Merge tag 'filelock-v5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton...
[linux-2.6-microblaze.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/types.h>
71 #include <linux/mm.h>
72 #include <linux/cpu.h>
73 #include <asm/cpu.h>
74 #include <asm/cpufeature.h>
75 #include <asm/cpu_ops.h>
76 #include <asm/fpsimd.h>
77 #include <asm/mmu_context.h>
78 #include <asm/processor.h>
79 #include <asm/sysreg.h>
80 #include <asm/traps.h>
81 #include <asm/virt.h>
82
83 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
84 static unsigned long elf_hwcap __read_mostly;
85
86 #ifdef CONFIG_COMPAT
87 #define COMPAT_ELF_HWCAP_DEFAULT        \
88                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
89                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
90                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
91                                  COMPAT_HWCAP_LPAE)
92 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
93 unsigned int compat_elf_hwcap2 __read_mostly;
94 #endif
95
96 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
97 EXPORT_SYMBOL(cpu_hwcaps);
98 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
99
100 /* Need also bit for ARM64_CB_PATCH */
101 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
102
103 bool arm64_use_ng_mappings = false;
104 EXPORT_SYMBOL(arm64_use_ng_mappings);
105
106 /*
107  * Flag to indicate if we have computed the system wide
108  * capabilities based on the boot time active CPUs. This
109  * will be used to determine if a new booting CPU should
110  * go through the verification process to make sure that it
111  * supports the system capabilities, without using a hotplug
112  * notifier. This is also used to decide if we could use
113  * the fast path for checking constant CPU caps.
114  */
115 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
116 EXPORT_SYMBOL(arm64_const_caps_ready);
117 static inline void finalize_system_capabilities(void)
118 {
119         static_branch_enable(&arm64_const_caps_ready);
120 }
121
122 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
123 {
124         /* file-wide pr_fmt adds "CPU features: " prefix */
125         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
126         return 0;
127 }
128
129 static struct notifier_block cpu_hwcaps_notifier = {
130         .notifier_call = dump_cpu_hwcaps
131 };
132
133 static int __init register_cpu_hwcaps_dumper(void)
134 {
135         atomic_notifier_chain_register(&panic_notifier_list,
136                                        &cpu_hwcaps_notifier);
137         return 0;
138 }
139 __initcall(register_cpu_hwcaps_dumper);
140
141 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
142 EXPORT_SYMBOL(cpu_hwcap_keys);
143
144 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
145         {                                               \
146                 .sign = SIGNED,                         \
147                 .visible = VISIBLE,                     \
148                 .strict = STRICT,                       \
149                 .type = TYPE,                           \
150                 .shift = SHIFT,                         \
151                 .width = WIDTH,                         \
152                 .safe_val = SAFE_VAL,                   \
153         }
154
155 /* Define a feature with unsigned values */
156 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
157         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
158
159 /* Define a feature with a signed value */
160 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
161         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
162
163 #define ARM64_FTR_END                                   \
164         {                                               \
165                 .width = 0,                             \
166         }
167
168 /* meta feature for alternatives */
169 static bool __maybe_unused
170 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
171
172 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
173
174 static bool __system_matches_cap(unsigned int n);
175
176 /*
177  * NOTE: Any changes to the visibility of features should be kept in
178  * sync with the documentation of the CPU feature register ABI.
179  */
180 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
181         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
182         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
183         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
189         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
195         ARM64_FTR_END,
196 };
197
198 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
199         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
200         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
201         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
203         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
204         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
205         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
206                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
207         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
208                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
210         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
213                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
215                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
217         ARM64_FTR_END,
218 };
219
220 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
221         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
222         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
223         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
224         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
226         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
227         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
228                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
229         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
230         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
231         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
232         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
233         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
234         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
235         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
236         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
237         ARM64_FTR_END,
238 };
239
240 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
241         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
243         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
244         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
245                                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
246         ARM64_FTR_END,
247 };
248
249 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
250         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
251                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
252         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
253                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
254         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
255                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
256         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
257                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
258         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
259                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
260         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
261                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
262         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
263                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
264         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
265                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
266         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
267                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
268         ARM64_FTR_END,
269 };
270
271 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
272         /*
273          * Page size not being supported at Stage-2 is not fatal. You
274          * just give up KVM if PAGE_SIZE isn't supported there. Go fix
275          * your favourite nesting hypervisor.
276          *
277          * There is a small corner case where the hypervisor explicitly
278          * advertises a given granule size at Stage-2 (value 2) on some
279          * vCPUs, and uses the fallback to Stage-1 (value 0) for other
280          * vCPUs. Although this is not forbidden by the architecture, it
281          * indicates that the hypervisor is being silly (or buggy).
282          *
283          * We make no effort to cope with this and pretend that if these
284          * fields are inconsistent across vCPUs, then it isn't worth
285          * trying to bring KVM up.
286          */
287         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
288         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
289         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
290         /*
291          * We already refuse to boot CPUs that don't support our configured
292          * page size, so we can only detect mismatches for a page size other
293          * than the one we're currently using. Unfortunately, SoCs like this
294          * exist in the wild so, even though we don't like it, we'll have to go
295          * along with it and treat them as non-strict.
296          */
297         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
298         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
299         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
300
301         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
302         /* Linux shouldn't care about secure memory */
303         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
304         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
305         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
306         /*
307          * Differing PARange is fine as long as all peripherals and memory are mapped
308          * within the minimum PARange of all CPUs
309          */
310         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
311         ARM64_FTR_END,
312 };
313
314 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
315         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
316         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
317         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
318         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
319         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
320         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
321         ARM64_FTR_END,
322 };
323
324 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
325         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
326         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
327         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
328         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
329         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
330         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
331         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
332         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
333         ARM64_FTR_END,
334 };
335
336 static const struct arm64_ftr_bits ftr_ctr[] = {
337         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
338         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
339         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
340         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
341         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
342         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
343         /*
344          * Linux can handle differing I-cache policies. Userspace JITs will
345          * make use of *minLine.
346          * If we have differing I-cache policies, report it as the weakest - VIPT.
347          */
348         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
349         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
350         ARM64_FTR_END,
351 };
352
353 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
354         .name           = "SYS_CTR_EL0",
355         .ftr_bits       = ftr_ctr
356 };
357
358 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
359         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
360         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
361         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
362         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
363         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
364         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
365         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
366         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
367         ARM64_FTR_END,
368 };
369
370 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
371         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 36, 4, 0),
372         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
373         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
374         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
375         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
376         /*
377          * We can instantiate multiple PMU instances with different levels
378          * of support.
379          */
380         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
381         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
382         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
383         ARM64_FTR_END,
384 };
385
386 static const struct arm64_ftr_bits ftr_mvfr2[] = {
387         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
388         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
389         ARM64_FTR_END,
390 };
391
392 static const struct arm64_ftr_bits ftr_dczid[] = {
393         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
394         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
395         ARM64_FTR_END,
396 };
397
398 static const struct arm64_ftr_bits ftr_id_isar0[] = {
399         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
400         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
401         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
402         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
403         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
404         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
405         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
406         ARM64_FTR_END,
407 };
408
409 static const struct arm64_ftr_bits ftr_id_isar5[] = {
410         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
411         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
412         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
413         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
414         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
415         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
416         ARM64_FTR_END,
417 };
418
419 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
420         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
421         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
422         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
423         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
424         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
425         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
426         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
427         /*
428          * SpecSEI = 1 indicates that the PE might generate an SError on an
429          * external abort on speculative read. It is safe to assume that an
430          * SError might be generated than it will not be. Hence it has been
431          * classified as FTR_HIGHER_SAFE.
432          */
433         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
434         ARM64_FTR_END,
435 };
436
437 static const struct arm64_ftr_bits ftr_id_isar4[] = {
438         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
439         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
440         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
441         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
442         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
443         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
444         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
445         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
446         ARM64_FTR_END,
447 };
448
449 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
450         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
451         ARM64_FTR_END,
452 };
453
454 static const struct arm64_ftr_bits ftr_id_isar6[] = {
455         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
456         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
457         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
458         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
459         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
460         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
461         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
462         ARM64_FTR_END,
463 };
464
465 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
466         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
467         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
468         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
469         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
470         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
471         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
472         ARM64_FTR_END,
473 };
474
475 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
476         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
477         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
478         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
479         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
480         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
481         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
482         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
483         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
484         ARM64_FTR_END,
485 };
486
487 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
488         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
489         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
490         ARM64_FTR_END,
491 };
492
493 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
494         /* [31:28] TraceFilt */
495         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
496         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
497         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
498         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
499         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
500         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
501         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
502         ARM64_FTR_END,
503 };
504
505 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
506         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
507         ARM64_FTR_END,
508 };
509
510 static const struct arm64_ftr_bits ftr_zcr[] = {
511         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
512                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
513         ARM64_FTR_END,
514 };
515
516 /*
517  * Common ftr bits for a 32bit register with all hidden, strict
518  * attributes, with 4bit feature fields and a default safe value of
519  * 0. Covers the following 32bit registers:
520  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
521  */
522 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
523         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
524         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
525         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
526         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
527         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
528         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
529         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
530         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
531         ARM64_FTR_END,
532 };
533
534 /* Table for a single 32bit feature value */
535 static const struct arm64_ftr_bits ftr_single32[] = {
536         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
537         ARM64_FTR_END,
538 };
539
540 static const struct arm64_ftr_bits ftr_raz[] = {
541         ARM64_FTR_END,
542 };
543
544 #define ARM64_FTR_REG(id, table) {              \
545         .sys_id = id,                           \
546         .reg =  &(struct arm64_ftr_reg){        \
547                 .name = #id,                    \
548                 .ftr_bits = &((table)[0]),      \
549         }}
550
551 static const struct __ftr_reg_entry {
552         u32                     sys_id;
553         struct arm64_ftr_reg    *reg;
554 } arm64_ftr_regs[] = {
555
556         /* Op1 = 0, CRn = 0, CRm = 1 */
557         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
558         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
559         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
560         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
561         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
562         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
563         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
564
565         /* Op1 = 0, CRn = 0, CRm = 2 */
566         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
567         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
568         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
569         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
570         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
571         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
572         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
573         ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
574
575         /* Op1 = 0, CRn = 0, CRm = 3 */
576         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
577         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
578         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
579         ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
580         ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
581         ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
582
583         /* Op1 = 0, CRn = 0, CRm = 4 */
584         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
585         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
586         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
587
588         /* Op1 = 0, CRn = 0, CRm = 5 */
589         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
590         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
591
592         /* Op1 = 0, CRn = 0, CRm = 6 */
593         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
594         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
595
596         /* Op1 = 0, CRn = 0, CRm = 7 */
597         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
598         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
599         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
600
601         /* Op1 = 0, CRn = 1, CRm = 2 */
602         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
603
604         /* Op1 = 3, CRn = 0, CRm = 0 */
605         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
606         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
607
608         /* Op1 = 3, CRn = 14, CRm = 0 */
609         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
610 };
611
612 static int search_cmp_ftr_reg(const void *id, const void *regp)
613 {
614         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
615 }
616
617 /*
618  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
619  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
620  * ascending order of sys_id, we use binary search to find a matching
621  * entry.
622  *
623  * returns - Upon success,  matching ftr_reg entry for id.
624  *         - NULL on failure. It is upto the caller to decide
625  *           the impact of a failure.
626  */
627 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
628 {
629         const struct __ftr_reg_entry *ret;
630
631         ret = bsearch((const void *)(unsigned long)sys_id,
632                         arm64_ftr_regs,
633                         ARRAY_SIZE(arm64_ftr_regs),
634                         sizeof(arm64_ftr_regs[0]),
635                         search_cmp_ftr_reg);
636         if (ret)
637                 return ret->reg;
638         return NULL;
639 }
640
641 /*
642  * get_arm64_ftr_reg - Looks up a feature register entry using
643  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
644  *
645  * returns - Upon success,  matching ftr_reg entry for id.
646  *         - NULL on failure but with an WARN_ON().
647  */
648 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
649 {
650         struct arm64_ftr_reg *reg;
651
652         reg = get_arm64_ftr_reg_nowarn(sys_id);
653
654         /*
655          * Requesting a non-existent register search is an error. Warn
656          * and let the caller handle it.
657          */
658         WARN_ON(!reg);
659         return reg;
660 }
661
662 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
663                                s64 ftr_val)
664 {
665         u64 mask = arm64_ftr_mask(ftrp);
666
667         reg &= ~mask;
668         reg |= (ftr_val << ftrp->shift) & mask;
669         return reg;
670 }
671
672 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
673                                 s64 cur)
674 {
675         s64 ret = 0;
676
677         switch (ftrp->type) {
678         case FTR_EXACT:
679                 ret = ftrp->safe_val;
680                 break;
681         case FTR_LOWER_SAFE:
682                 ret = new < cur ? new : cur;
683                 break;
684         case FTR_HIGHER_OR_ZERO_SAFE:
685                 if (!cur || !new)
686                         break;
687                 /* Fallthrough */
688         case FTR_HIGHER_SAFE:
689                 ret = new > cur ? new : cur;
690                 break;
691         default:
692                 BUG();
693         }
694
695         return ret;
696 }
697
698 static void __init sort_ftr_regs(void)
699 {
700         int i;
701
702         /* Check that the array is sorted so that we can do the binary search */
703         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
704                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
705 }
706
707 /*
708  * Initialise the CPU feature register from Boot CPU values.
709  * Also initiliases the strict_mask for the register.
710  * Any bits that are not covered by an arm64_ftr_bits entry are considered
711  * RES0 for the system-wide value, and must strictly match.
712  */
713 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
714 {
715         u64 val = 0;
716         u64 strict_mask = ~0x0ULL;
717         u64 user_mask = 0;
718         u64 valid_mask = 0;
719
720         const struct arm64_ftr_bits *ftrp;
721         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
722
723         if (!reg)
724                 return;
725
726         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
727                 u64 ftr_mask = arm64_ftr_mask(ftrp);
728                 s64 ftr_new = arm64_ftr_value(ftrp, new);
729
730                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
731
732                 valid_mask |= ftr_mask;
733                 if (!ftrp->strict)
734                         strict_mask &= ~ftr_mask;
735                 if (ftrp->visible)
736                         user_mask |= ftr_mask;
737                 else
738                         reg->user_val = arm64_ftr_set_value(ftrp,
739                                                             reg->user_val,
740                                                             ftrp->safe_val);
741         }
742
743         val &= valid_mask;
744
745         reg->sys_val = val;
746         reg->strict_mask = strict_mask;
747         reg->user_mask = user_mask;
748 }
749
750 extern const struct arm64_cpu_capabilities arm64_errata[];
751 static const struct arm64_cpu_capabilities arm64_features[];
752
753 static void __init
754 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
755 {
756         for (; caps->matches; caps++) {
757                 if (WARN(caps->capability >= ARM64_NCAPS,
758                         "Invalid capability %d\n", caps->capability))
759                         continue;
760                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
761                         "Duplicate entry for capability %d\n",
762                         caps->capability))
763                         continue;
764                 cpu_hwcaps_ptrs[caps->capability] = caps;
765         }
766 }
767
768 static void __init init_cpu_hwcaps_indirect_list(void)
769 {
770         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
771         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
772 }
773
774 static void __init setup_boot_cpu_capabilities(void);
775
776 void __init init_cpu_features(struct cpuinfo_arm64 *info)
777 {
778         /* Before we start using the tables, make sure it is sorted */
779         sort_ftr_regs();
780
781         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
782         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
783         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
784         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
785         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
786         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
787         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
788         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
789         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
790         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
791         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
792         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
793         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
794
795         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
796                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
797                 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
798                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
799                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
800                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
801                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
802                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
803                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
804                 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
805                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
806                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
807                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
808                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
809                 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
810                 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
811                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
812                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
813                 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
814                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
815                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
816                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
817         }
818
819         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
820                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
821                 sve_init_vq_map();
822         }
823
824         /*
825          * Initialize the indirect array of CPU hwcaps capabilities pointers
826          * before we handle the boot CPU below.
827          */
828         init_cpu_hwcaps_indirect_list();
829
830         /*
831          * Detect and enable early CPU capabilities based on the boot CPU,
832          * after we have initialised the CPU feature infrastructure.
833          */
834         setup_boot_cpu_capabilities();
835 }
836
837 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
838 {
839         const struct arm64_ftr_bits *ftrp;
840
841         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
842                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
843                 s64 ftr_new = arm64_ftr_value(ftrp, new);
844
845                 if (ftr_cur == ftr_new)
846                         continue;
847                 /* Find a safe value */
848                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
849                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
850         }
851
852 }
853
854 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
855 {
856         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
857
858         if (!regp)
859                 return 0;
860
861         update_cpu_ftr_reg(regp, val);
862         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
863                 return 0;
864         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
865                         regp->name, boot, cpu, val);
866         return 1;
867 }
868
869 static void relax_cpu_ftr_reg(u32 sys_id, int field)
870 {
871         const struct arm64_ftr_bits *ftrp;
872         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
873
874         if (!regp)
875                 return;
876
877         for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
878                 if (ftrp->shift == field) {
879                         regp->strict_mask &= ~arm64_ftr_mask(ftrp);
880                         break;
881                 }
882         }
883
884         /* Bogus field? */
885         WARN_ON(!ftrp->width);
886 }
887
888 static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info,
889                                      struct cpuinfo_arm64 *boot)
890 {
891         int taint = 0;
892         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
893
894         /*
895          * If we don't have AArch32 at all then skip the checks entirely
896          * as the register values may be UNKNOWN and we're not going to be
897          * using them for anything.
898          */
899         if (!id_aa64pfr0_32bit_el0(pfr0))
900                 return taint;
901
902         /*
903          * If we don't have AArch32 at EL1, then relax the strictness of
904          * EL1-dependent register fields to avoid spurious sanity check fails.
905          */
906         if (!id_aa64pfr0_32bit_el1(pfr0)) {
907                 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
908                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
909                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
910                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
911                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
912                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
913         }
914
915         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
916                                       info->reg_id_dfr0, boot->reg_id_dfr0);
917         taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
918                                       info->reg_id_dfr1, boot->reg_id_dfr1);
919         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
920                                       info->reg_id_isar0, boot->reg_id_isar0);
921         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
922                                       info->reg_id_isar1, boot->reg_id_isar1);
923         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
924                                       info->reg_id_isar2, boot->reg_id_isar2);
925         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
926                                       info->reg_id_isar3, boot->reg_id_isar3);
927         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
928                                       info->reg_id_isar4, boot->reg_id_isar4);
929         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
930                                       info->reg_id_isar5, boot->reg_id_isar5);
931         taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
932                                       info->reg_id_isar6, boot->reg_id_isar6);
933
934         /*
935          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
936          * ACTLR formats could differ across CPUs and therefore would have to
937          * be trapped for virtualization anyway.
938          */
939         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
940                                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
941         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
942                                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
943         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
944                                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
945         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
946                                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
947         taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
948                                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
949         taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
950                                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
951         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
952                                       info->reg_id_pfr0, boot->reg_id_pfr0);
953         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
954                                       info->reg_id_pfr1, boot->reg_id_pfr1);
955         taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
956                                       info->reg_id_pfr2, boot->reg_id_pfr2);
957         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
958                                       info->reg_mvfr0, boot->reg_mvfr0);
959         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
960                                       info->reg_mvfr1, boot->reg_mvfr1);
961         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
962                                       info->reg_mvfr2, boot->reg_mvfr2);
963
964         return taint;
965 }
966
967 /*
968  * Update system wide CPU feature registers with the values from a
969  * non-boot CPU. Also performs SANITY checks to make sure that there
970  * aren't any insane variations from that of the boot CPU.
971  */
972 void update_cpu_features(int cpu,
973                          struct cpuinfo_arm64 *info,
974                          struct cpuinfo_arm64 *boot)
975 {
976         int taint = 0;
977
978         /*
979          * The kernel can handle differing I-cache policies, but otherwise
980          * caches should look identical. Userspace JITs will make use of
981          * *minLine.
982          */
983         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
984                                       info->reg_ctr, boot->reg_ctr);
985
986         /*
987          * Userspace may perform DC ZVA instructions. Mismatched block sizes
988          * could result in too much or too little memory being zeroed if a
989          * process is preempted and migrated between CPUs.
990          */
991         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
992                                       info->reg_dczid, boot->reg_dczid);
993
994         /* If different, timekeeping will be broken (especially with KVM) */
995         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
996                                       info->reg_cntfrq, boot->reg_cntfrq);
997
998         /*
999          * The kernel uses self-hosted debug features and expects CPUs to
1000          * support identical debug features. We presently need CTX_CMPs, WRPs,
1001          * and BRPs to be identical.
1002          * ID_AA64DFR1 is currently RES0.
1003          */
1004         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1005                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1006         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1007                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1008         /*
1009          * Even in big.LITTLE, processors should be identical instruction-set
1010          * wise.
1011          */
1012         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1013                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1014         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1015                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1016
1017         /*
1018          * Differing PARange support is fine as long as all peripherals and
1019          * memory are mapped within the minimum PARange of all CPUs.
1020          * Linux should not care about secure memory.
1021          */
1022         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1023                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1024         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1025                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1026         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1027                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1028
1029         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1030                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1031         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1032                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1033
1034         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1035                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1036
1037         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1038                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1039                                         info->reg_zcr, boot->reg_zcr);
1040
1041                 /* Probe vector lengths, unless we already gave up on SVE */
1042                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1043                     !system_capabilities_finalized())
1044                         sve_update_vq_map();
1045         }
1046
1047         /*
1048          * This relies on a sanitised view of the AArch64 ID registers
1049          * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1050          */
1051         taint |= update_32bit_cpu_features(cpu, info, boot);
1052
1053         /*
1054          * Mismatched CPU features are a recipe for disaster. Don't even
1055          * pretend to support them.
1056          */
1057         if (taint) {
1058                 pr_warn_once("Unsupported CPU feature variation detected.\n");
1059                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1060         }
1061 }
1062
1063 u64 read_sanitised_ftr_reg(u32 id)
1064 {
1065         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1066
1067         if (!regp)
1068                 return 0;
1069         return regp->sys_val;
1070 }
1071
1072 #define read_sysreg_case(r)     \
1073         case r:         return read_sysreg_s(r)
1074
1075 /*
1076  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1077  * Read the system register on the current CPU
1078  */
1079 static u64 __read_sysreg_by_encoding(u32 sys_id)
1080 {
1081         switch (sys_id) {
1082         read_sysreg_case(SYS_ID_PFR0_EL1);
1083         read_sysreg_case(SYS_ID_PFR1_EL1);
1084         read_sysreg_case(SYS_ID_PFR2_EL1);
1085         read_sysreg_case(SYS_ID_DFR0_EL1);
1086         read_sysreg_case(SYS_ID_DFR1_EL1);
1087         read_sysreg_case(SYS_ID_MMFR0_EL1);
1088         read_sysreg_case(SYS_ID_MMFR1_EL1);
1089         read_sysreg_case(SYS_ID_MMFR2_EL1);
1090         read_sysreg_case(SYS_ID_MMFR3_EL1);
1091         read_sysreg_case(SYS_ID_MMFR4_EL1);
1092         read_sysreg_case(SYS_ID_MMFR5_EL1);
1093         read_sysreg_case(SYS_ID_ISAR0_EL1);
1094         read_sysreg_case(SYS_ID_ISAR1_EL1);
1095         read_sysreg_case(SYS_ID_ISAR2_EL1);
1096         read_sysreg_case(SYS_ID_ISAR3_EL1);
1097         read_sysreg_case(SYS_ID_ISAR4_EL1);
1098         read_sysreg_case(SYS_ID_ISAR5_EL1);
1099         read_sysreg_case(SYS_ID_ISAR6_EL1);
1100         read_sysreg_case(SYS_MVFR0_EL1);
1101         read_sysreg_case(SYS_MVFR1_EL1);
1102         read_sysreg_case(SYS_MVFR2_EL1);
1103
1104         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1105         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1106         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1107         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1108         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1109         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1110         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1111         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1112         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1113         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1114
1115         read_sysreg_case(SYS_CNTFRQ_EL0);
1116         read_sysreg_case(SYS_CTR_EL0);
1117         read_sysreg_case(SYS_DCZID_EL0);
1118
1119         default:
1120                 BUG();
1121                 return 0;
1122         }
1123 }
1124
1125 #include <linux/irqchip/arm-gic-v3.h>
1126
1127 static bool
1128 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1129 {
1130         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1131
1132         return val >= entry->min_field_value;
1133 }
1134
1135 static bool
1136 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1137 {
1138         u64 val;
1139
1140         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1141         if (scope == SCOPE_SYSTEM)
1142                 val = read_sanitised_ftr_reg(entry->sys_reg);
1143         else
1144                 val = __read_sysreg_by_encoding(entry->sys_reg);
1145
1146         return feature_matches(val, entry);
1147 }
1148
1149 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1150 {
1151         bool has_sre;
1152
1153         if (!has_cpuid_feature(entry, scope))
1154                 return false;
1155
1156         has_sre = gic_enable_sre();
1157         if (!has_sre)
1158                 pr_warn_once("%s present but disabled by higher exception level\n",
1159                              entry->desc);
1160
1161         return has_sre;
1162 }
1163
1164 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1165 {
1166         u32 midr = read_cpuid_id();
1167
1168         /* Cavium ThunderX pass 1.x and 2.x */
1169         return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1170                 MIDR_CPU_VAR_REV(0, 0),
1171                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1172 }
1173
1174 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1175 {
1176         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1177
1178         return cpuid_feature_extract_signed_field(pfr0,
1179                                         ID_AA64PFR0_FP_SHIFT) < 0;
1180 }
1181
1182 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1183                           int scope)
1184 {
1185         u64 ctr;
1186
1187         if (scope == SCOPE_SYSTEM)
1188                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1189         else
1190                 ctr = read_cpuid_effective_cachetype();
1191
1192         return ctr & BIT(CTR_IDC_SHIFT);
1193 }
1194
1195 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1196 {
1197         /*
1198          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1199          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1200          * to the CTR_EL0 on this CPU and emulate it with the real/safe
1201          * value.
1202          */
1203         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1204                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1205 }
1206
1207 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1208                           int scope)
1209 {
1210         u64 ctr;
1211
1212         if (scope == SCOPE_SYSTEM)
1213                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1214         else
1215                 ctr = read_cpuid_cachetype();
1216
1217         return ctr & BIT(CTR_DIC_SHIFT);
1218 }
1219
1220 static bool __maybe_unused
1221 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1222 {
1223         /*
1224          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1225          * may share TLB entries with a CPU stuck in the crashed
1226          * kernel.
1227          */
1228          if (is_kdump_kernel())
1229                 return false;
1230
1231         return has_cpuid_feature(entry, scope);
1232 }
1233
1234 /*
1235  * This check is triggered during the early boot before the cpufeature
1236  * is initialised. Checking the status on the local CPU allows the boot
1237  * CPU to detect the need for non-global mappings and thus avoiding a
1238  * pagetable re-write after all the CPUs are booted. This check will be
1239  * anyway run on individual CPUs, allowing us to get the consistent
1240  * state once the SMP CPUs are up and thus make the switch to non-global
1241  * mappings if required.
1242  */
1243 bool kaslr_requires_kpti(void)
1244 {
1245         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1246                 return false;
1247
1248         /*
1249          * E0PD does a similar job to KPTI so can be used instead
1250          * where available.
1251          */
1252         if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1253                 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1254                 if (cpuid_feature_extract_unsigned_field(mmfr2,
1255                                                 ID_AA64MMFR2_E0PD_SHIFT))
1256                         return false;
1257         }
1258
1259         /*
1260          * Systems affected by Cavium erratum 24756 are incompatible
1261          * with KPTI.
1262          */
1263         if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1264                 extern const struct midr_range cavium_erratum_27456_cpus[];
1265
1266                 if (is_midr_in_range_list(read_cpuid_id(),
1267                                           cavium_erratum_27456_cpus))
1268                         return false;
1269         }
1270
1271         return kaslr_offset() > 0;
1272 }
1273
1274 static bool __meltdown_safe = true;
1275 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1276
1277 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1278                                 int scope)
1279 {
1280         /* List of CPUs that are not vulnerable and don't need KPTI */
1281         static const struct midr_range kpti_safe_list[] = {
1282                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1283                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1284                 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1285                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1286                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1287                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1288                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1289                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1290                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1291                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1292                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1293                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1294                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1295                 { /* sentinel */ }
1296         };
1297         char const *str = "kpti command line option";
1298         bool meltdown_safe;
1299
1300         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1301
1302         /* Defer to CPU feature registers */
1303         if (has_cpuid_feature(entry, scope))
1304                 meltdown_safe = true;
1305
1306         if (!meltdown_safe)
1307                 __meltdown_safe = false;
1308
1309         /*
1310          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1311          * ThunderX leads to apparent I-cache corruption of kernel text, which
1312          * ends as well as you might imagine. Don't even try.
1313          */
1314         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1315                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1316                 __kpti_forced = -1;
1317         }
1318
1319         /* Useful for KASLR robustness */
1320         if (kaslr_requires_kpti()) {
1321                 if (!__kpti_forced) {
1322                         str = "KASLR";
1323                         __kpti_forced = 1;
1324                 }
1325         }
1326
1327         if (cpu_mitigations_off() && !__kpti_forced) {
1328                 str = "mitigations=off";
1329                 __kpti_forced = -1;
1330         }
1331
1332         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1333                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1334                 return false;
1335         }
1336
1337         /* Forced? */
1338         if (__kpti_forced) {
1339                 pr_info_once("kernel page table isolation forced %s by %s\n",
1340                              __kpti_forced > 0 ? "ON" : "OFF", str);
1341                 return __kpti_forced > 0;
1342         }
1343
1344         return !meltdown_safe;
1345 }
1346
1347 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1348 static void
1349 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1350 {
1351         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1352         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1353         kpti_remap_fn *remap_fn;
1354
1355         int cpu = smp_processor_id();
1356
1357         /*
1358          * We don't need to rewrite the page-tables if either we've done
1359          * it already or we have KASLR enabled and therefore have not
1360          * created any global mappings at all.
1361          */
1362         if (arm64_use_ng_mappings)
1363                 return;
1364
1365         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1366
1367         cpu_install_idmap();
1368         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1369         cpu_uninstall_idmap();
1370
1371         if (!cpu)
1372                 arm64_use_ng_mappings = true;
1373
1374         return;
1375 }
1376 #else
1377 static void
1378 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1379 {
1380 }
1381 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1382
1383 static int __init parse_kpti(char *str)
1384 {
1385         bool enabled;
1386         int ret = strtobool(str, &enabled);
1387
1388         if (ret)
1389                 return ret;
1390
1391         __kpti_forced = enabled ? 1 : -1;
1392         return 0;
1393 }
1394 early_param("kpti", parse_kpti);
1395
1396 #ifdef CONFIG_ARM64_HW_AFDBM
1397 static inline void __cpu_enable_hw_dbm(void)
1398 {
1399         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1400
1401         write_sysreg(tcr, tcr_el1);
1402         isb();
1403 }
1404
1405 static bool cpu_has_broken_dbm(void)
1406 {
1407         /* List of CPUs which have broken DBM support. */
1408         static const struct midr_range cpus[] = {
1409 #ifdef CONFIG_ARM64_ERRATUM_1024718
1410                 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1411                 /* Kryo4xx Silver (rdpe => r1p0) */
1412                 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1413 #endif
1414                 {},
1415         };
1416
1417         return is_midr_in_range_list(read_cpuid_id(), cpus);
1418 }
1419
1420 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1421 {
1422         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1423                !cpu_has_broken_dbm();
1424 }
1425
1426 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1427 {
1428         if (cpu_can_use_dbm(cap))
1429                 __cpu_enable_hw_dbm();
1430 }
1431
1432 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1433                        int __unused)
1434 {
1435         static bool detected = false;
1436         /*
1437          * DBM is a non-conflicting feature. i.e, the kernel can safely
1438          * run a mix of CPUs with and without the feature. So, we
1439          * unconditionally enable the capability to allow any late CPU
1440          * to use the feature. We only enable the control bits on the
1441          * CPU, if it actually supports.
1442          *
1443          * We have to make sure we print the "feature" detection only
1444          * when at least one CPU actually uses it. So check if this CPU
1445          * can actually use it and print the message exactly once.
1446          *
1447          * This is safe as all CPUs (including secondary CPUs - due to the
1448          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1449          * goes through the "matches" check exactly once. Also if a CPU
1450          * matches the criteria, it is guaranteed that the CPU will turn
1451          * the DBM on, as the capability is unconditionally enabled.
1452          */
1453         if (!detected && cpu_can_use_dbm(cap)) {
1454                 detected = true;
1455                 pr_info("detected: Hardware dirty bit management\n");
1456         }
1457
1458         return true;
1459 }
1460
1461 #endif
1462
1463 #ifdef CONFIG_ARM64_AMU_EXTN
1464
1465 /*
1466  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1467  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1468  * information regarding all the events that it supports. When a CPU bit is
1469  * set in the cpumask, the user of this feature can only rely on the presence
1470  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1471  * counters are enabled or access to these counters is enabled by code
1472  * executed at higher exception levels (firmware).
1473  */
1474 static struct cpumask amu_cpus __read_mostly;
1475
1476 bool cpu_has_amu_feat(int cpu)
1477 {
1478         return cpumask_test_cpu(cpu, &amu_cpus);
1479 }
1480
1481 /* Initialize the use of AMU counters for frequency invariance */
1482 extern void init_cpu_freq_invariance_counters(void);
1483
1484 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1485 {
1486         if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1487                 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1488                         smp_processor_id());
1489                 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1490                 init_cpu_freq_invariance_counters();
1491         }
1492 }
1493
1494 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1495                     int __unused)
1496 {
1497         /*
1498          * The AMU extension is a non-conflicting feature: the kernel can
1499          * safely run a mix of CPUs with and without support for the
1500          * activity monitors extension. Therefore, unconditionally enable
1501          * the capability to allow any late CPU to use the feature.
1502          *
1503          * With this feature unconditionally enabled, the cpu_enable
1504          * function will be called for all CPUs that match the criteria,
1505          * including secondary and hotplugged, marking this feature as
1506          * present on that respective CPU. The enable function will also
1507          * print a detection message.
1508          */
1509
1510         return true;
1511 }
1512 #endif
1513
1514 #ifdef CONFIG_ARM64_VHE
1515 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1516 {
1517         return is_kernel_in_hyp_mode();
1518 }
1519
1520 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1521 {
1522         /*
1523          * Copy register values that aren't redirected by hardware.
1524          *
1525          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1526          * this value to tpidr_el2 before we patch the code. Once we've done
1527          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1528          * do anything here.
1529          */
1530         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1531                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1532 }
1533 #endif
1534
1535 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1536 {
1537         u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1538
1539         /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1540         WARN_ON(val & (7 << 27 | 7 << 21));
1541 }
1542
1543 #ifdef CONFIG_ARM64_SSBD
1544 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1545 {
1546         if (user_mode(regs))
1547                 return 1;
1548
1549         if (instr & BIT(PSTATE_Imm_shift))
1550                 regs->pstate |= PSR_SSBS_BIT;
1551         else
1552                 regs->pstate &= ~PSR_SSBS_BIT;
1553
1554         arm64_skip_faulting_instruction(regs, 4);
1555         return 0;
1556 }
1557
1558 static struct undef_hook ssbs_emulation_hook = {
1559         .instr_mask     = ~(1U << PSTATE_Imm_shift),
1560         .instr_val      = 0xd500401f | PSTATE_SSBS,
1561         .fn             = ssbs_emulation_handler,
1562 };
1563
1564 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1565 {
1566         static bool undef_hook_registered = false;
1567         static DEFINE_RAW_SPINLOCK(hook_lock);
1568
1569         raw_spin_lock(&hook_lock);
1570         if (!undef_hook_registered) {
1571                 register_undef_hook(&ssbs_emulation_hook);
1572                 undef_hook_registered = true;
1573         }
1574         raw_spin_unlock(&hook_lock);
1575
1576         if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1577                 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1578                 arm64_set_ssbd_mitigation(false);
1579         } else {
1580                 arm64_set_ssbd_mitigation(true);
1581         }
1582 }
1583 #endif /* CONFIG_ARM64_SSBD */
1584
1585 #ifdef CONFIG_ARM64_PAN
1586 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1587 {
1588         /*
1589          * We modify PSTATE. This won't work from irq context as the PSTATE
1590          * is discarded once we return from the exception.
1591          */
1592         WARN_ON_ONCE(in_interrupt());
1593
1594         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1595         asm(SET_PSTATE_PAN(1));
1596 }
1597 #endif /* CONFIG_ARM64_PAN */
1598
1599 #ifdef CONFIG_ARM64_RAS_EXTN
1600 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1601 {
1602         /* Firmware may have left a deferred SError in this register. */
1603         write_sysreg_s(0, SYS_DISR_EL1);
1604 }
1605 #endif /* CONFIG_ARM64_RAS_EXTN */
1606
1607 #ifdef CONFIG_ARM64_PTR_AUTH
1608 static bool has_address_auth(const struct arm64_cpu_capabilities *entry,
1609                              int __unused)
1610 {
1611         return __system_matches_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
1612                __system_matches_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF);
1613 }
1614
1615 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1616                              int __unused)
1617 {
1618         return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1619                __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1620 }
1621 #endif /* CONFIG_ARM64_PTR_AUTH */
1622
1623 #ifdef CONFIG_ARM64_E0PD
1624 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1625 {
1626         if (this_cpu_has_cap(ARM64_HAS_E0PD))
1627                 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1628 }
1629 #endif /* CONFIG_ARM64_E0PD */
1630
1631 #ifdef CONFIG_ARM64_PSEUDO_NMI
1632 static bool enable_pseudo_nmi;
1633
1634 static int __init early_enable_pseudo_nmi(char *p)
1635 {
1636         return strtobool(p, &enable_pseudo_nmi);
1637 }
1638 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1639
1640 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1641                                    int scope)
1642 {
1643         return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1644 }
1645 #endif
1646
1647 #ifdef CONFIG_ARM64_BTI
1648 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1649 {
1650         /*
1651          * Use of X16/X17 for tail-calls and trampolines that jump to
1652          * function entry points using BR is a requirement for
1653          * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1654          * So, be strict and forbid other BRs using other registers to
1655          * jump onto a PACIxSP instruction:
1656          */
1657         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1658         isb();
1659 }
1660 #endif /* CONFIG_ARM64_BTI */
1661
1662 /* Internal helper functions to match cpu capability type */
1663 static bool
1664 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1665 {
1666         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1667 }
1668
1669 static bool
1670 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1671 {
1672         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1673 }
1674
1675 static bool
1676 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1677 {
1678         return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1679 }
1680
1681 static const struct arm64_cpu_capabilities arm64_features[] = {
1682         {
1683                 .desc = "GIC system register CPU interface",
1684                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1685                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1686                 .matches = has_useable_gicv3_cpuif,
1687                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1688                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1689                 .sign = FTR_UNSIGNED,
1690                 .min_field_value = 1,
1691         },
1692 #ifdef CONFIG_ARM64_PAN
1693         {
1694                 .desc = "Privileged Access Never",
1695                 .capability = ARM64_HAS_PAN,
1696                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1697                 .matches = has_cpuid_feature,
1698                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1699                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1700                 .sign = FTR_UNSIGNED,
1701                 .min_field_value = 1,
1702                 .cpu_enable = cpu_enable_pan,
1703         },
1704 #endif /* CONFIG_ARM64_PAN */
1705 #ifdef CONFIG_ARM64_LSE_ATOMICS
1706         {
1707                 .desc = "LSE atomic instructions",
1708                 .capability = ARM64_HAS_LSE_ATOMICS,
1709                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1710                 .matches = has_cpuid_feature,
1711                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1712                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1713                 .sign = FTR_UNSIGNED,
1714                 .min_field_value = 2,
1715         },
1716 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1717         {
1718                 .desc = "Software prefetching using PRFM",
1719                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1720                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1721                 .matches = has_no_hw_prefetch,
1722         },
1723 #ifdef CONFIG_ARM64_UAO
1724         {
1725                 .desc = "User Access Override",
1726                 .capability = ARM64_HAS_UAO,
1727                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1728                 .matches = has_cpuid_feature,
1729                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1730                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1731                 .min_field_value = 1,
1732                 /*
1733                  * We rely on stop_machine() calling uao_thread_switch() to set
1734                  * UAO immediately after patching.
1735                  */
1736         },
1737 #endif /* CONFIG_ARM64_UAO */
1738 #ifdef CONFIG_ARM64_PAN
1739         {
1740                 .capability = ARM64_ALT_PAN_NOT_UAO,
1741                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1742                 .matches = cpufeature_pan_not_uao,
1743         },
1744 #endif /* CONFIG_ARM64_PAN */
1745 #ifdef CONFIG_ARM64_VHE
1746         {
1747                 .desc = "Virtualization Host Extensions",
1748                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1749                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1750                 .matches = runs_at_el2,
1751                 .cpu_enable = cpu_copy_el2regs,
1752         },
1753 #endif  /* CONFIG_ARM64_VHE */
1754         {
1755                 .desc = "32-bit EL0 Support",
1756                 .capability = ARM64_HAS_32BIT_EL0,
1757                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1758                 .matches = has_cpuid_feature,
1759                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1760                 .sign = FTR_UNSIGNED,
1761                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1762                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1763         },
1764 #ifdef CONFIG_KVM
1765         {
1766                 .desc = "32-bit EL1 Support",
1767                 .capability = ARM64_HAS_32BIT_EL1,
1768                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1769                 .matches = has_cpuid_feature,
1770                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1771                 .sign = FTR_UNSIGNED,
1772                 .field_pos = ID_AA64PFR0_EL1_SHIFT,
1773                 .min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
1774         },
1775 #endif
1776         {
1777                 .desc = "Kernel page table isolation (KPTI)",
1778                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1779                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1780                 /*
1781                  * The ID feature fields below are used to indicate that
1782                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1783                  * more details.
1784                  */
1785                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1786                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1787                 .min_field_value = 1,
1788                 .matches = unmap_kernel_at_el0,
1789                 .cpu_enable = kpti_install_ng_mappings,
1790         },
1791         {
1792                 /* FP/SIMD is not implemented */
1793                 .capability = ARM64_HAS_NO_FPSIMD,
1794                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1795                 .min_field_value = 0,
1796                 .matches = has_no_fpsimd,
1797         },
1798 #ifdef CONFIG_ARM64_PMEM
1799         {
1800                 .desc = "Data cache clean to Point of Persistence",
1801                 .capability = ARM64_HAS_DCPOP,
1802                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1803                 .matches = has_cpuid_feature,
1804                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1805                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1806                 .min_field_value = 1,
1807         },
1808         {
1809                 .desc = "Data cache clean to Point of Deep Persistence",
1810                 .capability = ARM64_HAS_DCPODP,
1811                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1812                 .matches = has_cpuid_feature,
1813                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1814                 .sign = FTR_UNSIGNED,
1815                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1816                 .min_field_value = 2,
1817         },
1818 #endif
1819 #ifdef CONFIG_ARM64_SVE
1820         {
1821                 .desc = "Scalable Vector Extension",
1822                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1823                 .capability = ARM64_SVE,
1824                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1825                 .sign = FTR_UNSIGNED,
1826                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1827                 .min_field_value = ID_AA64PFR0_SVE,
1828                 .matches = has_cpuid_feature,
1829                 .cpu_enable = sve_kernel_enable,
1830         },
1831 #endif /* CONFIG_ARM64_SVE */
1832 #ifdef CONFIG_ARM64_RAS_EXTN
1833         {
1834                 .desc = "RAS Extension Support",
1835                 .capability = ARM64_HAS_RAS_EXTN,
1836                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1837                 .matches = has_cpuid_feature,
1838                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1839                 .sign = FTR_UNSIGNED,
1840                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1841                 .min_field_value = ID_AA64PFR0_RAS_V1,
1842                 .cpu_enable = cpu_clear_disr,
1843         },
1844 #endif /* CONFIG_ARM64_RAS_EXTN */
1845 #ifdef CONFIG_ARM64_AMU_EXTN
1846         {
1847                 /*
1848                  * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1849                  * Therefore, don't provide .desc as we don't want the detection
1850                  * message to be shown until at least one CPU is detected to
1851                  * support the feature.
1852                  */
1853                 .capability = ARM64_HAS_AMU_EXTN,
1854                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1855                 .matches = has_amu,
1856                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1857                 .sign = FTR_UNSIGNED,
1858                 .field_pos = ID_AA64PFR0_AMU_SHIFT,
1859                 .min_field_value = ID_AA64PFR0_AMU,
1860                 .cpu_enable = cpu_amu_enable,
1861         },
1862 #endif /* CONFIG_ARM64_AMU_EXTN */
1863         {
1864                 .desc = "Data cache clean to the PoU not required for I/D coherence",
1865                 .capability = ARM64_HAS_CACHE_IDC,
1866                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1867                 .matches = has_cache_idc,
1868                 .cpu_enable = cpu_emulate_effective_ctr,
1869         },
1870         {
1871                 .desc = "Instruction cache invalidation not required for I/D coherence",
1872                 .capability = ARM64_HAS_CACHE_DIC,
1873                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1874                 .matches = has_cache_dic,
1875         },
1876         {
1877                 .desc = "Stage-2 Force Write-Back",
1878                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1879                 .capability = ARM64_HAS_STAGE2_FWB,
1880                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1881                 .sign = FTR_UNSIGNED,
1882                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1883                 .min_field_value = 1,
1884                 .matches = has_cpuid_feature,
1885                 .cpu_enable = cpu_has_fwb,
1886         },
1887 #ifdef CONFIG_ARM64_HW_AFDBM
1888         {
1889                 /*
1890                  * Since we turn this on always, we don't want the user to
1891                  * think that the feature is available when it may not be.
1892                  * So hide the description.
1893                  *
1894                  * .desc = "Hardware pagetable Dirty Bit Management",
1895                  *
1896                  */
1897                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1898                 .capability = ARM64_HW_DBM,
1899                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1900                 .sign = FTR_UNSIGNED,
1901                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1902                 .min_field_value = 2,
1903                 .matches = has_hw_dbm,
1904                 .cpu_enable = cpu_enable_hw_dbm,
1905         },
1906 #endif
1907         {
1908                 .desc = "CRC32 instructions",
1909                 .capability = ARM64_HAS_CRC32,
1910                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1911                 .matches = has_cpuid_feature,
1912                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1913                 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1914                 .min_field_value = 1,
1915         },
1916 #ifdef CONFIG_ARM64_SSBD
1917         {
1918                 .desc = "Speculative Store Bypassing Safe (SSBS)",
1919                 .capability = ARM64_SSBS,
1920                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1921                 .matches = has_cpuid_feature,
1922                 .sys_reg = SYS_ID_AA64PFR1_EL1,
1923                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1924                 .sign = FTR_UNSIGNED,
1925                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1926                 .cpu_enable = cpu_enable_ssbs,
1927         },
1928 #endif
1929 #ifdef CONFIG_ARM64_CNP
1930         {
1931                 .desc = "Common not Private translations",
1932                 .capability = ARM64_HAS_CNP,
1933                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1934                 .matches = has_useable_cnp,
1935                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1936                 .sign = FTR_UNSIGNED,
1937                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
1938                 .min_field_value = 1,
1939                 .cpu_enable = cpu_enable_cnp,
1940         },
1941 #endif
1942         {
1943                 .desc = "Speculation barrier (SB)",
1944                 .capability = ARM64_HAS_SB,
1945                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1946                 .matches = has_cpuid_feature,
1947                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1948                 .field_pos = ID_AA64ISAR1_SB_SHIFT,
1949                 .sign = FTR_UNSIGNED,
1950                 .min_field_value = 1,
1951         },
1952 #ifdef CONFIG_ARM64_PTR_AUTH
1953         {
1954                 .desc = "Address authentication (architected algorithm)",
1955                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1956                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
1957                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1958                 .sign = FTR_UNSIGNED,
1959                 .field_pos = ID_AA64ISAR1_APA_SHIFT,
1960                 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1961                 .matches = has_cpuid_feature,
1962         },
1963         {
1964                 .desc = "Address authentication (IMP DEF algorithm)",
1965                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1966                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
1967                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1968                 .sign = FTR_UNSIGNED,
1969                 .field_pos = ID_AA64ISAR1_API_SHIFT,
1970                 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1971                 .matches = has_cpuid_feature,
1972         },
1973         {
1974                 .capability = ARM64_HAS_ADDRESS_AUTH,
1975                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
1976                 .matches = has_address_auth,
1977         },
1978         {
1979                 .desc = "Generic authentication (architected algorithm)",
1980                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1981                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1982                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1983                 .sign = FTR_UNSIGNED,
1984                 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
1985                 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1986                 .matches = has_cpuid_feature,
1987         },
1988         {
1989                 .desc = "Generic authentication (IMP DEF algorithm)",
1990                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1991                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1992                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1993                 .sign = FTR_UNSIGNED,
1994                 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
1995                 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1996                 .matches = has_cpuid_feature,
1997         },
1998         {
1999                 .capability = ARM64_HAS_GENERIC_AUTH,
2000                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2001                 .matches = has_generic_auth,
2002         },
2003 #endif /* CONFIG_ARM64_PTR_AUTH */
2004 #ifdef CONFIG_ARM64_PSEUDO_NMI
2005         {
2006                 /*
2007                  * Depends on having GICv3
2008                  */
2009                 .desc = "IRQ priority masking",
2010                 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2011                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2012                 .matches = can_use_gic_priorities,
2013                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2014                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2015                 .sign = FTR_UNSIGNED,
2016                 .min_field_value = 1,
2017         },
2018 #endif
2019 #ifdef CONFIG_ARM64_E0PD
2020         {
2021                 .desc = "E0PD",
2022                 .capability = ARM64_HAS_E0PD,
2023                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2024                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2025                 .sign = FTR_UNSIGNED,
2026                 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2027                 .matches = has_cpuid_feature,
2028                 .min_field_value = 1,
2029                 .cpu_enable = cpu_enable_e0pd,
2030         },
2031 #endif
2032 #ifdef CONFIG_ARCH_RANDOM
2033         {
2034                 .desc = "Random Number Generator",
2035                 .capability = ARM64_HAS_RNG,
2036                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2037                 .matches = has_cpuid_feature,
2038                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2039                 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2040                 .sign = FTR_UNSIGNED,
2041                 .min_field_value = 1,
2042         },
2043 #endif
2044 #ifdef CONFIG_ARM64_BTI
2045         {
2046                 .desc = "Branch Target Identification",
2047                 .capability = ARM64_BTI,
2048 #ifdef CONFIG_ARM64_BTI_KERNEL
2049                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2050 #else
2051                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2052 #endif
2053                 .matches = has_cpuid_feature,
2054                 .cpu_enable = bti_enable,
2055                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2056                 .field_pos = ID_AA64PFR1_BT_SHIFT,
2057                 .min_field_value = ID_AA64PFR1_BT_BTI,
2058                 .sign = FTR_UNSIGNED,
2059         },
2060 #endif
2061         {},
2062 };
2063
2064 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
2065                 .matches = has_cpuid_feature,                                   \
2066                 .sys_reg = reg,                                                 \
2067                 .field_pos = field,                                             \
2068                 .sign = s,                                                      \
2069                 .min_field_value = min_value,
2070
2071 #define __HWCAP_CAP(name, cap_type, cap)                                        \
2072                 .desc = name,                                                   \
2073                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2074                 .hwcap_type = cap_type,                                         \
2075                 .hwcap = cap,                                                   \
2076
2077 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
2078         {                                                                       \
2079                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2080                 HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
2081         }
2082
2083 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2084         {                                                                       \
2085                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2086                 .matches = cpucap_multi_entry_cap_matches,                      \
2087                 .match_list = list,                                             \
2088         }
2089
2090 #define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2091         {                                                                       \
2092                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2093                 .matches = match,                                               \
2094         }
2095
2096 #ifdef CONFIG_ARM64_PTR_AUTH
2097 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2098         {
2099                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2100                                   FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2101         },
2102         {
2103                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2104                                   FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2105         },
2106         {},
2107 };
2108
2109 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2110         {
2111                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2112                                   FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2113         },
2114         {
2115                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2116                                   FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2117         },
2118         {},
2119 };
2120 #endif
2121
2122 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2123         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2124         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2125         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2126         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2127         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2128         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2129         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2130         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2131         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2132         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2133         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2134         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2135         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2136         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2137         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2138         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2139         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2140         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2141         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2142         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2143         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2144         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2145         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2146         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2147         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2148         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2149         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2150         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2151         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2152         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2153         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2154         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2155         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2156 #ifdef CONFIG_ARM64_SVE
2157         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2158         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2159         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2160         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2161         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2162         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2163         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2164         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2165         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2166         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2167         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2168 #endif
2169         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2170 #ifdef CONFIG_ARM64_BTI
2171         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2172 #endif
2173 #ifdef CONFIG_ARM64_PTR_AUTH
2174         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2175         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2176 #endif
2177         {},
2178 };
2179
2180 #ifdef CONFIG_COMPAT
2181 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2182 {
2183         /*
2184          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2185          * in line with that of arm32 as in vfp_init(). We make sure that the
2186          * check is future proof, by making sure value is non-zero.
2187          */
2188         u32 mvfr1;
2189
2190         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2191         if (scope == SCOPE_SYSTEM)
2192                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2193         else
2194                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2195
2196         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2197                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2198                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2199 }
2200 #endif
2201
2202 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2203 #ifdef CONFIG_COMPAT
2204         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2205         HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2206         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2207         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2208         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2209         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2210         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2211         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2212         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2213         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2214 #endif
2215         {},
2216 };
2217
2218 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2219 {
2220         switch (cap->hwcap_type) {
2221         case CAP_HWCAP:
2222                 cpu_set_feature(cap->hwcap);
2223                 break;
2224 #ifdef CONFIG_COMPAT
2225         case CAP_COMPAT_HWCAP:
2226                 compat_elf_hwcap |= (u32)cap->hwcap;
2227                 break;
2228         case CAP_COMPAT_HWCAP2:
2229                 compat_elf_hwcap2 |= (u32)cap->hwcap;
2230                 break;
2231 #endif
2232         default:
2233                 WARN_ON(1);
2234                 break;
2235         }
2236 }
2237
2238 /* Check if we have a particular HWCAP enabled */
2239 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2240 {
2241         bool rc;
2242
2243         switch (cap->hwcap_type) {
2244         case CAP_HWCAP:
2245                 rc = cpu_have_feature(cap->hwcap);
2246                 break;
2247 #ifdef CONFIG_COMPAT
2248         case CAP_COMPAT_HWCAP:
2249                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2250                 break;
2251         case CAP_COMPAT_HWCAP2:
2252                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2253                 break;
2254 #endif
2255         default:
2256                 WARN_ON(1);
2257                 rc = false;
2258         }
2259
2260         return rc;
2261 }
2262
2263 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2264 {
2265         /* We support emulation of accesses to CPU ID feature registers */
2266         cpu_set_named_feature(CPUID);
2267         for (; hwcaps->matches; hwcaps++)
2268                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2269                         cap_set_elf_hwcap(hwcaps);
2270 }
2271
2272 static void update_cpu_capabilities(u16 scope_mask)
2273 {
2274         int i;
2275         const struct arm64_cpu_capabilities *caps;
2276
2277         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2278         for (i = 0; i < ARM64_NCAPS; i++) {
2279                 caps = cpu_hwcaps_ptrs[i];
2280                 if (!caps || !(caps->type & scope_mask) ||
2281                     cpus_have_cap(caps->capability) ||
2282                     !caps->matches(caps, cpucap_default_scope(caps)))
2283                         continue;
2284
2285                 if (caps->desc)
2286                         pr_info("detected: %s\n", caps->desc);
2287                 cpus_set_cap(caps->capability);
2288
2289                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2290                         set_bit(caps->capability, boot_capabilities);
2291         }
2292 }
2293
2294 /*
2295  * Enable all the available capabilities on this CPU. The capabilities
2296  * with BOOT_CPU scope are handled separately and hence skipped here.
2297  */
2298 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2299 {
2300         int i;
2301         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2302
2303         for_each_available_cap(i) {
2304                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2305
2306                 if (WARN_ON(!cap))
2307                         continue;
2308
2309                 if (!(cap->type & non_boot_scope))
2310                         continue;
2311
2312                 if (cap->cpu_enable)
2313                         cap->cpu_enable(cap);
2314         }
2315         return 0;
2316 }
2317
2318 /*
2319  * Run through the enabled capabilities and enable() it on all active
2320  * CPUs
2321  */
2322 static void __init enable_cpu_capabilities(u16 scope_mask)
2323 {
2324         int i;
2325         const struct arm64_cpu_capabilities *caps;
2326         bool boot_scope;
2327
2328         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2329         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2330
2331         for (i = 0; i < ARM64_NCAPS; i++) {
2332                 unsigned int num;
2333
2334                 caps = cpu_hwcaps_ptrs[i];
2335                 if (!caps || !(caps->type & scope_mask))
2336                         continue;
2337                 num = caps->capability;
2338                 if (!cpus_have_cap(num))
2339                         continue;
2340
2341                 /* Ensure cpus_have_const_cap(num) works */
2342                 static_branch_enable(&cpu_hwcap_keys[num]);
2343
2344                 if (boot_scope && caps->cpu_enable)
2345                         /*
2346                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
2347                          * before any secondary CPU boots. Thus, each secondary
2348                          * will enable the capability as appropriate via
2349                          * check_local_cpu_capabilities(). The only exception is
2350                          * the boot CPU, for which the capability must be
2351                          * enabled here. This approach avoids costly
2352                          * stop_machine() calls for this case.
2353                          */
2354                         caps->cpu_enable(caps);
2355         }
2356
2357         /*
2358          * For all non-boot scope capabilities, use stop_machine()
2359          * as it schedules the work allowing us to modify PSTATE,
2360          * instead of on_each_cpu() which uses an IPI, giving us a
2361          * PSTATE that disappears when we return.
2362          */
2363         if (!boot_scope)
2364                 stop_machine(cpu_enable_non_boot_scope_capabilities,
2365                              NULL, cpu_online_mask);
2366 }
2367
2368 /*
2369  * Run through the list of capabilities to check for conflicts.
2370  * If the system has already detected a capability, take necessary
2371  * action on this CPU.
2372  */
2373 static void verify_local_cpu_caps(u16 scope_mask)
2374 {
2375         int i;
2376         bool cpu_has_cap, system_has_cap;
2377         const struct arm64_cpu_capabilities *caps;
2378
2379         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2380
2381         for (i = 0; i < ARM64_NCAPS; i++) {
2382                 caps = cpu_hwcaps_ptrs[i];
2383                 if (!caps || !(caps->type & scope_mask))
2384                         continue;
2385
2386                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2387                 system_has_cap = cpus_have_cap(caps->capability);
2388
2389                 if (system_has_cap) {
2390                         /*
2391                          * Check if the new CPU misses an advertised feature,
2392                          * which is not safe to miss.
2393                          */
2394                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2395                                 break;
2396                         /*
2397                          * We have to issue cpu_enable() irrespective of
2398                          * whether the CPU has it or not, as it is enabeld
2399                          * system wide. It is upto the call back to take
2400                          * appropriate action on this CPU.
2401                          */
2402                         if (caps->cpu_enable)
2403                                 caps->cpu_enable(caps);
2404                 } else {
2405                         /*
2406                          * Check if the CPU has this capability if it isn't
2407                          * safe to have when the system doesn't.
2408                          */
2409                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2410                                 break;
2411                 }
2412         }
2413
2414         if (i < ARM64_NCAPS) {
2415                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2416                         smp_processor_id(), caps->capability,
2417                         caps->desc, system_has_cap, cpu_has_cap);
2418
2419                 if (cpucap_panic_on_conflict(caps))
2420                         cpu_panic_kernel();
2421                 else
2422                         cpu_die_early();
2423         }
2424 }
2425
2426 /*
2427  * Check for CPU features that are used in early boot
2428  * based on the Boot CPU value.
2429  */
2430 static void check_early_cpu_features(void)
2431 {
2432         verify_cpu_asid_bits();
2433
2434         verify_local_cpu_caps(SCOPE_BOOT_CPU);
2435 }
2436
2437 static void
2438 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2439 {
2440
2441         for (; caps->matches; caps++)
2442                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2443                         pr_crit("CPU%d: missing HWCAP: %s\n",
2444                                         smp_processor_id(), caps->desc);
2445                         cpu_die_early();
2446                 }
2447 }
2448
2449 static void verify_sve_features(void)
2450 {
2451         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2452         u64 zcr = read_zcr_features();
2453
2454         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2455         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2456
2457         if (len < safe_len || sve_verify_vq_map()) {
2458                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2459                         smp_processor_id());
2460                 cpu_die_early();
2461         }
2462
2463         /* Add checks on other ZCR bits here if necessary */
2464 }
2465
2466 static void verify_hyp_capabilities(void)
2467 {
2468         u64 safe_mmfr1, mmfr0, mmfr1;
2469         int parange, ipa_max;
2470         unsigned int safe_vmid_bits, vmid_bits;
2471
2472         if (!IS_ENABLED(CONFIG_KVM) || !IS_ENABLED(CONFIG_KVM_ARM_HOST))
2473                 return;
2474
2475         safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2476         mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2477         mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2478
2479         /* Verify VMID bits */
2480         safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2481         vmid_bits = get_vmid_bits(mmfr1);
2482         if (vmid_bits < safe_vmid_bits) {
2483                 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2484                 cpu_die_early();
2485         }
2486
2487         /* Verify IPA range */
2488         parange = cpuid_feature_extract_unsigned_field(mmfr0,
2489                                 ID_AA64MMFR0_PARANGE_SHIFT);
2490         ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2491         if (ipa_max < get_kvm_ipa_limit()) {
2492                 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2493                 cpu_die_early();
2494         }
2495 }
2496
2497 /*
2498  * Run through the enabled system capabilities and enable() it on this CPU.
2499  * The capabilities were decided based on the available CPUs at the boot time.
2500  * Any new CPU should match the system wide status of the capability. If the
2501  * new CPU doesn't have a capability which the system now has enabled, we
2502  * cannot do anything to fix it up and could cause unexpected failures. So
2503  * we park the CPU.
2504  */
2505 static void verify_local_cpu_capabilities(void)
2506 {
2507         /*
2508          * The capabilities with SCOPE_BOOT_CPU are checked from
2509          * check_early_cpu_features(), as they need to be verified
2510          * on all secondary CPUs.
2511          */
2512         verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2513
2514         verify_local_elf_hwcaps(arm64_elf_hwcaps);
2515
2516         if (system_supports_32bit_el0())
2517                 verify_local_elf_hwcaps(compat_elf_hwcaps);
2518
2519         if (system_supports_sve())
2520                 verify_sve_features();
2521
2522         if (is_hyp_mode_available())
2523                 verify_hyp_capabilities();
2524 }
2525
2526 void check_local_cpu_capabilities(void)
2527 {
2528         /*
2529          * All secondary CPUs should conform to the early CPU features
2530          * in use by the kernel based on boot CPU.
2531          */
2532         check_early_cpu_features();
2533
2534         /*
2535          * If we haven't finalised the system capabilities, this CPU gets
2536          * a chance to update the errata work arounds and local features.
2537          * Otherwise, this CPU should verify that it has all the system
2538          * advertised capabilities.
2539          */
2540         if (!system_capabilities_finalized())
2541                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2542         else
2543                 verify_local_cpu_capabilities();
2544 }
2545
2546 static void __init setup_boot_cpu_capabilities(void)
2547 {
2548         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2549         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2550         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2551         enable_cpu_capabilities(SCOPE_BOOT_CPU);
2552 }
2553
2554 bool this_cpu_has_cap(unsigned int n)
2555 {
2556         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2557                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2558
2559                 if (cap)
2560                         return cap->matches(cap, SCOPE_LOCAL_CPU);
2561         }
2562
2563         return false;
2564 }
2565
2566 /*
2567  * This helper function is used in a narrow window when,
2568  * - The system wide safe registers are set with all the SMP CPUs and,
2569  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2570  * In all other cases cpus_have_{const_}cap() should be used.
2571  */
2572 static bool __system_matches_cap(unsigned int n)
2573 {
2574         if (n < ARM64_NCAPS) {
2575                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2576
2577                 if (cap)
2578                         return cap->matches(cap, SCOPE_SYSTEM);
2579         }
2580         return false;
2581 }
2582
2583 void cpu_set_feature(unsigned int num)
2584 {
2585         WARN_ON(num >= MAX_CPU_FEATURES);
2586         elf_hwcap |= BIT(num);
2587 }
2588 EXPORT_SYMBOL_GPL(cpu_set_feature);
2589
2590 bool cpu_have_feature(unsigned int num)
2591 {
2592         WARN_ON(num >= MAX_CPU_FEATURES);
2593         return elf_hwcap & BIT(num);
2594 }
2595 EXPORT_SYMBOL_GPL(cpu_have_feature);
2596
2597 unsigned long cpu_get_elf_hwcap(void)
2598 {
2599         /*
2600          * We currently only populate the first 32 bits of AT_HWCAP. Please
2601          * note that for userspace compatibility we guarantee that bits 62
2602          * and 63 will always be returned as 0.
2603          */
2604         return lower_32_bits(elf_hwcap);
2605 }
2606
2607 unsigned long cpu_get_elf_hwcap2(void)
2608 {
2609         return upper_32_bits(elf_hwcap);
2610 }
2611
2612 static void __init setup_system_capabilities(void)
2613 {
2614         /*
2615          * We have finalised the system-wide safe feature
2616          * registers, finalise the capabilities that depend
2617          * on it. Also enable all the available capabilities,
2618          * that are not enabled already.
2619          */
2620         update_cpu_capabilities(SCOPE_SYSTEM);
2621         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2622 }
2623
2624 void __init setup_cpu_features(void)
2625 {
2626         u32 cwg;
2627
2628         setup_system_capabilities();
2629         setup_elf_hwcaps(arm64_elf_hwcaps);
2630
2631         if (system_supports_32bit_el0())
2632                 setup_elf_hwcaps(compat_elf_hwcaps);
2633
2634         if (system_uses_ttbr0_pan())
2635                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2636
2637         sve_setup();
2638         minsigstksz_setup();
2639
2640         /* Advertise that we have computed the system capabilities */
2641         finalize_system_capabilities();
2642
2643         /*
2644          * Check for sane CTR_EL0.CWG value.
2645          */
2646         cwg = cache_type_cwg();
2647         if (!cwg)
2648                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2649                         ARCH_DMA_MINALIGN);
2650 }
2651
2652 static bool __maybe_unused
2653 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2654 {
2655         return (__system_matches_cap(ARM64_HAS_PAN) && !__system_matches_cap(ARM64_HAS_UAO));
2656 }
2657
2658 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2659 {
2660         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2661 }
2662
2663 /*
2664  * We emulate only the following system register space.
2665  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2666  * See Table C5-6 System instruction encodings for System register accesses,
2667  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2668  */
2669 static inline bool __attribute_const__ is_emulated(u32 id)
2670 {
2671         return (sys_reg_Op0(id) == 0x3 &&
2672                 sys_reg_CRn(id) == 0x0 &&
2673                 sys_reg_Op1(id) == 0x0 &&
2674                 (sys_reg_CRm(id) == 0 ||
2675                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2676 }
2677
2678 /*
2679  * With CRm == 0, reg should be one of :
2680  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2681  */
2682 static inline int emulate_id_reg(u32 id, u64 *valp)
2683 {
2684         switch (id) {
2685         case SYS_MIDR_EL1:
2686                 *valp = read_cpuid_id();
2687                 break;
2688         case SYS_MPIDR_EL1:
2689                 *valp = SYS_MPIDR_SAFE_VAL;
2690                 break;
2691         case SYS_REVIDR_EL1:
2692                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2693                 *valp = 0;
2694                 break;
2695         default:
2696                 return -EINVAL;
2697         }
2698
2699         return 0;
2700 }
2701
2702 static int emulate_sys_reg(u32 id, u64 *valp)
2703 {
2704         struct arm64_ftr_reg *regp;
2705
2706         if (!is_emulated(id))
2707                 return -EINVAL;
2708
2709         if (sys_reg_CRm(id) == 0)
2710                 return emulate_id_reg(id, valp);
2711
2712         regp = get_arm64_ftr_reg_nowarn(id);
2713         if (regp)
2714                 *valp = arm64_ftr_reg_user_value(regp);
2715         else
2716                 /*
2717                  * The untracked registers are either IMPLEMENTATION DEFINED
2718                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
2719                  */
2720                 *valp = 0;
2721         return 0;
2722 }
2723
2724 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2725 {
2726         int rc;
2727         u64 val;
2728
2729         rc = emulate_sys_reg(sys_reg, &val);
2730         if (!rc) {
2731                 pt_regs_write_reg(regs, rt, val);
2732                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2733         }
2734         return rc;
2735 }
2736
2737 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2738 {
2739         u32 sys_reg, rt;
2740
2741         /*
2742          * sys_reg values are defined as used in mrs/msr instruction.
2743          * shift the imm value to get the encoding.
2744          */
2745         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2746         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2747         return do_emulate_mrs(regs, sys_reg, rt);
2748 }
2749
2750 static struct undef_hook mrs_hook = {
2751         .instr_mask = 0xfff00000,
2752         .instr_val  = 0xd5300000,
2753         .pstate_mask = PSR_AA32_MODE_MASK,
2754         .pstate_val = PSR_MODE_EL0t,
2755         .fn = emulate_mrs,
2756 };
2757
2758 static int __init enable_mrs_emulation(void)
2759 {
2760         register_undef_hook(&mrs_hook);
2761         return 0;
2762 }
2763
2764 core_initcall(enable_mrs_emulation);
2765
2766 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2767                           char *buf)
2768 {
2769         if (__meltdown_safe)
2770                 return sprintf(buf, "Not affected\n");
2771
2772         if (arm64_kernel_unmapped_at_el0())
2773                 return sprintf(buf, "Mitigation: PTI\n");
2774
2775         return sprintf(buf, "Vulnerable\n");
2776 }