arm64: add sentinel to kpti_safe_list
[linux-2.6-microblaze.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT        \
42                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47                                  COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54
55 /*
56  * Flag to indicate if we have computed the system wide
57  * capabilities based on the boot time active CPUs. This
58  * will be used to determine if a new booting CPU should
59  * go through the verification process to make sure that it
60  * supports the system capabilities, without using a hotplug
61  * notifier.
62  */
63 static bool sys_caps_initialised;
64
65 static inline void set_sys_caps_initialised(void)
66 {
67         sys_caps_initialised = true;
68 }
69
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72         /* file-wide pr_fmt adds "CPU features: " prefix */
73         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74         return 0;
75 }
76
77 static struct notifier_block cpu_hwcaps_notifier = {
78         .notifier_call = dump_cpu_hwcaps
79 };
80
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83         atomic_notifier_chain_register(&panic_notifier_list,
84                                        &cpu_hwcaps_notifier);
85         return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93         {                                               \
94                 .sign = SIGNED,                         \
95                 .visible = VISIBLE,                     \
96                 .strict = STRICT,                       \
97                 .type = TYPE,                           \
98                 .shift = SHIFT,                         \
99                 .width = WIDTH,                         \
100                 .safe_val = SAFE_VAL,                   \
101         }
102
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110
111 #define ARM64_FTR_END                                   \
112         {                                               \
113                 .width = 0,                             \
114         }
115
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119
120
121 /*
122  * NOTE: Any changes to the visibility of features should be kept in
123  * sync with the documentation of the CPU feature register ABI.
124  */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
136         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
137         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
138         ARM64_FTR_END,
139 };
140
141 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
142         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
143         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
144         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
145         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
146         ARM64_FTR_END,
147 };
148
149 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
150         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
151         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
152         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
153         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
154                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
155         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
156         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
157         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
158         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
159         /* Linux doesn't care about the EL3 */
160         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
161         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
162         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
163         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
164         ARM64_FTR_END,
165 };
166
167 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
168         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
169         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
170         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
171         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
172         /* Linux shouldn't care about secure memory */
173         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
174         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
175         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
176         /*
177          * Differing PARange is fine as long as all peripherals and memory are mapped
178          * within the minimum PARange of all CPUs
179          */
180         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
181         ARM64_FTR_END,
182 };
183
184 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
185         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
189         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
191         ARM64_FTR_END,
192 };
193
194 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
195         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
199         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
200         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
201         ARM64_FTR_END,
202 };
203
204 static const struct arm64_ftr_bits ftr_ctr[] = {
205         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
206         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
207         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
208         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
210         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
211         /*
212          * Linux can handle differing I-cache policies. Userspace JITs will
213          * make use of *minLine.
214          * If we have differing I-cache policies, report it as the weakest - VIPT.
215          */
216         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
217         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* IminLine */
218         ARM64_FTR_END,
219 };
220
221 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
222         .name           = "SYS_CTR_EL0",
223         .ftr_bits       = ftr_ctr
224 };
225
226 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
227         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
228         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
229         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
230         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
231         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
232         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
233         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
234         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
235         ARM64_FTR_END,
236 };
237
238 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
240         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
241         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
243         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
244         /*
245          * We can instantiate multiple PMU instances with different levels
246          * of support.
247          */
248         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
249         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
250         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
251         ARM64_FTR_END,
252 };
253
254 static const struct arm64_ftr_bits ftr_mvfr2[] = {
255         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
256         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
257         ARM64_FTR_END,
258 };
259
260 static const struct arm64_ftr_bits ftr_dczid[] = {
261         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
262         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
263         ARM64_FTR_END,
264 };
265
266
267 static const struct arm64_ftr_bits ftr_id_isar5[] = {
268         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
269         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
270         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
271         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
272         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
273         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
274         ARM64_FTR_END,
275 };
276
277 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
278         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
279         ARM64_FTR_END,
280 };
281
282 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
283         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
284         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
285         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
286         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
287         ARM64_FTR_END,
288 };
289
290 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
291         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
292         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
293         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
294         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
295         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
296         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
297         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
298         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
299         ARM64_FTR_END,
300 };
301
302 static const struct arm64_ftr_bits ftr_zcr[] = {
303         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
304                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
305         ARM64_FTR_END,
306 };
307
308 /*
309  * Common ftr bits for a 32bit register with all hidden, strict
310  * attributes, with 4bit feature fields and a default safe value of
311  * 0. Covers the following 32bit registers:
312  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
313  */
314 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
315         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
316         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
317         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
318         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
319         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
320         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
321         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
322         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
323         ARM64_FTR_END,
324 };
325
326 /* Table for a single 32bit feature value */
327 static const struct arm64_ftr_bits ftr_single32[] = {
328         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
329         ARM64_FTR_END,
330 };
331
332 static const struct arm64_ftr_bits ftr_raz[] = {
333         ARM64_FTR_END,
334 };
335
336 #define ARM64_FTR_REG(id, table) {              \
337         .sys_id = id,                           \
338         .reg =  &(struct arm64_ftr_reg){        \
339                 .name = #id,                    \
340                 .ftr_bits = &((table)[0]),      \
341         }}
342
343 static const struct __ftr_reg_entry {
344         u32                     sys_id;
345         struct arm64_ftr_reg    *reg;
346 } arm64_ftr_regs[] = {
347
348         /* Op1 = 0, CRn = 0, CRm = 1 */
349         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
350         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
351         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
352         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
353         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
354         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
355         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
356
357         /* Op1 = 0, CRn = 0, CRm = 2 */
358         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
359         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
360         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
361         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
362         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
363         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
364         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
365
366         /* Op1 = 0, CRn = 0, CRm = 3 */
367         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
368         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
369         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
370
371         /* Op1 = 0, CRn = 0, CRm = 4 */
372         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
373         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
374         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
375
376         /* Op1 = 0, CRn = 0, CRm = 5 */
377         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
378         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
379
380         /* Op1 = 0, CRn = 0, CRm = 6 */
381         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
382         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
383
384         /* Op1 = 0, CRn = 0, CRm = 7 */
385         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
386         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
387         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
388
389         /* Op1 = 0, CRn = 1, CRm = 2 */
390         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
391
392         /* Op1 = 3, CRn = 0, CRm = 0 */
393         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
394         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
395
396         /* Op1 = 3, CRn = 14, CRm = 0 */
397         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
398 };
399
400 static int search_cmp_ftr_reg(const void *id, const void *regp)
401 {
402         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
403 }
404
405 /*
406  * get_arm64_ftr_reg - Lookup a feature register entry using its
407  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
408  * ascending order of sys_id , we use binary search to find a matching
409  * entry.
410  *
411  * returns - Upon success,  matching ftr_reg entry for id.
412  *         - NULL on failure. It is upto the caller to decide
413  *           the impact of a failure.
414  */
415 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
416 {
417         const struct __ftr_reg_entry *ret;
418
419         ret = bsearch((const void *)(unsigned long)sys_id,
420                         arm64_ftr_regs,
421                         ARRAY_SIZE(arm64_ftr_regs),
422                         sizeof(arm64_ftr_regs[0]),
423                         search_cmp_ftr_reg);
424         if (ret)
425                 return ret->reg;
426         return NULL;
427 }
428
429 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
430                                s64 ftr_val)
431 {
432         u64 mask = arm64_ftr_mask(ftrp);
433
434         reg &= ~mask;
435         reg |= (ftr_val << ftrp->shift) & mask;
436         return reg;
437 }
438
439 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
440                                 s64 cur)
441 {
442         s64 ret = 0;
443
444         switch (ftrp->type) {
445         case FTR_EXACT:
446                 ret = ftrp->safe_val;
447                 break;
448         case FTR_LOWER_SAFE:
449                 ret = new < cur ? new : cur;
450                 break;
451         case FTR_HIGHER_SAFE:
452                 ret = new > cur ? new : cur;
453                 break;
454         default:
455                 BUG();
456         }
457
458         return ret;
459 }
460
461 static void __init sort_ftr_regs(void)
462 {
463         int i;
464
465         /* Check that the array is sorted so that we can do the binary search */
466         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
467                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
468 }
469
470 /*
471  * Initialise the CPU feature register from Boot CPU values.
472  * Also initiliases the strict_mask for the register.
473  * Any bits that are not covered by an arm64_ftr_bits entry are considered
474  * RES0 for the system-wide value, and must strictly match.
475  */
476 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
477 {
478         u64 val = 0;
479         u64 strict_mask = ~0x0ULL;
480         u64 user_mask = 0;
481         u64 valid_mask = 0;
482
483         const struct arm64_ftr_bits *ftrp;
484         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
485
486         BUG_ON(!reg);
487
488         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
489                 u64 ftr_mask = arm64_ftr_mask(ftrp);
490                 s64 ftr_new = arm64_ftr_value(ftrp, new);
491
492                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
493
494                 valid_mask |= ftr_mask;
495                 if (!ftrp->strict)
496                         strict_mask &= ~ftr_mask;
497                 if (ftrp->visible)
498                         user_mask |= ftr_mask;
499                 else
500                         reg->user_val = arm64_ftr_set_value(ftrp,
501                                                             reg->user_val,
502                                                             ftrp->safe_val);
503         }
504
505         val &= valid_mask;
506
507         reg->sys_val = val;
508         reg->strict_mask = strict_mask;
509         reg->user_mask = user_mask;
510 }
511
512 extern const struct arm64_cpu_capabilities arm64_errata[];
513 static void __init setup_boot_cpu_capabilities(void);
514
515 void __init init_cpu_features(struct cpuinfo_arm64 *info)
516 {
517         /* Before we start using the tables, make sure it is sorted */
518         sort_ftr_regs();
519
520         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
521         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
522         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
523         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
524         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
525         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
526         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
527         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
528         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
529         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
530         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
531         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
532         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
533
534         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
535                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
536                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
537                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
538                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
539                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
540                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
541                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
542                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
543                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
544                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
545                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
546                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
547                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
548                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
549                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
550                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
551         }
552
553         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
554                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
555                 sve_init_vq_map();
556         }
557
558         /*
559          * Detect and enable early CPU capabilities based on the boot CPU,
560          * after we have initialised the CPU feature infrastructure.
561          */
562         setup_boot_cpu_capabilities();
563 }
564
565 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
566 {
567         const struct arm64_ftr_bits *ftrp;
568
569         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
570                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
571                 s64 ftr_new = arm64_ftr_value(ftrp, new);
572
573                 if (ftr_cur == ftr_new)
574                         continue;
575                 /* Find a safe value */
576                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
577                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
578         }
579
580 }
581
582 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
583 {
584         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
585
586         BUG_ON(!regp);
587         update_cpu_ftr_reg(regp, val);
588         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
589                 return 0;
590         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
591                         regp->name, boot, cpu, val);
592         return 1;
593 }
594
595 /*
596  * Update system wide CPU feature registers with the values from a
597  * non-boot CPU. Also performs SANITY checks to make sure that there
598  * aren't any insane variations from that of the boot CPU.
599  */
600 void update_cpu_features(int cpu,
601                          struct cpuinfo_arm64 *info,
602                          struct cpuinfo_arm64 *boot)
603 {
604         int taint = 0;
605
606         /*
607          * The kernel can handle differing I-cache policies, but otherwise
608          * caches should look identical. Userspace JITs will make use of
609          * *minLine.
610          */
611         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
612                                       info->reg_ctr, boot->reg_ctr);
613
614         /*
615          * Userspace may perform DC ZVA instructions. Mismatched block sizes
616          * could result in too much or too little memory being zeroed if a
617          * process is preempted and migrated between CPUs.
618          */
619         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
620                                       info->reg_dczid, boot->reg_dczid);
621
622         /* If different, timekeeping will be broken (especially with KVM) */
623         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
624                                       info->reg_cntfrq, boot->reg_cntfrq);
625
626         /*
627          * The kernel uses self-hosted debug features and expects CPUs to
628          * support identical debug features. We presently need CTX_CMPs, WRPs,
629          * and BRPs to be identical.
630          * ID_AA64DFR1 is currently RES0.
631          */
632         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
633                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
634         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
635                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
636         /*
637          * Even in big.LITTLE, processors should be identical instruction-set
638          * wise.
639          */
640         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
641                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
642         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
643                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
644
645         /*
646          * Differing PARange support is fine as long as all peripherals and
647          * memory are mapped within the minimum PARange of all CPUs.
648          * Linux should not care about secure memory.
649          */
650         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
651                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
652         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
653                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
654         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
655                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
656
657         /*
658          * EL3 is not our concern.
659          * ID_AA64PFR1 is currently RES0.
660          */
661         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
662                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
663         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
664                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
665
666         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
667                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
668
669         /*
670          * If we have AArch32, we care about 32-bit features for compat.
671          * If the system doesn't support AArch32, don't update them.
672          */
673         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
674                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
675
676                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
677                                         info->reg_id_dfr0, boot->reg_id_dfr0);
678                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
679                                         info->reg_id_isar0, boot->reg_id_isar0);
680                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
681                                         info->reg_id_isar1, boot->reg_id_isar1);
682                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
683                                         info->reg_id_isar2, boot->reg_id_isar2);
684                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
685                                         info->reg_id_isar3, boot->reg_id_isar3);
686                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
687                                         info->reg_id_isar4, boot->reg_id_isar4);
688                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
689                                         info->reg_id_isar5, boot->reg_id_isar5);
690
691                 /*
692                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
693                  * ACTLR formats could differ across CPUs and therefore would have to
694                  * be trapped for virtualization anyway.
695                  */
696                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
697                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
698                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
699                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
700                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
701                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
702                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
703                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
704                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
705                                         info->reg_id_pfr0, boot->reg_id_pfr0);
706                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
707                                         info->reg_id_pfr1, boot->reg_id_pfr1);
708                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
709                                         info->reg_mvfr0, boot->reg_mvfr0);
710                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
711                                         info->reg_mvfr1, boot->reg_mvfr1);
712                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
713                                         info->reg_mvfr2, boot->reg_mvfr2);
714         }
715
716         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
717                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
718                                         info->reg_zcr, boot->reg_zcr);
719
720                 /* Probe vector lengths, unless we already gave up on SVE */
721                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
722                     !sys_caps_initialised)
723                         sve_update_vq_map();
724         }
725
726         /*
727          * Mismatched CPU features are a recipe for disaster. Don't even
728          * pretend to support them.
729          */
730         if (taint) {
731                 pr_warn_once("Unsupported CPU feature variation detected.\n");
732                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
733         }
734 }
735
736 u64 read_sanitised_ftr_reg(u32 id)
737 {
738         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
739
740         /* We shouldn't get a request for an unsupported register */
741         BUG_ON(!regp);
742         return regp->sys_val;
743 }
744
745 #define read_sysreg_case(r)     \
746         case r:         return read_sysreg_s(r)
747
748 /*
749  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
750  * Read the system register on the current CPU
751  */
752 static u64 __read_sysreg_by_encoding(u32 sys_id)
753 {
754         switch (sys_id) {
755         read_sysreg_case(SYS_ID_PFR0_EL1);
756         read_sysreg_case(SYS_ID_PFR1_EL1);
757         read_sysreg_case(SYS_ID_DFR0_EL1);
758         read_sysreg_case(SYS_ID_MMFR0_EL1);
759         read_sysreg_case(SYS_ID_MMFR1_EL1);
760         read_sysreg_case(SYS_ID_MMFR2_EL1);
761         read_sysreg_case(SYS_ID_MMFR3_EL1);
762         read_sysreg_case(SYS_ID_ISAR0_EL1);
763         read_sysreg_case(SYS_ID_ISAR1_EL1);
764         read_sysreg_case(SYS_ID_ISAR2_EL1);
765         read_sysreg_case(SYS_ID_ISAR3_EL1);
766         read_sysreg_case(SYS_ID_ISAR4_EL1);
767         read_sysreg_case(SYS_ID_ISAR5_EL1);
768         read_sysreg_case(SYS_MVFR0_EL1);
769         read_sysreg_case(SYS_MVFR1_EL1);
770         read_sysreg_case(SYS_MVFR2_EL1);
771
772         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
773         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
774         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
775         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
776         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
777         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
778         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
779         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
780         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
781
782         read_sysreg_case(SYS_CNTFRQ_EL0);
783         read_sysreg_case(SYS_CTR_EL0);
784         read_sysreg_case(SYS_DCZID_EL0);
785
786         default:
787                 BUG();
788                 return 0;
789         }
790 }
791
792 #include <linux/irqchip/arm-gic-v3.h>
793
794 static bool
795 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
796 {
797         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
798
799         return val >= entry->min_field_value;
800 }
801
802 static bool
803 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
804 {
805         u64 val;
806
807         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
808         if (scope == SCOPE_SYSTEM)
809                 val = read_sanitised_ftr_reg(entry->sys_reg);
810         else
811                 val = __read_sysreg_by_encoding(entry->sys_reg);
812
813         return feature_matches(val, entry);
814 }
815
816 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
817 {
818         bool has_sre;
819
820         if (!has_cpuid_feature(entry, scope))
821                 return false;
822
823         has_sre = gic_enable_sre();
824         if (!has_sre)
825                 pr_warn_once("%s present but disabled by higher exception level\n",
826                              entry->desc);
827
828         return has_sre;
829 }
830
831 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
832 {
833         u32 midr = read_cpuid_id();
834
835         /* Cavium ThunderX pass 1.x and 2.x */
836         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
837                 MIDR_CPU_VAR_REV(0, 0),
838                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
839 }
840
841 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
842 {
843         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
844
845         return cpuid_feature_extract_signed_field(pfr0,
846                                         ID_AA64PFR0_FP_SHIFT) < 0;
847 }
848
849 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
850                           int __unused)
851 {
852         return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_IDC_SHIFT);
853 }
854
855 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
856                           int __unused)
857 {
858         return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_DIC_SHIFT);
859 }
860
861 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
862 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
863
864 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
865                                 int scope)
866 {
867         /* List of CPUs that are not vulnerable and don't need KPTI */
868         static const struct midr_range kpti_safe_list[] = {
869                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
870                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
871                 { /* sentinel */ }
872         };
873         char const *str = "command line option";
874
875         /*
876          * For reasons that aren't entirely clear, enabling KPTI on Cavium
877          * ThunderX leads to apparent I-cache corruption of kernel text, which
878          * ends as well as you might imagine. Don't even try.
879          */
880         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
881                 str = "ARM64_WORKAROUND_CAVIUM_27456";
882                 __kpti_forced = -1;
883         }
884
885         /* Forced? */
886         if (__kpti_forced) {
887                 pr_info_once("kernel page table isolation forced %s by %s\n",
888                              __kpti_forced > 0 ? "ON" : "OFF", str);
889                 return __kpti_forced > 0;
890         }
891
892         /* Useful for KASLR robustness */
893         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
894                 return true;
895
896         /* Don't force KPTI for CPUs that are not vulnerable */
897         if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
898                 return false;
899
900         /* Defer to CPU feature registers */
901         return !has_cpuid_feature(entry, scope);
902 }
903
904 static void
905 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
906 {
907         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
908         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
909         kpti_remap_fn *remap_fn;
910
911         static bool kpti_applied = false;
912         int cpu = smp_processor_id();
913
914         if (kpti_applied)
915                 return;
916
917         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
918
919         cpu_install_idmap();
920         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
921         cpu_uninstall_idmap();
922
923         if (!cpu)
924                 kpti_applied = true;
925
926         return;
927 }
928
929 static int __init parse_kpti(char *str)
930 {
931         bool enabled;
932         int ret = strtobool(str, &enabled);
933
934         if (ret)
935                 return ret;
936
937         __kpti_forced = enabled ? 1 : -1;
938         return 0;
939 }
940 __setup("kpti=", parse_kpti);
941 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
942
943 #ifdef CONFIG_ARM64_HW_AFDBM
944 static inline void __cpu_enable_hw_dbm(void)
945 {
946         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
947
948         write_sysreg(tcr, tcr_el1);
949         isb();
950 }
951
952 static bool cpu_has_broken_dbm(void)
953 {
954         /* List of CPUs which have broken DBM support. */
955         static const struct midr_range cpus[] = {
956 #ifdef CONFIG_ARM64_ERRATUM_1024718
957                 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
958 #endif
959                 {},
960         };
961
962         return is_midr_in_range_list(read_cpuid_id(), cpus);
963 }
964
965 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
966 {
967         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
968                !cpu_has_broken_dbm();
969 }
970
971 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
972 {
973         if (cpu_can_use_dbm(cap))
974                 __cpu_enable_hw_dbm();
975 }
976
977 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
978                        int __unused)
979 {
980         static bool detected = false;
981         /*
982          * DBM is a non-conflicting feature. i.e, the kernel can safely
983          * run a mix of CPUs with and without the feature. So, we
984          * unconditionally enable the capability to allow any late CPU
985          * to use the feature. We only enable the control bits on the
986          * CPU, if it actually supports.
987          *
988          * We have to make sure we print the "feature" detection only
989          * when at least one CPU actually uses it. So check if this CPU
990          * can actually use it and print the message exactly once.
991          *
992          * This is safe as all CPUs (including secondary CPUs - due to the
993          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
994          * goes through the "matches" check exactly once. Also if a CPU
995          * matches the criteria, it is guaranteed that the CPU will turn
996          * the DBM on, as the capability is unconditionally enabled.
997          */
998         if (!detected && cpu_can_use_dbm(cap)) {
999                 detected = true;
1000                 pr_info("detected: Hardware dirty bit management\n");
1001         }
1002
1003         return true;
1004 }
1005
1006 #endif
1007
1008 #ifdef CONFIG_ARM64_VHE
1009 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1010 {
1011         return is_kernel_in_hyp_mode();
1012 }
1013
1014 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1015 {
1016         /*
1017          * Copy register values that aren't redirected by hardware.
1018          *
1019          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1020          * this value to tpidr_el2 before we patch the code. Once we've done
1021          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1022          * do anything here.
1023          */
1024         if (!alternatives_applied)
1025                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1026 }
1027 #endif
1028
1029 static const struct arm64_cpu_capabilities arm64_features[] = {
1030         {
1031                 .desc = "GIC system register CPU interface",
1032                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1033                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1034                 .matches = has_useable_gicv3_cpuif,
1035                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1036                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1037                 .sign = FTR_UNSIGNED,
1038                 .min_field_value = 1,
1039         },
1040 #ifdef CONFIG_ARM64_PAN
1041         {
1042                 .desc = "Privileged Access Never",
1043                 .capability = ARM64_HAS_PAN,
1044                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1045                 .matches = has_cpuid_feature,
1046                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1047                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1048                 .sign = FTR_UNSIGNED,
1049                 .min_field_value = 1,
1050                 .cpu_enable = cpu_enable_pan,
1051         },
1052 #endif /* CONFIG_ARM64_PAN */
1053 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1054         {
1055                 .desc = "LSE atomic instructions",
1056                 .capability = ARM64_HAS_LSE_ATOMICS,
1057                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1058                 .matches = has_cpuid_feature,
1059                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1060                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1061                 .sign = FTR_UNSIGNED,
1062                 .min_field_value = 2,
1063         },
1064 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1065         {
1066                 .desc = "Software prefetching using PRFM",
1067                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1068                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1069                 .matches = has_no_hw_prefetch,
1070         },
1071 #ifdef CONFIG_ARM64_UAO
1072         {
1073                 .desc = "User Access Override",
1074                 .capability = ARM64_HAS_UAO,
1075                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1076                 .matches = has_cpuid_feature,
1077                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1078                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1079                 .min_field_value = 1,
1080                 /*
1081                  * We rely on stop_machine() calling uao_thread_switch() to set
1082                  * UAO immediately after patching.
1083                  */
1084         },
1085 #endif /* CONFIG_ARM64_UAO */
1086 #ifdef CONFIG_ARM64_PAN
1087         {
1088                 .capability = ARM64_ALT_PAN_NOT_UAO,
1089                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1090                 .matches = cpufeature_pan_not_uao,
1091         },
1092 #endif /* CONFIG_ARM64_PAN */
1093 #ifdef CONFIG_ARM64_VHE
1094         {
1095                 .desc = "Virtualization Host Extensions",
1096                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1097                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1098                 .matches = runs_at_el2,
1099                 .cpu_enable = cpu_copy_el2regs,
1100         },
1101 #endif  /* CONFIG_ARM64_VHE */
1102         {
1103                 .desc = "32-bit EL0 Support",
1104                 .capability = ARM64_HAS_32BIT_EL0,
1105                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1106                 .matches = has_cpuid_feature,
1107                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1108                 .sign = FTR_UNSIGNED,
1109                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1110                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1111         },
1112 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1113         {
1114                 .desc = "Kernel page table isolation (KPTI)",
1115                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1116                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1117                 /*
1118                  * The ID feature fields below are used to indicate that
1119                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1120                  * more details.
1121                  */
1122                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1123                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1124                 .min_field_value = 1,
1125                 .matches = unmap_kernel_at_el0,
1126                 .cpu_enable = kpti_install_ng_mappings,
1127         },
1128 #endif
1129         {
1130                 /* FP/SIMD is not implemented */
1131                 .capability = ARM64_HAS_NO_FPSIMD,
1132                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1133                 .min_field_value = 0,
1134                 .matches = has_no_fpsimd,
1135         },
1136 #ifdef CONFIG_ARM64_PMEM
1137         {
1138                 .desc = "Data cache clean to Point of Persistence",
1139                 .capability = ARM64_HAS_DCPOP,
1140                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1141                 .matches = has_cpuid_feature,
1142                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1143                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1144                 .min_field_value = 1,
1145         },
1146 #endif
1147 #ifdef CONFIG_ARM64_SVE
1148         {
1149                 .desc = "Scalable Vector Extension",
1150                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1151                 .capability = ARM64_SVE,
1152                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1153                 .sign = FTR_UNSIGNED,
1154                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1155                 .min_field_value = ID_AA64PFR0_SVE,
1156                 .matches = has_cpuid_feature,
1157                 .cpu_enable = sve_kernel_enable,
1158         },
1159 #endif /* CONFIG_ARM64_SVE */
1160 #ifdef CONFIG_ARM64_RAS_EXTN
1161         {
1162                 .desc = "RAS Extension Support",
1163                 .capability = ARM64_HAS_RAS_EXTN,
1164                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1165                 .matches = has_cpuid_feature,
1166                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1167                 .sign = FTR_UNSIGNED,
1168                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1169                 .min_field_value = ID_AA64PFR0_RAS_V1,
1170                 .cpu_enable = cpu_clear_disr,
1171         },
1172 #endif /* CONFIG_ARM64_RAS_EXTN */
1173         {
1174                 .desc = "Data cache clean to the PoU not required for I/D coherence",
1175                 .capability = ARM64_HAS_CACHE_IDC,
1176                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1177                 .matches = has_cache_idc,
1178         },
1179         {
1180                 .desc = "Instruction cache invalidation not required for I/D coherence",
1181                 .capability = ARM64_HAS_CACHE_DIC,
1182                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1183                 .matches = has_cache_dic,
1184         },
1185 #ifdef CONFIG_ARM64_HW_AFDBM
1186         {
1187                 /*
1188                  * Since we turn this on always, we don't want the user to
1189                  * think that the feature is available when it may not be.
1190                  * So hide the description.
1191                  *
1192                  * .desc = "Hardware pagetable Dirty Bit Management",
1193                  *
1194                  */
1195                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1196                 .capability = ARM64_HW_DBM,
1197                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1198                 .sign = FTR_UNSIGNED,
1199                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1200                 .min_field_value = 2,
1201                 .matches = has_hw_dbm,
1202                 .cpu_enable = cpu_enable_hw_dbm,
1203         },
1204 #endif
1205         {},
1206 };
1207
1208 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)      \
1209         {                                                       \
1210                 .desc = #cap,                                   \
1211                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,            \
1212                 .matches = has_cpuid_feature,                   \
1213                 .sys_reg = reg,                                 \
1214                 .field_pos = field,                             \
1215                 .sign = s,                                      \
1216                 .min_field_value = min_value,                   \
1217                 .hwcap_type = cap_type,                         \
1218                 .hwcap = cap,                                   \
1219         }
1220
1221 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1222         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1223         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1224         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1225         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1226         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1227         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1228         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1229         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1230         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1231         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1232         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1233         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1234         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1235         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1236         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1237         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1238         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1239         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1240         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1241         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1242         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1243         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1244         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1245         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1246         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1247 #ifdef CONFIG_ARM64_SVE
1248         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1249 #endif
1250         {},
1251 };
1252
1253 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1254 #ifdef CONFIG_COMPAT
1255         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1256         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1257         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1258         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1259         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1260 #endif
1261         {},
1262 };
1263
1264 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1265 {
1266         switch (cap->hwcap_type) {
1267         case CAP_HWCAP:
1268                 elf_hwcap |= cap->hwcap;
1269                 break;
1270 #ifdef CONFIG_COMPAT
1271         case CAP_COMPAT_HWCAP:
1272                 compat_elf_hwcap |= (u32)cap->hwcap;
1273                 break;
1274         case CAP_COMPAT_HWCAP2:
1275                 compat_elf_hwcap2 |= (u32)cap->hwcap;
1276                 break;
1277 #endif
1278         default:
1279                 WARN_ON(1);
1280                 break;
1281         }
1282 }
1283
1284 /* Check if we have a particular HWCAP enabled */
1285 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1286 {
1287         bool rc;
1288
1289         switch (cap->hwcap_type) {
1290         case CAP_HWCAP:
1291                 rc = (elf_hwcap & cap->hwcap) != 0;
1292                 break;
1293 #ifdef CONFIG_COMPAT
1294         case CAP_COMPAT_HWCAP:
1295                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1296                 break;
1297         case CAP_COMPAT_HWCAP2:
1298                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1299                 break;
1300 #endif
1301         default:
1302                 WARN_ON(1);
1303                 rc = false;
1304         }
1305
1306         return rc;
1307 }
1308
1309 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1310 {
1311         /* We support emulation of accesses to CPU ID feature registers */
1312         elf_hwcap |= HWCAP_CPUID;
1313         for (; hwcaps->matches; hwcaps++)
1314                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1315                         cap_set_elf_hwcap(hwcaps);
1316 }
1317
1318 /*
1319  * Check if the current CPU has a given feature capability.
1320  * Should be called from non-preemptible context.
1321  */
1322 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1323                                unsigned int cap)
1324 {
1325         const struct arm64_cpu_capabilities *caps;
1326
1327         if (WARN_ON(preemptible()))
1328                 return false;
1329
1330         for (caps = cap_array; caps->matches; caps++)
1331                 if (caps->capability == cap)
1332                         return caps->matches(caps, SCOPE_LOCAL_CPU);
1333
1334         return false;
1335 }
1336
1337 static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1338                                       u16 scope_mask, const char *info)
1339 {
1340         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1341         for (; caps->matches; caps++) {
1342                 if (!(caps->type & scope_mask) ||
1343                     !caps->matches(caps, cpucap_default_scope(caps)))
1344                         continue;
1345
1346                 if (!cpus_have_cap(caps->capability) && caps->desc)
1347                         pr_info("%s %s\n", info, caps->desc);
1348                 cpus_set_cap(caps->capability);
1349         }
1350 }
1351
1352 static void update_cpu_capabilities(u16 scope_mask)
1353 {
1354         __update_cpu_capabilities(arm64_features, scope_mask, "detected:");
1355         __update_cpu_capabilities(arm64_errata, scope_mask,
1356                                   "enabling workaround for");
1357 }
1358
1359 static int __enable_cpu_capability(void *arg)
1360 {
1361         const struct arm64_cpu_capabilities *cap = arg;
1362
1363         cap->cpu_enable(cap);
1364         return 0;
1365 }
1366
1367 /*
1368  * Run through the enabled capabilities and enable() it on all active
1369  * CPUs
1370  */
1371 static void __init
1372 __enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1373                           u16 scope_mask)
1374 {
1375         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1376         for (; caps->matches; caps++) {
1377                 unsigned int num = caps->capability;
1378
1379                 if (!(caps->type & scope_mask) || !cpus_have_cap(num))
1380                         continue;
1381
1382                 /* Ensure cpus_have_const_cap(num) works */
1383                 static_branch_enable(&cpu_hwcap_keys[num]);
1384
1385                 if (caps->cpu_enable) {
1386                         /*
1387                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
1388                          * before any secondary CPU boots. Thus, each secondary
1389                          * will enable the capability as appropriate via
1390                          * check_local_cpu_capabilities(). The only exception is
1391                          * the boot CPU, for which the capability must be
1392                          * enabled here. This approach avoids costly
1393                          * stop_machine() calls for this case.
1394                          *
1395                          * Otherwise, use stop_machine() as it schedules the
1396                          * work allowing us to modify PSTATE, instead of
1397                          * on_each_cpu() which uses an IPI, giving us a PSTATE
1398                          * that disappears when we return.
1399                          */
1400                         if (scope_mask & SCOPE_BOOT_CPU)
1401                                 caps->cpu_enable(caps);
1402                         else
1403                                 stop_machine(__enable_cpu_capability,
1404                                              (void *)caps, cpu_online_mask);
1405                 }
1406         }
1407 }
1408
1409 static void __init enable_cpu_capabilities(u16 scope_mask)
1410 {
1411         __enable_cpu_capabilities(arm64_features, scope_mask);
1412         __enable_cpu_capabilities(arm64_errata, scope_mask);
1413 }
1414
1415 /*
1416  * Run through the list of capabilities to check for conflicts.
1417  * If the system has already detected a capability, take necessary
1418  * action on this CPU.
1419  *
1420  * Returns "false" on conflicts.
1421  */
1422 static bool
1423 __verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps,
1424                         u16 scope_mask)
1425 {
1426         bool cpu_has_cap, system_has_cap;
1427
1428         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1429
1430         for (; caps->matches; caps++) {
1431                 if (!(caps->type & scope_mask))
1432                         continue;
1433
1434                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1435                 system_has_cap = cpus_have_cap(caps->capability);
1436
1437                 if (system_has_cap) {
1438                         /*
1439                          * Check if the new CPU misses an advertised feature,
1440                          * which is not safe to miss.
1441                          */
1442                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1443                                 break;
1444                         /*
1445                          * We have to issue cpu_enable() irrespective of
1446                          * whether the CPU has it or not, as it is enabeld
1447                          * system wide. It is upto the call back to take
1448                          * appropriate action on this CPU.
1449                          */
1450                         if (caps->cpu_enable)
1451                                 caps->cpu_enable(caps);
1452                 } else {
1453                         /*
1454                          * Check if the CPU has this capability if it isn't
1455                          * safe to have when the system doesn't.
1456                          */
1457                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1458                                 break;
1459                 }
1460         }
1461
1462         if (caps->matches) {
1463                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1464                         smp_processor_id(), caps->capability,
1465                         caps->desc, system_has_cap, cpu_has_cap);
1466                 return false;
1467         }
1468
1469         return true;
1470 }
1471
1472 static bool verify_local_cpu_caps(u16 scope_mask)
1473 {
1474         return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
1475                __verify_local_cpu_caps(arm64_features, scope_mask);
1476 }
1477
1478 /*
1479  * Check for CPU features that are used in early boot
1480  * based on the Boot CPU value.
1481  */
1482 static void check_early_cpu_features(void)
1483 {
1484         verify_cpu_asid_bits();
1485         /*
1486          * Early features are used by the kernel already. If there
1487          * is a conflict, we cannot proceed further.
1488          */
1489         if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1490                 cpu_panic_kernel();
1491 }
1492
1493 static void
1494 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1495 {
1496
1497         for (; caps->matches; caps++)
1498                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1499                         pr_crit("CPU%d: missing HWCAP: %s\n",
1500                                         smp_processor_id(), caps->desc);
1501                         cpu_die_early();
1502                 }
1503 }
1504
1505 static void verify_sve_features(void)
1506 {
1507         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1508         u64 zcr = read_zcr_features();
1509
1510         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1511         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1512
1513         if (len < safe_len || sve_verify_vq_map()) {
1514                 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1515                         smp_processor_id());
1516                 cpu_die_early();
1517         }
1518
1519         /* Add checks on other ZCR bits here if necessary */
1520 }
1521
1522
1523 /*
1524  * Run through the enabled system capabilities and enable() it on this CPU.
1525  * The capabilities were decided based on the available CPUs at the boot time.
1526  * Any new CPU should match the system wide status of the capability. If the
1527  * new CPU doesn't have a capability which the system now has enabled, we
1528  * cannot do anything to fix it up and could cause unexpected failures. So
1529  * we park the CPU.
1530  */
1531 static void verify_local_cpu_capabilities(void)
1532 {
1533         /*
1534          * The capabilities with SCOPE_BOOT_CPU are checked from
1535          * check_early_cpu_features(), as they need to be verified
1536          * on all secondary CPUs.
1537          */
1538         if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1539                 cpu_die_early();
1540
1541         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1542
1543         if (system_supports_32bit_el0())
1544                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1545
1546         if (system_supports_sve())
1547                 verify_sve_features();
1548 }
1549
1550 void check_local_cpu_capabilities(void)
1551 {
1552         /*
1553          * All secondary CPUs should conform to the early CPU features
1554          * in use by the kernel based on boot CPU.
1555          */
1556         check_early_cpu_features();
1557
1558         /*
1559          * If we haven't finalised the system capabilities, this CPU gets
1560          * a chance to update the errata work arounds and local features.
1561          * Otherwise, this CPU should verify that it has all the system
1562          * advertised capabilities.
1563          */
1564         if (!sys_caps_initialised)
1565                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
1566         else
1567                 verify_local_cpu_capabilities();
1568 }
1569
1570 static void __init setup_boot_cpu_capabilities(void)
1571 {
1572         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1573         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1574         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1575         enable_cpu_capabilities(SCOPE_BOOT_CPU);
1576 }
1577
1578 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1579 EXPORT_SYMBOL(arm64_const_caps_ready);
1580
1581 static void __init mark_const_caps_ready(void)
1582 {
1583         static_branch_enable(&arm64_const_caps_ready);
1584 }
1585
1586 extern const struct arm64_cpu_capabilities arm64_errata[];
1587
1588 bool this_cpu_has_cap(unsigned int cap)
1589 {
1590         return (__this_cpu_has_cap(arm64_features, cap) ||
1591                 __this_cpu_has_cap(arm64_errata, cap));
1592 }
1593
1594 static void __init setup_system_capabilities(void)
1595 {
1596         /*
1597          * We have finalised the system-wide safe feature
1598          * registers, finalise the capabilities that depend
1599          * on it. Also enable all the available capabilities,
1600          * that are not enabled already.
1601          */
1602         update_cpu_capabilities(SCOPE_SYSTEM);
1603         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1604 }
1605
1606 void __init setup_cpu_features(void)
1607 {
1608         u32 cwg;
1609         int cls;
1610
1611         setup_system_capabilities();
1612         mark_const_caps_ready();
1613         setup_elf_hwcaps(arm64_elf_hwcaps);
1614
1615         if (system_supports_32bit_el0())
1616                 setup_elf_hwcaps(compat_elf_hwcaps);
1617
1618         if (system_uses_ttbr0_pan())
1619                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1620
1621         sve_setup();
1622
1623         /* Advertise that we have computed the system capabilities */
1624         set_sys_caps_initialised();
1625
1626         /*
1627          * Check for sane CTR_EL0.CWG value.
1628          */
1629         cwg = cache_type_cwg();
1630         cls = cache_line_size();
1631         if (!cwg)
1632                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1633                         cls);
1634         if (L1_CACHE_BYTES < cls)
1635                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1636                         L1_CACHE_BYTES, cls);
1637 }
1638
1639 static bool __maybe_unused
1640 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1641 {
1642         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1643 }
1644
1645 /*
1646  * We emulate only the following system register space.
1647  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1648  * See Table C5-6 System instruction encodings for System register accesses,
1649  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1650  */
1651 static inline bool __attribute_const__ is_emulated(u32 id)
1652 {
1653         return (sys_reg_Op0(id) == 0x3 &&
1654                 sys_reg_CRn(id) == 0x0 &&
1655                 sys_reg_Op1(id) == 0x0 &&
1656                 (sys_reg_CRm(id) == 0 ||
1657                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1658 }
1659
1660 /*
1661  * With CRm == 0, reg should be one of :
1662  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1663  */
1664 static inline int emulate_id_reg(u32 id, u64 *valp)
1665 {
1666         switch (id) {
1667         case SYS_MIDR_EL1:
1668                 *valp = read_cpuid_id();
1669                 break;
1670         case SYS_MPIDR_EL1:
1671                 *valp = SYS_MPIDR_SAFE_VAL;
1672                 break;
1673         case SYS_REVIDR_EL1:
1674                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1675                 *valp = 0;
1676                 break;
1677         default:
1678                 return -EINVAL;
1679         }
1680
1681         return 0;
1682 }
1683
1684 static int emulate_sys_reg(u32 id, u64 *valp)
1685 {
1686         struct arm64_ftr_reg *regp;
1687
1688         if (!is_emulated(id))
1689                 return -EINVAL;
1690
1691         if (sys_reg_CRm(id) == 0)
1692                 return emulate_id_reg(id, valp);
1693
1694         regp = get_arm64_ftr_reg(id);
1695         if (regp)
1696                 *valp = arm64_ftr_reg_user_value(regp);
1697         else
1698                 /*
1699                  * The untracked registers are either IMPLEMENTATION DEFINED
1700                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
1701                  */
1702                 *valp = 0;
1703         return 0;
1704 }
1705
1706 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1707 {
1708         int rc;
1709         u32 sys_reg, dst;
1710         u64 val;
1711
1712         /*
1713          * sys_reg values are defined as used in mrs/msr instruction.
1714          * shift the imm value to get the encoding.
1715          */
1716         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1717         rc = emulate_sys_reg(sys_reg, &val);
1718         if (!rc) {
1719                 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1720                 pt_regs_write_reg(regs, dst, val);
1721                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1722         }
1723
1724         return rc;
1725 }
1726
1727 static struct undef_hook mrs_hook = {
1728         .instr_mask = 0xfff00000,
1729         .instr_val  = 0xd5300000,
1730         .pstate_mask = COMPAT_PSR_MODE_MASK,
1731         .pstate_val = PSR_MODE_EL0t,
1732         .fn = emulate_mrs,
1733 };
1734
1735 static int __init enable_mrs_emulation(void)
1736 {
1737         register_undef_hook(&mrs_hook);
1738         return 0;
1739 }
1740
1741 core_initcall(enable_mrs_emulation);
1742
1743 void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1744 {
1745         /* Firmware may have left a deferred SError in this register. */
1746         write_sysreg_s(0, SYS_DISR_EL1);
1747 }