         ftrp->shift + ftrp->width - 1,
811                                         ftrp->shift, str, tmp);
812                 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
813                         reg->override->val &= ~ftr_mask;
814                         pr_warn("%s[%d:%d]: impossible override, ignored\n",
815                                 reg->name,
816                                 ftrp->shift + ftrp->width - 1,
817                                 ftrp->shift);
818                 }
819
820                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
821
822                 valid_mask |= ftr_mask;
823                 if (!ftrp->strict)
824                         strict_mask &= ~ftr_mask;
825                 if (ftrp->visible)
826                         user_mask |= ftr_mask;
827                 else
828                         reg->user_val = arm64_ftr_set_value(ftrp,
829                                                             reg->user_val,
830                                                             ftrp->safe_val);
831         }
832
833         val &= valid_mask;
834
835         reg->sys_val = val;
836         reg->strict_mask = strict_mask;
837         reg->user_mask = user_mask;
838 }
839
840 extern const struct arm64_cpu_capabilities arm64_errata[];
841 static const struct arm64_cpu_capabilities arm64_features[];
842
843 static void __init
844 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
845 {
846         for (; caps->matches; caps++) {
847                 if (WARN(caps->capability >= ARM64_NCAPS,
848                         "Invalid capability %d\n", caps->capability))
849                         continue;
850                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
851                         "Duplicate entry for capability %d\n",
852                         caps->capability))
853                         continue;
854                 cpu_hwcaps_ptrs[caps->capability] = caps;
855         }
856 }
857
858 static void __init init_cpu_hwcaps_indirect_list(void)
859 {
860         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
861         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
862 }
863
864 static void __init setup_boot_cpu_capabilities(void);
865
866 void __init init_cpu_features(struct cpuinfo_arm64 *info)
867 {
868         /* Before we start using the tables, make sure it is sorted */
869         sort_ftr_regs();
870
871         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
872         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
873         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
874         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
875         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
876         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
877         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
878         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
879         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
880         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
881         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
882         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
883         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
884
885         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
886                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
887                 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
888                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
889                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
890                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
891                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
892                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
893                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
894                 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
895                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
896                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
897                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
898                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
899                 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
900                 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
901                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
902                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
903                 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
904                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
905                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
906                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
907         }
908
909         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
910                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
911                 sve_init_vq_map();
912         }
913
914         /*
915          * Initialize the indirect array of CPU hwcaps capabilities pointers
916          * before we handle the boot CPU below.
917          */
918         init_cpu_hwcaps_indirect_list();
919
920         /*
921          * Detect and enable early CPU capabilities based on the boot CPU,
922          * after we have initialised the CPU feature infrastructure.
923          */
924         setup_boot_cpu_capabilities();
925 }
926
927 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
928 {
929         const struct arm64_ftr_bits *ftrp;
930
931         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
932                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
933                 s64 ftr_new = arm64_ftr_value(ftrp, new);
934
935                 if (ftr_cur == ftr_new)
936                         continue;
937                 /* Find a safe value */
938                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
939                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
940         }
941
942 }
943
944 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
945 {
946         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
947
948         if (!regp)
949                 return 0;
950
951         update_cpu_ftr_reg(regp, val);
952         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
953                 return 0;
954         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
955                         regp->name, boot, cpu, val);
956         return 1;
957 }
958
959 static void relax_cpu_ftr_reg(u32 sys_id, int field)
960 {
961         const struct arm64_ftr_bits *ftrp;
962         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
963
964         if (!regp)
965                 return;
966
967         for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
968                 if (ftrp->shift == field) {
969                         regp->strict_mask &= ~arm64_ftr_mask(ftrp);
970                         break;
971                 }
972         }
973
974         /* Bogus field? */
975         WARN_ON(!ftrp->width);
976 }
977
978 static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info,
979                                      struct cpuinfo_arm64 *boot)
980 {
981         int taint = 0;
982         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
983
984         /*
985          * If we don't have AArch32 at all then skip the checks entirely
986          * as the register values may be UNKNOWN and we're not going to be
987          * using them for anything.
988          */
989         if (!id_aa64pfr0_32bit_el0(pfr0))
990                 return taint;
991
992         /*
993          * If we don't have AArch32 at EL1, then relax the strictness of
994          * EL1-dependent register fields to avoid spurious sanity check fails.
995          */
996         if (!id_aa64pfr0_32bit_el1(pfr0)) {
997                 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
998                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
999                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
1000                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
1001                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
1002                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
1003         }
1004
1005         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1006                                       info->reg_id_dfr0, boot->reg_id_dfr0);
1007         taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1008                                       info->reg_id_dfr1, boot->reg_id_dfr1);
1009         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1010                                       info->reg_id_isar0, boot->reg_id_isar0);
1011         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1012                                       info->reg_id_isar1, boot->reg_id_isar1);
1013         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1014                                       info->reg_id_isar2, boot->reg_id_isar2);
1015         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1016                                       info->reg_id_isar3, boot->reg_id_isar3);
1017         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1018                                       info->reg_id_isar4, boot->reg_id_isar4);
1019         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1020                                       info->reg_id_isar5, boot->reg_id_isar5);
1021         taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1022                                       info->reg_id_isar6, boot->reg_id_isar6);
1023
1024         /*
1025          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1026          * ACTLR formats could differ across CPUs and therefore would have to
1027          * be trapped for virtualization anyway.
1028          */
1029         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1030                                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
1031         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1032                                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
1033         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1034                                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
1035         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1036                                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
1037         taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1038                                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
1039         taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1040                                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
1041         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1042                                       info->reg_id_pfr0, boot->reg_id_pfr0);
1043         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1044                                       info->reg_id_pfr1, boot->reg_id_pfr1);
1045         taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1046                                       info->reg_id_pfr2, boot->reg_id_pfr2);
1047         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1048                                       info->reg_mvfr0, boot->reg_mvfr0);
1049         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1050                                       info->reg_mvfr1, boot->reg_mvfr1);
1051         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1052                                       info->reg_mvfr2, boot->reg_mvfr2);
1053
1054         return taint;
1055 }
1056
1057 /*
1058  * Update system wide CPU feature registers with the values from a
1059  * non-boot CPU. Also performs SANITY checks to make sure that there
1060  * aren't any insane variations from that of the boot CPU.
1061  */
1062 void update_cpu_features(int cpu,
1063                          struct cpuinfo_arm64 *info,
1064                          struct cpuinfo_arm64 *boot)
1065 {
1066         int taint = 0;
1067
1068         /*
1069          * The kernel can handle differing I-cache policies, but otherwise
1070          * caches should look identical. Userspace JITs will make use of
1071          * *minLine.
1072          */
1073         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1074                                       info->reg_ctr, boot->reg_ctr);
1075
1076         /*
1077          * Userspace may perform DC ZVA instructions. Mismatched block sizes
1078          * could result in too much or too little memory being zeroed if a
1079          * process is preempted and migrated between CPUs.
1080          */
1081         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1082                                       info->reg_dczid, boot->reg_dczid);
1083
1084         /* If different, timekeeping will be broken (especially with KVM) */
1085         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1086                                       info->reg_cntfrq, boot->reg_cntfrq);
1087
1088         /*
1089          * The kernel uses self-hosted debug features and expects CPUs to
1090          * support identical debug features. We presently need CTX_CMPs, WRPs,
1091          * and BRPs to be identical.
1092          * ID_AA64DFR1 is currently RES0.
1093          */
1094         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1095                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1096         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1097                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1098         /*
1099          * Even in big.LITTLE, processors should be identical instruction-set
1100          * wise.
1101          */
1102         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1103                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1104         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1105                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1106
1107         /*
1108          * Differing PARange support is fine as long as all peripherals and
1109          * memory are mapped within the minimum PARange of all CPUs.
1110          * Linux should not care about secure memory.
1111          */
1112         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1113                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1114         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1115                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1116         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1117                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1118
1119         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1120                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1121         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1122                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1123
1124         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1125                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1126
1127         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1128                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1129                                         info->reg_zcr, boot->reg_zcr);
1130
1131                 /* Probe vector lengths, unless we already gave up on SVE */
1132                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1133                     !system_capabilities_finalized())
1134                         sve_update_vq_map();
1135         }
1136
1137         /*
1138          * This relies on a sanitised view of the AArch64 ID registers
1139          * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1140          */
1141         taint |= update_32bit_cpu_features(cpu, info, boot);
1142
1143         /*
1144          * Mismatched CPU features are a recipe for disaster. Don't even
1145          * pretend to support them.
1146          */
1147         if (taint) {
1148                 pr_warn_once("Unsupported CPU feature variation detected.\n");
1149                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1150         }
1151 }
1152
1153 u64 read_sanitised_ftr_reg(u32 id)
1154 {
1155         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1156
1157         if (!regp)
1158                 return 0;
1159         return regp->sys_val;
1160 }
1161 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1162
1163 #define read_sysreg_case(r)     \
1164         case r:         val = read_sysreg_s(r); break;
1165
1166 /*
1167  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1168  * Read the system register on the current CPU
1169  */
1170 u64 __read_sysreg_by_encoding(u32 sys_id)
1171 {
1172         struct arm64_ftr_reg *regp;
1173         u64 val;
1174
1175         switch (sys_id) {
1176         read_sysreg_case(SYS_ID_PFR0_EL1);
1177         read_sysreg_case(SYS_ID_PFR1_EL1);
1178         read_sysreg_case(SYS_ID_PFR2_EL1);
1179         read_sysreg_case(SYS_ID_DFR0_EL1);
1180         read_sysreg_case(SYS_ID_DFR1_EL1);
1181         read_sysreg_case(SYS_ID_MMFR0_EL1);
1182         read_sysreg_case(SYS_ID_MMFR1_EL1);
1183         read_sysreg_case(SYS_ID_MMFR2_EL1);
1184         read_sysreg_case(SYS_ID_MMFR3_EL1);
1185         read_sysreg_case(SYS_ID_MMFR4_EL1);
1186         read_sysreg_case(SYS_ID_MMFR5_EL1);
1187         read_sysreg_case(SYS_ID_ISAR0_EL1);
1188         read_sysreg_case(SYS_ID_ISAR1_EL1);
1189         read_sysreg_case(SYS_ID_ISAR2_EL1);
1190         read_sysreg_case(SYS_ID_ISAR3_EL1);
1191         read_sysreg_case(SYS_ID_ISAR4_EL1);
1192         read_sysreg_case(SYS_ID_ISAR5_EL1);
1193         read_sysreg_case(SYS_ID_ISAR6_EL1);
1194         read_sysreg_case(SYS_MVFR0_EL1);
1195         read_sysreg_case(SYS_MVFR1_EL1);
1196         read_sysreg_case(SYS_MVFR2_EL1);
1197
1198         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1199         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1200         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1201         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1202         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1203         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1204         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1205         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1206         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1207         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1208
1209         read_sysreg_case(SYS_CNTFRQ_EL0);
1210         read_sysreg_case(SYS_CTR_EL0);
1211         read_sysreg_case(SYS_DCZID_EL0);
1212
1213         default:
1214                 BUG();
1215                 return 0;
1216         }
1217
1218         regp  = get_arm64_ftr_reg(sys_id);
1219         if (regp) {
1220                 val &= ~regp->override->mask;
1221                 val |= (regp->override->val & regp->override->mask);
1222         }
1223
1224         return val;
1225 }
1226
1227 #include <linux/irqchip/arm-gic-v3.h>
1228
1229 static bool
1230 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1231 {
1232         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1233
1234         return val >= entry->min_field_value;
1235 }
1236
1237 static bool
1238 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1239 {
1240         u64 val;
1241
1242         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1243         if (scope == SCOPE_SYSTEM)
1244                 val = read_sanitised_ftr_reg(entry->sys_reg);
1245         else
1246                 val = __read_sysreg_by_encoding(entry->sys_reg);
1247
1248         return feature_matches(val, entry);
1249 }
1250
1251 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1252 {
1253         bool has_sre;
1254
1255         if (!has_cpuid_feature(entry, scope))
1256                 return false;
1257
1258         has_sre = gic_enable_sre();
1259         if (!has_sre)
1260                 pr_warn_once("%s present but disabled by higher exception level\n",
1261                              entry->desc);
1262
1263         return has_sre;
1264 }
1265
1266 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1267 {
1268         u32 midr = read_cpuid_id();
1269
1270         /* Cavium ThunderX pass 1.x and 2.x */
1271         return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1272                 MIDR_CPU_VAR_REV(0, 0),
1273                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1274 }
1275
1276 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1277 {
1278         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1279
1280         return cpuid_feature_extract_signed_field(pfr0,
1281                                         ID_AA64PFR0_FP_SHIFT) < 0;
1282 }
1283
1284 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1285                           int scope)
1286 {
1287         u64 ctr;
1288
1289         if (scope == SCOPE_SYSTEM)
1290                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1291         else
1292                 ctr = read_cpuid_effective_cachetype();
1293
1294         return ctr & BIT(CTR_IDC_SHIFT);
1295 }
1296
1297 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1298 {
1299         /*
1300          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1301          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1302          * to the CTR_EL0 on this CPU and emulate it with the real/safe
1303          * value.
1304          */
1305         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1306                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1307 }
1308
1309 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1310                           int scope)
1311 {
1312         u64 ctr;
1313
1314         if (scope == SCOPE_SYSTEM)
1315                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1316         else
1317                 ctr = read_cpuid_cachetype();
1318
1319         return ctr & BIT(CTR_DIC_SHIFT);
1320 }
1321
1322 static bool __maybe_unused
1323 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1324 {
1325         /*
1326          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1327          * may share TLB entries with a CPU stuck in the crashed
1328          * kernel.
1329          */
1330         if (is_kdump_kernel())
1331                 return false;
1332
1333         if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1334                 return false;
1335
1336         return has_cpuid_feature(entry, scope);
1337 }
1338
1339 /*
1340  * This check is triggered during the early boot before the cpufeature
1341  * is initialised. Checking the status on the local CPU allows the boot
1342  * CPU to detect the need for non-global mappings and thus avoiding a
1343  * pagetable re-write after all the CPUs are booted. This check will be
1344  * anyway run on individual CPUs, allowing us to get the consistent
1345  * state once the SMP CPUs are up and thus make the switch to non-global
1346  * mappings if required.
1347  */
1348 bool kaslr_requires_kpti(void)
1349 {
1350         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1351                 return false;
1352
1353         /*
1354          * E0PD does a similar job to KPTI so can be used instead
1355          * where available.
1356          */
1357         if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1358                 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1359                 if (cpuid_feature_extract_unsigned_field(mmfr2,
1360                                                 ID_AA64MMFR2_E0PD_SHIFT))
1361                         return false;
1362         }
1363
1364         /*
1365          * Systems affected by Cavium erratum 24756 are incompatible
1366          * with KPTI.
1367          */
1368         if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1369                 extern const struct midr_range cavium_erratum_27456_cpus[];
1370
1371                 if (is_midr_in_range_list(read_cpuid_id(),
1372                                           cavium_erratum_27456_cpus))
1373                         return false;
1374         }
1375
1376         return kaslr_offset() > 0;
1377 }
1378
1379 static bool __meltdown_safe = true;
1380 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1381
1382 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1383                                 int scope)
1384 {
1385         /* List of CPUs that are not vulnerable and don't need KPTI */
1386         static const struct midr_range kpti_safe_list[] = {
1387                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1388                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1389                 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1390                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1391                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1392                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1393                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1394                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1395                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1396                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1397                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1398                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1399                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1400                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1401                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1402                 { /* sentinel */ }
1403         };
1404         char const *str = "kpti command line option";
1405         bool meltdown_safe;
1406
1407         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1408
1409         /* Defer to CPU feature registers */
1410         if (has_cpuid_feature(entry, scope))
1411                 meltdown_safe = true;
1412
1413         if (!meltdown_safe)
1414                 __meltdown_safe = false;
1415
1416         /*
1417          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1418          * ThunderX leads to apparent I-cache corruption of kernel text, which
1419          * ends as well as you might imagine. Don't even try.
1420          */
1421         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1422                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1423                 __kpti_forced = -1;
1424         }
1425
1426         /* Useful for KASLR robustness */
1427         if (kaslr_requires_kpti()) {
1428                 if (!__kpti_forced) {
1429                         str = "KASLR";
1430                         __kpti_forced = 1;
1431                 }
1432         }
1433
1434         if (cpu_mitigations_off() && !__kpti_forced) {
1435                 str = "mitigations=off";
1436                 __kpti_forced = -1;
1437         }
1438
1439         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1440                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1441                 return false;
1442         }
1443
1444         /* Forced? */
1445         if (__kpti_forced) {
1446                 pr_info_once("kernel page table isolation forced %s by %s\n",
1447                              __kpti_forced > 0 ? "ON" : "OFF", str);
1448                 return __kpti_forced > 0;
1449         }
1450
1451         return !meltdown_safe;
1452 }
1453
1454 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1455 static void __nocfi
1456 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1457 {
1458         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1459         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1460         kpti_remap_fn *remap_fn;
1461
1462         int cpu = smp_processor_id();
1463
1464         /*
1465          * We don't need to rewrite the page-tables if either we've done
1466          * it already or we have KASLR enabled and therefore have not
1467          * created any global mappings at all.
1468          */
1469         if (arm64_use_ng_mappings)
1470                 return;
1471
1472         remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings));
1473
1474         cpu_install_idmap();
1475         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1476         cpu_uninstall_idmap();
1477
1478         if (!cpu)
1479                 arm64_use_ng_mappings = true;
1480
1481         return;
1482 }
1483 #else
1484 static void
1485 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1486 {
1487 }
1488 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1489
1490 static int __init parse_kpti(char *str)
1491 {
1492         bool enabled;
1493         int ret = strtobool(str, &enabled);
1494
1495         if (ret)
1496                 return ret;
1497
1498         __kpti_forced = enabled ? 1 : -1;
1499         return 0;
1500 }
1501 early_param("kpti", parse_kpti);
1502
1503 #ifdef CONFIG_ARM64_HW_AFDBM
1504 static inline void __cpu_enable_hw_dbm(void)
1505 {
1506         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1507
1508         write_sysreg(tcr, tcr_el1);
1509         isb();
1510         local_flush_tlb_all();
1511 }
1512
1513 static bool cpu_has_broken_dbm(void)
1514 {
1515         /* List of CPUs which have broken DBM support. */
1516         static const struct midr_range cpus[] = {
1517 #ifdef CONFIG_ARM64_ERRATUM_1024718
1518                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1519                 /* Kryo4xx Silver (rdpe => r1p0) */
1520                 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1521 #endif
1522                 {},
1523         };
1524
1525         return is_midr_in_range_list(read_cpuid_id(), cpus);
1526 }
1527
1528 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1529 {
1530         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1531                !cpu_has_broken_dbm();
1532 }
1533
1534 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1535 {
1536         if (cpu_can_use_dbm(cap))
1537                 __cpu_enable_hw_dbm();
1538 }
1539
1540 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1541                        int __unused)
1542 {
1543         static bool detected = false;
1544         /*
1545          * DBM is a non-conflicting feature. i.e, the kernel can safely
1546          * run a mix of CPUs with and without the feature. So, we
1547          * unconditionally enable the capability to allow any late CPU
1548          * to use the feature. We only enable the control bits on the
1549          * CPU, if it actually supports.
1550          *
1551          * We have to make sure we print the "feature" detection only
1552          * when at least one CPU actually uses it. So check if this CPU
1553          * can actually use it and print the message exactly once.
1554          *
1555          * This is safe as all CPUs (including secondary CPUs - due to the
1556          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1557          * goes through the "matches" check exactly once. Also if a CPU
1558          * matches the criteria, it is guaranteed that the CPU will turn
1559          * the DBM on, as the capability is unconditionally enabled.
1560          */
1561         if (!detected && cpu_can_use_dbm(cap)) {
1562                 detected = true;
1563                 pr_info("detected: Hardware dirty bit management\n");
1564         }
1565
1566         return true;
1567 }
1568
1569 #endif
1570
1571 #ifdef CONFIG_ARM64_AMU_EXTN
1572
1573 /*
1574  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1575  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1576  * information regarding all the events that it supports. When a CPU bit is
1577  * set in the cpumask, the user of this feature can only rely on the presence
1578  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1579  * counters are enabled or access to these counters is enabled by code
1580  * executed at higher exception levels (firmware).
1581  */
1582 static struct cpumask amu_cpus __read_mostly;
1583
1584 bool cpu_has_amu_feat(int cpu)
1585 {
1586         return cpumask_test_cpu(cpu, &amu_cpus);
1587 }
1588
1589 int get_cpu_with_amu_feat(void)
1590 {
1591         return cpumask_any(&amu_cpus);
1592 }
1593
1594 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1595 {
1596         if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1597                 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1598                         smp_processor_id());
1599                 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1600                 update_freq_counters_refs();
1601         }
1602 }
1603
1604 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1605                     int __unused)
1606 {
1607         /*
1608          * The AMU extension is a non-conflicting feature: the kernel can
1609          * safely run a mix of CPUs with and without support for the
1610          * activity monitors extension. Therefore, unconditionally enable
1611          * the capability to allow any late CPU to use the feature.
1612          *
1613          * With this feature unconditionally enabled, the cpu_enable
1614          * function will be called for all CPUs that match the criteria,
1615          * including secondary and hotplugged, marking this feature as
1616          * present on that respective CPU. The enable function will also
1617          * print a detection message.
1618          */
1619
1620         return true;
1621 }
1622 #else
1623 int get_cpu_with_amu_feat(void)
1624 {
1625         return nr_cpu_ids;
1626 }
1627 #endif
1628
1629 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1630 {
1631         return is_kernel_in_hyp_mode();
1632 }
1633
1634 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1635 {
1636         /*
1637          * Copy register values that aren't redirected by hardware.
1638          *
1639          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1640          * this value to tpidr_el2 before we patch the code. Once we've done
1641          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1642          * do anything here.
1643          */
1644         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1645                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1646 }
1647
1648 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1649 {
1650         u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1651
1652         /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1653         WARN_ON(val & (7 << 27 | 7 << 21));
1654 }
1655
1656 #ifdef CONFIG_ARM64_PAN
1657 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1658 {
1659         /*
1660          * We modify PSTATE. This won't work from irq context as the PSTATE
1661          * is discarded once we return from the exception.
1662          */
1663         WARN_ON_ONCE(in_interrupt());
1664
1665         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1666         set_pstate_pan(1);
1667 }
1668 #endif /* CONFIG_ARM64_PAN */
1669
1670 #ifdef CONFIG_ARM64_RAS_EXTN
1671 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1672 {
1673         /* Firmware may have left a deferred SError in this register. */
1674         write_sysreg_s(0, SYS_DISR_EL1);
1675 }
1676 #endif /* CONFIG_ARM64_RAS_EXTN */
1677
1678 #ifdef CONFIG_ARM64_PTR_AUTH
1679 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1680 {
1681         int boot_val, sec_val;
1682
1683         /* We don't expect to be called with SCOPE_SYSTEM */
1684         WARN_ON(scope == SCOPE_SYSTEM);
1685         /*
1686          * The ptr-auth feature levels are not intercompatible with lower
1687          * levels. Hence we must match ptr-auth feature level of the secondary
1688          * CPUs with that of the boot CPU. The level of boot cpu is fetched
1689          * from the sanitised register whereas direct register read is done for
1690          * the secondary CPUs.
1691          * The sanitised feature state is guaranteed to match that of the
1692          * boot CPU as a mismatched secondary CPU is parked before it gets
1693          * a chance to update the state, with the capability.
1694          */
1695         boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1696                                                entry->field_pos, entry->sign);
1697         if (scope & SCOPE_BOOT_CPU)
1698                 return boot_val >= entry->min_field_value;
1699         /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1700         sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1701                                               entry->field_pos, entry->sign);
1702         return sec_val == boot_val;
1703 }
1704
1705 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1706                                      int scope)
1707 {
1708         return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
1709                has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1710 }
1711
1712 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1713                              int __unused)
1714 {
1715         return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1716                __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1717 }
1718 #endif /* CONFIG_ARM64_PTR_AUTH */
1719
1720 #ifdef CONFIG_ARM64_E0PD
1721 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1722 {
1723         if (this_cpu_has_cap(ARM64_HAS_E0PD))
1724                 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1725 }
1726 #endif /* CONFIG_ARM64_E0PD */
1727
1728 #ifdef CONFIG_ARM64_PSEUDO_NMI
1729 static bool enable_pseudo_nmi;
1730
1731 static int __init early_enable_pseudo_nmi(char *p)
1732 {
1733         return strtobool(p, &enable_pseudo_nmi);
1734 }
1735 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1736
1737 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1738                                    int scope)
1739 {
1740         return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1741 }
1742 #endif
1743
1744 #ifdef CONFIG_ARM64_BTI
1745 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1746 {
1747         /*
1748          * Use of X16/X17 for tail-calls and trampolines that jump to
1749          * function entry points using BR is a requirement for
1750          * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1751          * So, be strict and forbid other BRs using other registers to
1752          * jump onto a PACIxSP instruction:
1753          */
1754         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1755         isb();
1756 }
1757 #endif /* CONFIG_ARM64_BTI */
1758
1759 #ifdef CONFIG_ARM64_MTE
1760 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1761 {
1762         /*
1763          * Clear the tags in the zero page. This needs to be done via the
1764          * linear map which has the Tagged attribute.
1765          */
1766         if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
1767                 mte_clear_page_tags(lm_alias(empty_zero_page));
1768
1769         kasan_init_hw_tags_cpu();
1770 }
1771 #endif /* CONFIG_ARM64_MTE */
1772
1773 #ifdef CONFIG_KVM
1774 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1775 {
1776         if (kvm_get_mode() != KVM_MODE_PROTECTED)
1777                 return false;
1778
1779         if (is_kernel_in_hyp_mode()) {
1780                 pr_warn("Protected KVM not available with VHE\n");
1781                 return false;
1782         }
1783
1784         return true;
1785 }
1786 #endif /* CONFIG_KVM */
1787
1788 /* Internal helper functions to match cpu capability type */
1789 static bool
1790 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1791 {
1792         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1793 }
1794
1795 static bool
1796 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1797 {
1798         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1799 }
1800
1801 static bool
1802 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1803 {
1804         return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1805 }
1806
1807 static const struct arm64_cpu_capabilities arm64_features[] = {
1808         {
1809                 .desc = "GIC system register CPU interface",
1810                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1811                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1812                 .matches = has_useable_gicv3_cpuif,
1813                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1814                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1815                 .sign = FTR_UNSIGNED,
1816                 .min_field_value = 1,
1817         },
1818 #ifdef CONFIG_ARM64_PAN
1819         {
1820                 .desc = "Privileged Access Never",
1821                 .capability = ARM64_HAS_PAN,
1822                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1823                 .matches = has_cpuid_feature,
1824                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1825                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1826                 .sign = FTR_UNSIGNED,
1827                 .min_field_value = 1,
1828                 .cpu_enable = cpu_enable_pan,
1829         },
1830 #endif /* CONFIG_ARM64_PAN */
1831 #ifdef CONFIG_ARM64_EPAN
1832         {
1833                 .desc = "Enhanced Privileged Access Never",
1834                 .capability = ARM64_HAS_EPAN,
1835                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1836                 .matches = has_cpuid_feature,
1837                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1838                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1839                 .sign = FTR_UNSIGNED,
1840                 .min_field_value = 3,
1841         },
1842 #endif /* CONFIG_ARM64_EPAN */
1843 #ifdef CONFIG_ARM64_LSE_ATOMICS
1844         {
1845                 .desc = "LSE atomic instructions",
1846                 .capability = ARM64_HAS_LSE_ATOMICS,
1847                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1848                 .matches = has_cpuid_feature,
1849                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1850                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1851                 .sign = FTR_UNSIGNED,
1852                 .min_field_value = 2,
1853         },
1854 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1855         {
1856                 .desc = "Software prefetching using PRFM",
1857                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1858                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1859                 .matches = has_no_hw_prefetch,
1860         },
1861         {
1862                 .desc = "Virtualization Host Extensions",
1863                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1864                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1865                 .matches = runs_at_el2,
1866                 .cpu_enable = cpu_copy_el2regs,
1867         },
1868         {
1869                 .desc = "32-bit EL0 Support",
1870                 .capability = ARM64_HAS_32BIT_EL0,
1871                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1872                 .matches = has_cpuid_feature,
1873                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1874                 .sign = FTR_UNSIGNED,
1875                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1876                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1877         },
1878 #ifdef CONFIG_KVM
1879         {
1880                 .desc = "32-bit EL1 Support",
1881                 .capability = ARM64_HAS_32BIT_EL1,
1882                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1883                 .matches = has_cpuid_feature,
1884                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1885                 .sign = FTR_UNSIGNED,
1886                 .field_pos = ID_AA64PFR0_EL1_SHIFT,
1887                 .min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
1888         },
1889         {
1890                 .desc = "Protected KVM",
1891                 .capability = ARM64_KVM_PROTECTED_MODE,
1892                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1893                 .matches = is_kvm_protected_mode,
1894         },
1895 #endif
1896         {
1897                 .desc = "Kernel page table isolation (KPTI)",
1898                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1899                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1900                 /*
1901                  * The ID feature fields below are used to indicate that
1902                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1903                  * more details.
1904                  */
1905                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1906                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1907                 .min_field_value = 1,
1908                 .matches = unmap_kernel_at_el0,
1909                 .cpu_enable = kpti_install_ng_mappings,
1910         },
1911         {
1912                 /* FP/SIMD is not implemented */
1913                 .capability = ARM64_HAS_NO_FPSIMD,
1914                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1915                 .min_field_value = 0,
1916                 .matches = has_no_fpsimd,
1917         },
1918 #ifdef CONFIG_ARM64_PMEM
1919         {
1920                 .desc = "Data cache clean to Point of Persistence",
1921                 .capability = ARM64_HAS_DCPOP,
1922                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1923                 .matches = has_cpuid_feature,
1924                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1925                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1926                 .min_field_value = 1,
1927         },
1928         {
1929                 .desc = "Data cache clean to Point of Deep Persistence",
1930                 .capability = ARM64_HAS_DCPODP,
1931                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1932                 .matches = has_cpuid_feature,
1933                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1934                 .sign = FTR_UNSIGNED,
1935                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1936                 .min_field_value = 2,
1937         },
1938 #endif
1939 #ifdef CONFIG_ARM64_SVE
1940         {
1941                 .desc = "Scalable Vector Extension",
1942                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1943                 .capability = ARM64_SVE,
1944                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1945                 .sign = FTR_UNSIGNED,
1946                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1947                 .min_field_value = ID_AA64PFR0_SVE,
1948                 .matches = has_cpuid_feature,
1949                 .cpu_enable = sve_kernel_enable,
1950         },
1951 #endif /* CONFIG_ARM64_SVE */
1952 #ifdef CONFIG_ARM64_RAS_EXTN
1953         {
1954                 .desc = "RAS Extension Support",
1955                 .capability = ARM64_HAS_RAS_EXTN,
1956                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1957                 .matches = has_cpuid_feature,
1958                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1959                 .sign = FTR_UNSIGNED,
1960                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1961                 .min_field_value = ID_AA64PFR0_RAS_V1,
1962                 .cpu_enable = cpu_clear_disr,
1963         },
1964 #endif /* CONFIG_ARM64_RAS_EXTN */
1965 #ifdef CONFIG_ARM64_AMU_EXTN
1966         {
1967                 /*
1968                  * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1969                  * Therefore, don't provide .desc as we don't want the detection
1970                  * message to be shown until at least one CPU is detected to
1971                  * support the feature.
1972                  */
1973                 .capability = ARM64_HAS_AMU_EXTN,
1974                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1975                 .matches = has_amu,
1976                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1977                 .sign = FTR_UNSIGNED,
1978                 .field_pos = ID_AA64PFR0_AMU_SHIFT,
1979                 .min_field_value = ID_AA64PFR0_AMU,
1980                 .cpu_enable = cpu_amu_enable,
1981         },
1982 #endif /* CONFIG_ARM64_AMU_EXTN */
1983         {
1984                 .desc = "Data cache clean to the PoU not required for I/D coherence",
1985                 .capability = ARM64_HAS_CACHE_IDC,
1986                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1987                 .matches = has_cache_idc,
1988                 .cpu_enable = cpu_emulate_effective_ctr,
1989         },
1990         {
1991                 .desc = "Instruction cache invalidation not required for I/D coherence",
1992                 .capability = ARM64_HAS_CACHE_DIC,
1993                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1994                 .matches = has_cache_dic,
1995         },
1996         {
1997                 .desc = "Stage-2 Force Write-Back",
1998                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1999                 .capability = ARM64_HAS_STAGE2_FWB,
2000                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2001                 .sign = FTR_UNSIGNED,
2002                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
2003                 .min_field_value = 1,
2004                 .matches = has_cpuid_feature,
2005                 .cpu_enable = cpu_has_fwb,
2006         },
2007         {
2008                 .desc = "ARMv8.4 Translation Table Level",
2009                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2010                 .capability = ARM64_HAS_ARMv8_4_TTL,
2011                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2012                 .sign = FTR_UNSIGNED,
2013                 .field_pos = ID_AA64MMFR2_TTL_SHIFT,
2014                 .min_field_value = 1,
2015                 .matches = has_cpuid_feature,
2016         },
2017         {
2018                 .desc = "TLB range maintenance instructions",
2019                 .capability = ARM64_HAS_TLB_RANGE,
2020                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2021                 .matches = has_cpuid_feature,
2022                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2023                 .field_pos = ID_AA64ISAR0_TLB_SHIFT,
2024                 .sign = FTR_UNSIGNED,
2025                 .min_field_value = ID_AA64ISAR0_TLB_RANGE,
2026         },
2027 #ifdef CONFIG_ARM64_HW_AFDBM
2028         {
2029                 /*
2030                  * Since we turn this on always, we don't want the user to
2031                  * think that the feature is available when it may not be.
2032                  * So hide the description.
2033                  *
2034                  * .desc = "Hardware pagetable Dirty Bit Management",
2035                  *
2036                  */
2037                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2038                 .capability = ARM64_HW_DBM,
2039                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
2040                 .sign = FTR_UNSIGNED,
2041                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
2042                 .min_field_value = 2,
2043                 .matches = has_hw_dbm,
2044                 .cpu_enable = cpu_enable_hw_dbm,
2045         },
2046 #endif
2047         {
2048                 .desc = "CRC32 instructions",
2049                 .capability = ARM64_HAS_CRC32,
2050                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2051                 .matches = has_cpuid_feature,
2052                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2053                 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
2054                 .min_field_value = 1,
2055         },
2056         {
2057                 .desc = "Speculative Store Bypassing Safe (SSBS)",
2058                 .capability = ARM64_SSBS,
2059                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2060                 .matches = has_cpuid_feature,
2061                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2062                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
2063                 .sign = FTR_UNSIGNED,
2064                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
2065         },
2066 #ifdef CONFIG_ARM64_CNP
2067         {
2068                 .desc = "Common not Private translations",
2069                 .capability = ARM64_HAS_CNP,
2070                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2071                 .matches = has_useable_cnp,
2072                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2073                 .sign = FTR_UNSIGNED,
2074                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2075                 .min_field_value = 1,
2076                 .cpu_enable = cpu_enable_cnp,
2077         },
2078 #endif
2079         {
2080                 .desc = "Speculation barrier (SB)",
2081                 .capability = ARM64_HAS_SB,
2082                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2083                 .matches = has_cpuid_feature,
2084                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2085                 .field_pos = ID_AA64ISAR1_SB_SHIFT,
2086                 .sign = FTR_UNSIGNED,
2087                 .min_field_value = 1,
2088         },
2089 #ifdef CONFIG_ARM64_PTR_AUTH
2090         {
2091                 .desc = "Address authentication (architected algorithm)",
2092                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
2093                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2094                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2095                 .sign = FTR_UNSIGNED,
2096                 .field_pos = ID_AA64ISAR1_APA_SHIFT,
2097                 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2098                 .matches = has_address_auth_cpucap,
2099         },
2100         {
2101                 .desc = "Address authentication (IMP DEF algorithm)",
2102                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2103                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2104                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2105                 .sign = FTR_UNSIGNED,
2106                 .field_pos = ID_AA64ISAR1_API_SHIFT,
2107                 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2108                 .matches = has_address_auth_cpucap,
2109         },
2110         {
2111                 .capability = ARM64_HAS_ADDRESS_AUTH,
2112                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2113                 .matches = has_address_auth_metacap,
2114         },
2115         {
2116                 .desc = "Generic authentication (architected algorithm)",
2117                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2118                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2119                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2120                 .sign = FTR_UNSIGNED,
2121                 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2122                 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2123                 .matches = has_cpuid_feature,
2124         },
2125         {
2126                 .desc = "Generic authentication (IMP DEF algorithm)",
2127                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2128                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2129                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2130                 .sign = FTR_UNSIGNED,
2131                 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2132                 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2133                 .matches = has_cpuid_feature,
2134         },
2135         {
2136                 .capability = ARM64_HAS_GENERIC_AUTH,
2137                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2138                 .matches = has_generic_auth,
2139         },
2140 #endif /* CONFIG_ARM64_PTR_AUTH */
2141 #ifdef CONFIG_ARM64_PSEUDO_NMI
2142         {
2143                 /*
2144                  * Depends on having GICv3
2145                  */
2146                 .desc = "IRQ priority masking",
2147                 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2148                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2149                 .matches = can_use_gic_priorities,
2150                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2151                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2152                 .sign = FTR_UNSIGNED,
2153                 .min_field_value = 1,
2154         },
2155 #endif
2156 #ifdef CONFIG_ARM64_E0PD
2157         {
2158                 .desc = "E0PD",
2159                 .capability = ARM64_HAS_E0PD,
2160                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2161                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2162                 .sign = FTR_UNSIGNED,
2163                 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2164                 .matches = has_cpuid_feature,
2165                 .min_field_value = 1,
2166                 .cpu_enable = cpu_enable_e0pd,
2167         },
2168 #endif
2169 #ifdef CONFIG_ARCH_RANDOM
2170         {
2171                 .desc = "Random Number Generator",
2172                 .capability = ARM64_HAS_RNG,
2173                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2174                 .matches = has_cpuid_feature,
2175                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2176                 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2177                 .sign = FTR_UNSIGNED,
2178                 .min_field_value = 1,
2179         },
2180 #endif
2181 #ifdef CONFIG_ARM64_BTI
2182         {
2183                 .desc = "Branch Target Identification",
2184                 .capability = ARM64_BTI,
2185 #ifdef CONFIG_ARM64_BTI_KERNEL
2186                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2187 #else
2188                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2189 #endif
2190                 .matches = has_cpuid_feature,
2191                 .cpu_enable = bti_enable,
2192                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2193                 .field_pos = ID_AA64PFR1_BT_SHIFT,
2194                 .min_field_value = ID_AA64PFR1_BT_BTI,
2195                 .sign = FTR_UNSIGNED,
2196         },
2197 #endif
2198 #ifdef CONFIG_ARM64_MTE
2199         {
2200                 .desc = "Memory Tagging Extension",
2201                 .capability = ARM64_MTE,
2202                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2203                 .matches = has_cpuid_feature,
2204                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2205                 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2206                 .min_field_value = ID_AA64PFR1_MTE,
2207                 .sign = FTR_UNSIGNED,
2208                 .cpu_enable = cpu_enable_mte,
2209         },
2210 #endif /* CONFIG_ARM64_MTE */
2211         {
2212                 .desc = "RCpc load-acquire (LDAPR)",
2213                 .capability = ARM64_HAS_LDAPR,
2214                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2215                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2216                 .sign = FTR_UNSIGNED,
2217                 .field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2218                 .matches = has_cpuid_feature,
2219                 .min_field_value = 1,
2220         },
2221         {},
2222 };
2223
2224 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
2225                 .matches = has_cpuid_feature,                                   \
2226                 .sys_reg = reg,                                                 \
2227                 .field_pos = field,                                             \
2228                 .sign = s,                                                      \
2229                 .min_field_value = min_value,
2230
2231 #define __HWCAP_CAP(name, cap_type, cap)                                        \
2232                 .desc = name,                                                   \
2233                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2234                 .hwcap_type = cap_type,                                         \
2235                 .hwcap = cap,                                                   \
2236
2237 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
2238         {                                                                       \
2239                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2240                 HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
2241         }
2242
2243 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2244         {                                                                       \
2245                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2246                 .matches = cpucap_multi_entry_cap_matches,                      \
2247                 .match_list = list,                                             \
2248         }
2249
2250 #define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2251         {                                                                       \
2252                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2253                 .matches = match,                                               \
2254         }
2255
2256 #ifdef CONFIG_ARM64_PTR_AUTH
2257 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2258         {
2259                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2260                                   FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2261         },
2262         {
2263                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2264                                   FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2265         },
2266         {},
2267 };
2268
2269 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2270         {
2271                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2272                                   FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2273         },
2274         {
2275                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2276                                   FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2277         },
2278         {},
2279 };
2280 #endif
2281
2282 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2283         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2284         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2285         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2286         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2287         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2288         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2289         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2290         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2291         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2292         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2293         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2294         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2295         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2296         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2297         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2298         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2299         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2300         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2301         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2302         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2303         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2304         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2305         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2306         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2307         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2308         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2309         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2310         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2311         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2312         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2313         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2314         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2315         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2316 #ifdef CONFIG_ARM64_SVE
2317         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2318         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2319         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2320         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2321         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2322         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2323         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2324         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2325         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2326         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2327         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2328 #endif
2329         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2330 #ifdef CONFIG_ARM64_BTI
2331         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2332 #endif
2333 #ifdef CONFIG_ARM64_PTR_AUTH
2334         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2335         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2336 #endif
2337 #ifdef CONFIG_ARM64_MTE
2338         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2339 #endif /* CONFIG_ARM64_MTE */
2340         {},
2341 };
2342
2343 #ifdef CONFIG_COMPAT
2344 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2345 {
2346         /*
2347          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2348          * in line with that of arm32 as in vfp_init(). We make sure that the
2349          * check is future proof, by making sure value is non-zero.
2350          */
2351         u32 mvfr1;
2352
2353         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2354         if (scope == SCOPE_SYSTEM)
2355                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2356         else
2357                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2358
2359         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2360                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2361                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2362 }
2363 #endif
2364
2365 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2366 #ifdef CONFIG_COMPAT
2367         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2368         HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2369         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2370         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2371         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2372         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2373         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2374         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2375         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2376         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2377 #endif
2378         {},
2379 };
2380
2381 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2382 {
2383         switch (cap->hwcap_type) {
2384         case CAP_HWCAP:
2385                 cpu_set_feature(cap->hwcap);
2386                 break;
2387 #ifdef CONFIG_COMPAT
2388         case CAP_COMPAT_HWCAP:
2389                 compat_elf_hwcap |= (u32)cap->hwcap;
2390                 break;
2391         case CAP_COMPAT_HWCAP2:
2392                 compat_elf_hwcap2 |= (u32)cap->hwcap;
2393                 break;
2394 #endif
2395         default:
2396                 WARN_ON(1);
2397                 break;
2398         }
2399 }
2400
2401 /* Check if we have a particular HWCAP enabled */
2402 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2403 {
2404         bool rc;
2405
2406         switch (cap->hwcap_type) {
2407         case CAP_HWCAP:
2408                 rc = cpu_have_feature(cap->hwcap);
2409                 break;
2410 #ifdef CONFIG_COMPAT
2411         case CAP_COMPAT_HWCAP:
2412                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2413                 break;
2414         case CAP_COMPAT_HWCAP2:
2415                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2416                 break;
2417 #endif
2418         default:
2419                 WARN_ON(1);
2420                 rc = false;
2421         }
2422
2423         return rc;
2424 }
2425
2426 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2427 {
2428         /* We support emulation of accesses to CPU ID feature registers */
2429         cpu_set_named_feature(CPUID);
2430         for (; hwcaps->matches; hwcaps++)
2431                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2432                         cap_set_elf_hwcap(hwcaps);
2433 }
2434
2435 static void update_cpu_capabilities(u16 scope_mask)
2436 {
2437         int i;
2438         const struct arm64_cpu_capabilities *caps;
2439
2440         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2441         for (i = 0; i < ARM64_NCAPS; i++) {
2442                 caps = cpu_hwcaps_ptrs[i];
2443                 if (!caps || !(caps->type & scope_mask) ||
2444                     cpus_have_cap(caps->capability) ||
2445                     !caps->matches(caps, cpucap_default_scope(caps)))
2446                         continue;
2447
2448                 if (caps->desc)
2449                         pr_info("detected: %s\n", caps->desc);
2450                 cpus_set_cap(caps->capability);
2451
2452                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2453                         set_bit(caps->capability, boot_capabilities);
2454         }
2455 }
2456
2457 /*
2458  * Enable all the available capabilities on this CPU. The capabilities
2459  * with BOOT_CPU scope are handled separately and hence skipped here.
2460  */
2461 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2462 {
2463         int i;
2464         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2465
2466         for_each_available_cap(i) {
2467                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2468
2469                 if (WARN_ON(!cap))
2470                         continue;
2471
2472                 if (!(cap->type & non_boot_scope))
2473                         continue;
2474
2475                 if (cap->cpu_enable)
2476                         cap->cpu_enable(cap);
2477         }
2478         return 0;
2479 }
2480
2481 /*
2482  * Run through the enabled capabilities and enable() it on all active
2483  * CPUs
2484  */
2485 static void __init enable_cpu_capabilities(u16 scope_mask)
2486 {
2487         int i;
2488         const struct arm64_cpu_capabilities *caps;
2489         bool boot_scope;
2490
2491         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2492         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2493
2494         for (i = 0; i < ARM64_NCAPS; i++) {
2495                 unsigned int num;
2496
2497                 caps = cpu_hwcaps_ptrs[i];
2498                 if (!caps || !(caps->type & scope_mask))
2499                         continue;
2500                 num = caps->capability;
2501                 if (!cpus_have_cap(num))
2502                         continue;
2503
2504                 /* Ensure cpus_have_const_cap(num) works */
2505                 static_branch_enable(&cpu_hwcap_keys[num]);
2506
2507                 if (boot_scope && caps->cpu_enable)
2508                         /*
2509                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
2510                          * before any secondary CPU boots. Thus, each secondary
2511                          * will enable the capability as appropriate via
2512                          * check_local_cpu_capabilities(). The only exception is
2513                          * the boot CPU, for which the capability must be
2514                          * enabled here. This approach avoids costly
2515                          * stop_machine() calls for this case.
2516                          */
2517                         caps->cpu_enable(caps);
2518         }
2519
2520         /*
2521          * For all non-boot scope capabilities, use stop_machine()
2522          * as it schedules the work allowing us to modify PSTATE,
2523          * instead of on_each_cpu() which uses an IPI, giving us a
2524          * PSTATE that disappears when we return.
2525          */
2526         if (!boot_scope)
2527                 stop_machine(cpu_enable_non_boot_scope_capabilities,
2528                              NULL, cpu_online_mask);
2529 }
2530
2531 /*
2532  * Run through the list of capabilities to check for conflicts.
2533  * If the system has already detected a capability, take necessary
2534  * action on this CPU.
2535  */
2536 static void verify_local_cpu_caps(u16 scope_mask)
2537 {
2538         int i;
2539         bool cpu_has_cap, system_has_cap;
2540         const struct arm64_cpu_capabilities *caps;
2541
2542         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2543
2544         for (i = 0; i < ARM64_NCAPS; i++) {
2545                 caps = cpu_hwcaps_ptrs[i];
2546                 if (!caps || !(caps->type & scope_mask))
2547                         continue;
2548
2549                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2550                 system_has_cap = cpus_have_cap(caps->capability);
2551
2552                 if (system_has_cap) {
2553                         /*
2554                          * Check if the new CPU misses an advertised feature,
2555                          * which is not safe to miss.
2556                          */
2557                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2558                                 break;
2559                         /*
2560                          * We have to issue cpu_enable() irrespective of
2561                          * whether the CPU has it or not, as it is enabeld
2562                          * system wide. It is upto the call back to take
2563                          * appropriate action on this CPU.
2564                          */
2565                         if (caps->cpu_enable)
2566                                 caps->cpu_enable(caps);
2567                 } else {
2568                         /*
2569                          * Check if the CPU has this capability if it isn't
2570                          * safe to have when the system doesn't.
2571                          */
2572                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2573                                 break;
2574                 }
2575         }
2576
2577         if (i < ARM64_NCAPS) {
2578                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2579                         smp_processor_id(), caps->capability,
2580                         caps->desc, system_has_cap, cpu_has_cap);
2581
2582                 if (cpucap_panic_on_conflict(caps))
2583                         cpu_panic_kernel();
2584                 else
2585                         cpu_die_early();
2586         }
2587 }
2588
2589 /*
2590  * Check for CPU features that are used in early boot
2591  * based on the Boot CPU value.
2592  */
2593 static void check_early_cpu_features(void)
2594 {
2595         verify_cpu_asid_bits();
2596
2597         verify_local_cpu_caps(SCOPE_BOOT_CPU);
2598 }
2599
2600 static void
2601 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2602 {
2603
2604         for (; caps->matches; caps++)
2605                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2606                         pr_crit("CPU%d: missing HWCAP: %s\n",
2607                                         smp_processor_id(), caps->desc);
2608                         cpu_die_early();
2609                 }
2610 }
2611
2612 static void verify_sve_features(void)
2613 {
2614         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2615         u64 zcr = read_zcr_features();
2616
2617         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2618         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2619
2620         if (len < safe_len || sve_verify_vq_map()) {
2621                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2622                         smp_processor_id());
2623                 cpu_die_early();
2624         }
2625
2626         /* Add checks on other ZCR bits here if necessary */
2627 }
2628
2629 static void verify_hyp_capabilities(void)
2630 {
2631         u64 safe_mmfr1, mmfr0, mmfr1;
2632         int parange, ipa_max;
2633         unsigned int safe_vmid_bits, vmid_bits;
2634
2635         if (!IS_ENABLED(CONFIG_KVM))
2636                 return;
2637
2638         safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2639         mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2640         mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2641
2642         /* Verify VMID bits */
2643         safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2644         vmid_bits = get_vmid_bits(mmfr1);
2645         if (vmid_bits < safe_vmid_bits) {
2646                 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2647                 cpu_die_early();
2648         }
2649
2650         /* Verify IPA range */
2651         parange = cpuid_feature_extract_unsigned_field(mmfr0,
2652                                 ID_AA64MMFR0_PARANGE_SHIFT);
2653         ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2654         if (ipa_max < get_kvm_ipa_limit()) {
2655                 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2656                 cpu_die_early();
2657         }
2658 }
2659
2660 /*
2661  * Run through the enabled system capabilities and enable() it on this CPU.
2662  * The capabilities were decided based on the available CPUs at the boot time.
2663  * Any new CPU should match the system wide status of the capability. If the
2664  * new CPU doesn't have a capability which the system now has enabled, we
2665  * cannot do anything to fix it up and could cause unexpected failures. So
2666  * we park the CPU.
2667  */
2668 static void verify_local_cpu_capabilities(void)
2669 {
2670         /*
2671          * The capabilities with SCOPE_BOOT_CPU are checked from
2672          * check_early_cpu_features(), as they need to be verified
2673          * on all secondary CPUs.
2674          */
2675         verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2676
2677         verify_local_elf_hwcaps(arm64_elf_hwcaps);
2678
2679         if (system_supports_32bit_el0())
2680                 verify_local_elf_hwcaps(compat_elf_hwcaps);
2681
2682         if (system_supports_sve())
2683                 verify_sve_features();
2684
2685         if (is_hyp_mode_available())
2686                 verify_hyp_capabilities();
2687 }
2688
2689 void check_local_cpu_capabilities(void)
2690 {
2691         /*
2692          * All secondary CPUs should conform to the early CPU features
2693          * in use by the kernel based on boot CPU.
2694          */
2695         check_early_cpu_features();
2696
2697         /*
2698          * If we haven't finalised the system capabilities, this CPU gets
2699          * a chance to update the errata work arounds and local features.
2700          * Otherwise, this CPU should verify that it has all the system
2701          * advertised capabilities.
2702          */
2703         if (!system_capabilities_finalized())
2704                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2705         else
2706                 verify_local_cpu_capabilities();
2707 }
2708
2709 static void __init setup_boot_cpu_capabilities(void)
2710 {
2711         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2712         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2713         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2714         enable_cpu_capabilities(SCOPE_BOOT_CPU);
2715 }
2716
2717 bool this_cpu_has_cap(unsigned int n)
2718 {
2719         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2720                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2721
2722                 if (cap)
2723                         return cap->matches(cap, SCOPE_LOCAL_CPU);
2724         }
2725
2726         return false;
2727 }
2728
2729 /*
2730  * This helper function is used in a narrow window when,
2731  * - The system wide safe registers are set with all the SMP CPUs and,
2732  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2733  * In all other cases cpus_have_{const_}cap() should be used.
2734  */
2735 static bool __maybe_unused __system_matches_cap(unsigned int n)
2736 {
2737         if (n < ARM64_NCAPS) {
2738                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2739
2740                 if (cap)
2741                         return cap->matches(cap, SCOPE_SYSTEM);
2742         }
2743         return false;
2744 }
2745
2746 void cpu_set_feature(unsigned int num)
2747 {
2748         WARN_ON(num >= MAX_CPU_FEATURES);
2749         elf_hwcap |= BIT(num);
2750 }
2751 EXPORT_SYMBOL_GPL(cpu_set_feature);
2752
2753 bool cpu_have_feature(unsigned int num)
2754 {
2755         WARN_ON(num >= MAX_CPU_FEATURES);
2756         return elf_hwcap & BIT(num);
2757 }
2758 EXPORT_SYMBOL_GPL(cpu_have_feature);
2759
2760 unsigned long cpu_get_elf_hwcap(void)
2761 {
2762         /*
2763          * We currently only populate the first 32 bits of AT_HWCAP. Please
2764          * note that for userspace compatibility we guarantee that bits 62
2765          * and 63 will always be returned as 0.
2766          */
2767         return lower_32_bits(elf_hwcap);
2768 }
2769
2770 unsigned long cpu_get_elf_hwcap2(void)
2771 {
2772         return upper_32_bits(elf_hwcap);
2773 }
2774
2775 static void __init setup_system_capabilities(void)
2776 {
2777         /*
2778          * We have finalised the system-wide safe feature
2779          * registers, finalise the capabilities that depend
2780          * on it. Also enable all the available capabilities,
2781          * that are not enabled already.
2782          */
2783         update_cpu_capabilities(SCOPE_SYSTEM);
2784         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2785 }
2786
2787 void __init setup_cpu_features(void)
2788 {
2789         u32 cwg;
2790
2791         setup_system_capabilities();
2792         setup_elf_hwcaps(arm64_elf_hwcaps);
2793
2794         if (system_supports_32bit_el0())
2795                 setup_elf_hwcaps(compat_elf_hwcaps);
2796
2797         if (system_uses_ttbr0_pan())
2798                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2799
2800         sve_setup();
2801         minsigstksz_setup();
2802
2803         /* Advertise that we have computed the system capabilities */
2804         finalize_system_capabilities();
2805
2806         /*
2807          * Check for sane CTR_EL0.CWG value.
2808          */
2809         cwg = cache_type_cwg();
2810         if (!cwg)
2811                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2812                         ARCH_DMA_MINALIGN);
2813 }
2814
2815 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2816 {
2817         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2818 }
2819
2820 /*
2821  * We emulate only the following system register space.
2822  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2823  * See Table C5-6 System instruction encodings for System register accesses,
2824  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2825  */
2826 static inline bool __attribute_const__ is_emulated(u32 id)
2827 {
2828         return (sys_reg_Op0(id) == 0x3 &&
2829                 sys_reg_CRn(id) == 0x0 &&
2830                 sys_reg_Op1(id) == 0x0 &&
2831                 (sys_reg_CRm(id) == 0 ||
2832                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2833 }
2834
2835 /*
2836  * With CRm == 0, reg should be one of :
2837  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2838  */
2839 static inline int emulate_id_reg(u32 id, u64 *valp)
2840 {
2841         switch (id) {
2842         case SYS_MIDR_EL1:
2843                 *valp = read_cpuid_id();
2844                 break;
2845         case SYS_MPIDR_EL1:
2846                 *valp = SYS_MPIDR_SAFE_VAL;
2847                 break;
2848         case SYS_REVIDR_EL1:
2849                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2850                 *valp = 0;
2851                 break;
2852         default:
2853                 return -EINVAL;
2854         }
2855
2856         return 0;
2857 }
2858
2859 static int emulate_sys_reg(u32 id, u64 *valp)
2860 {
2861         struct arm64_ftr_reg *regp;
2862
2863         if (!is_emulated(id))
2864                 return -EINVAL;
2865
2866         if (sys_reg_CRm(id) == 0)
2867                 return emulate_id_reg(id, valp);
2868
2869         regp = get_arm64_ftr_reg_nowarn(id);
2870         if (regp)
2871                 *valp = arm64_ftr_reg_user_value(regp);
2872         else
2873                 /*
2874                  * The untracked registers are either IMPLEMENTATION DEFINED
2875                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
2876                  */
2877                 *valp = 0;
2878         return 0;
2879 }
2880
2881 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2882 {
2883         int rc;
2884         u64 val;
2885
2886         rc = emulate_sys_reg(sys_reg, &val);
2887         if (!rc) {
2888                 pt_regs_write_reg(regs, rt, val);
2889                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2890         }
2891         return rc;
2892 }
2893
2894 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2895 {
2896         u32 sys_reg, rt;
2897
2898         /*
2899          * sys_reg values are defined as used in mrs/msr instruction.
2900          * shift the imm value to get the encoding.
2901          */
2902         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2903         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2904         return do_emulate_mrs(regs, sys_reg, rt);
2905 }
2906
2907 static struct undef_hook mrs_hook = {
2908         .instr_mask = 0xfff00000,
2909         .instr_val  = 0xd5300000,
2910         .pstate_mask = PSR_AA32_MODE_MASK,
2911         .pstate_val = PSR_MODE_EL0t,
2912         .fn = emulate_mrs,
2913 };
2914
2915 static int __init enable_mrs_emulation(void)
2916 {
2917         register_undef_hook(&mrs_hook);
2918         return 0;
2919 }
2920
2921 core_initcall(enable_mrs_emulation);
2922
2923 enum mitigation_state arm64_get_meltdown_state(void)
2924 {
2925         if (__meltdown_safe)
2926                 return SPECTRE_UNAFFECTED;
2927
2928         if (arm64_kernel_unmapped_at_el0())
2929                 return SPECTRE_MITIGATED;
2930
2931         return SPECTRE_VULNERABLE;
2932 }
2933
2934 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2935                           char *buf)
2936 {
2937         switch (arm64_get_meltdown_state()) {
2938         case SPECTRE_UNAFFECTED:
2939                 return sprintf(buf, "Not affected\n");
2940
2941         case SPECTRE_MITIGATED:
2942                 return sprintf(buf, "Mitigation: PTI\n");
2943
2944         default:
2945                 return sprintf(buf, "Vulnerable\n");
2946         }
2947 }