kasan, arm64: implement HW_TAGS runtime
[linux-2.6-microblaze.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/types.h>
71 #include <linux/mm.h>
72 #include <linux/cpu.h>
73 #include <linux/kasan.h>
74 #include <asm/cpu.h>
75 #include <asm/cpufeature.h>
76 #include <asm/cpu_ops.h>
77 #include <asm/fpsimd.h>
78 #include <asm/kvm_host.h>
79 #include <asm/mmu_context.h>
80 #include <asm/mte.h>
81 #include <asm/processor.h>
82 #include <asm/sysreg.h>
83 #include <asm/traps.h>
84 #include <asm/virt.h>
85
86 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
87 static unsigned long elf_hwcap __read_mostly;
88
89 #ifdef CONFIG_COMPAT
90 #define COMPAT_ELF_HWCAP_DEFAULT        \
91                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
92                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
93                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
94                                  COMPAT_HWCAP_LPAE)
95 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
96 unsigned int compat_elf_hwcap2 __read_mostly;
97 #endif
98
99 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
100 EXPORT_SYMBOL(cpu_hwcaps);
101 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
102
103 /* Need also bit for ARM64_CB_PATCH */
104 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
105
106 bool arm64_use_ng_mappings = false;
107 EXPORT_SYMBOL(arm64_use_ng_mappings);
108
109 /*
110  * Flag to indicate if we have computed the system wide
111  * capabilities based on the boot time active CPUs. This
112  * will be used to determine if a new booting CPU should
113  * go through the verification process to make sure that it
114  * supports the system capabilities, without using a hotplug
115  * notifier. This is also used to decide if we could use
116  * the fast path for checking constant CPU caps.
117  */
118 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
119 EXPORT_SYMBOL(arm64_const_caps_ready);
120 static inline void finalize_system_capabilities(void)
121 {
122         static_branch_enable(&arm64_const_caps_ready);
123 }
124
125 void dump_cpu_features(void)
126 {
127         /* file-wide pr_fmt adds "CPU features: " prefix */
128         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
129 }
130
131 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
132 EXPORT_SYMBOL(cpu_hwcap_keys);
133
134 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
135         {                                               \
136                 .sign = SIGNED,                         \
137                 .visible = VISIBLE,                     \
138                 .strict = STRICT,                       \
139                 .type = TYPE,                           \
140                 .shift = SHIFT,                         \
141                 .width = WIDTH,                         \
142                 .safe_val = SAFE_VAL,                   \
143         }
144
145 /* Define a feature with unsigned values */
146 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
147         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
148
149 /* Define a feature with a signed value */
150 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
151         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
152
153 #define ARM64_FTR_END                                   \
154         {                                               \
155                 .width = 0,                             \
156         }
157
158 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
159
160 static bool __system_matches_cap(unsigned int n);
161
162 /*
163  * NOTE: Any changes to the visibility of features should be kept in
164  * sync with the documentation of the CPU feature register ABI.
165  */
166 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
167         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
169         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
170         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
171         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
172         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
173         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
174         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
175         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
176         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
177         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
178         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
179         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
180         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
181         ARM64_FTR_END,
182 };
183
184 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
185         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
189         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
192                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
194                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
199                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
200         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
201                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
203         ARM64_FTR_END,
204 };
205
206 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
207         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
208         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
210         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
214                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
215         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
217         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
218         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
219         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
220         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
221         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
222         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
223         ARM64_FTR_END,
224 };
225
226 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
227         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
228         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
229         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
230                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
231         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
232         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
233                                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
234         ARM64_FTR_END,
235 };
236
237 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
238         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
239                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
241                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
243                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
244         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
245                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
246         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
247                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
248         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
249                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
250         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
251                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
252         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
253                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
254         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
255                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
256         ARM64_FTR_END,
257 };
258
259 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
260         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
262         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
263         /*
264          * Page size not being supported at Stage-2 is not fatal. You
265          * just give up KVM if PAGE_SIZE isn't supported there. Go fix
266          * your favourite nesting hypervisor.
267          *
268          * There is a small corner case where the hypervisor explicitly
269          * advertises a given granule size at Stage-2 (value 2) on some
270          * vCPUs, and uses the fallback to Stage-1 (value 0) for other
271          * vCPUs. Although this is not forbidden by the architecture, it
272          * indicates that the hypervisor is being silly (or buggy).
273          *
274          * We make no effort to cope with this and pretend that if these
275          * fields are inconsistent across vCPUs, then it isn't worth
276          * trying to bring KVM up.
277          */
278         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
279         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
280         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
281         /*
282          * We already refuse to boot CPUs that don't support our configured
283          * page size, so we can only detect mismatches for a page size other
284          * than the one we're currently using. Unfortunately, SoCs like this
285          * exist in the wild so, even though we don't like it, we'll have to go
286          * along with it and treat them as non-strict.
287          */
288         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
289         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
290         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
291
292         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
293         /* Linux shouldn't care about secure memory */
294         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
295         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
296         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
297         /*
298          * Differing PARange is fine as long as all peripherals and memory are mapped
299          * within the minimum PARange of all CPUs
300          */
301         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
302         ARM64_FTR_END,
303 };
304
305 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
306         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
307         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
308         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
309         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
310         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
311         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
313         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
314         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
315         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
316         ARM64_FTR_END,
317 };
318
319 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
320         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
321         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
322         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
323         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
324         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
325         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
326         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
327         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
328         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
329         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
330         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
331         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
332         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
333         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
334         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
335         ARM64_FTR_END,
336 };
337
338 static const struct arm64_ftr_bits ftr_ctr[] = {
339         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
340         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
341         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
342         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
343         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
344         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
345         /*
346          * Linux can handle differing I-cache policies. Userspace JITs will
347          * make use of *minLine.
348          * If we have differing I-cache policies, report it as the weakest - VIPT.
349          */
350         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),   /* L1Ip */
351         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
352         ARM64_FTR_END,
353 };
354
355 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
356         .name           = "SYS_CTR_EL0",
357         .ftr_bits       = ftr_ctr
358 };
359
360 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
361         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
362         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
363         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
364         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
365         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
366         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
367         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
368         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
369         ARM64_FTR_END,
370 };
371
372 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
373         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
374         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
375         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
376         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
377         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
378         /*
379          * We can instantiate multiple PMU instances with different levels
380          * of support.
381          */
382         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
383         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
384         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
385         ARM64_FTR_END,
386 };
387
388 static const struct arm64_ftr_bits ftr_mvfr2[] = {
389         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
390         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
391         ARM64_FTR_END,
392 };
393
394 static const struct arm64_ftr_bits ftr_dczid[] = {
395         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
396         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
397         ARM64_FTR_END,
398 };
399
400 static const struct arm64_ftr_bits ftr_id_isar0[] = {
401         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
402         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
403         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
404         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
405         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
406         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
407         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
408         ARM64_FTR_END,
409 };
410
411 static const struct arm64_ftr_bits ftr_id_isar5[] = {
412         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
413         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
414         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
415         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
416         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
417         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
418         ARM64_FTR_END,
419 };
420
421 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
422         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
423         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
424         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
425         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
426         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
427         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
428         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
429
430         /*
431          * SpecSEI = 1 indicates that the PE might generate an SError on an
432          * external abort on speculative read. It is safe to assume that an
433          * SError might be generated than it will not be. Hence it has been
434          * classified as FTR_HIGHER_SAFE.
435          */
436         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
437         ARM64_FTR_END,
438 };
439
440 static const struct arm64_ftr_bits ftr_id_isar4[] = {
441         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
442         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
443         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
444         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
445         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
446         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
447         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
448         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
449         ARM64_FTR_END,
450 };
451
452 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
453         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
454         ARM64_FTR_END,
455 };
456
457 static const struct arm64_ftr_bits ftr_id_isar6[] = {
458         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
459         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
460         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
461         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
462         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
463         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
464         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
465         ARM64_FTR_END,
466 };
467
468 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
469         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
470         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
471         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
472         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
473         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
474         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
475         ARM64_FTR_END,
476 };
477
478 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
479         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
480         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
481         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
482         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
483         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
484         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
485         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
486         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
487         ARM64_FTR_END,
488 };
489
490 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
491         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
492         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
493         ARM64_FTR_END,
494 };
495
496 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
497         /* [31:28] TraceFilt */
498         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
499         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
500         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
501         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
502         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
503         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
504         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
505         ARM64_FTR_END,
506 };
507
508 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
509         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
510         ARM64_FTR_END,
511 };
512
513 static const struct arm64_ftr_bits ftr_zcr[] = {
514         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
515                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
516         ARM64_FTR_END,
517 };
518
519 /*
520  * Common ftr bits for a 32bit register with all hidden, strict
521  * attributes, with 4bit feature fields and a default safe value of
522  * 0. Covers the following 32bit registers:
523  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
524  */
525 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
526         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
527         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
528         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
529         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
530         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
531         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
532         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
533         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
534         ARM64_FTR_END,
535 };
536
537 /* Table for a single 32bit feature value */
538 static const struct arm64_ftr_bits ftr_single32[] = {
539         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
540         ARM64_FTR_END,
541 };
542
543 static const struct arm64_ftr_bits ftr_raz[] = {
544         ARM64_FTR_END,
545 };
546
547 #define ARM64_FTR_REG(id, table) {              \
548         .sys_id = id,                           \
549         .reg =  &(struct arm64_ftr_reg){        \
550                 .name = #id,                    \
551                 .ftr_bits = &((table)[0]),      \
552         }}
553
554 static const struct __ftr_reg_entry {
555         u32                     sys_id;
556         struct arm64_ftr_reg    *reg;
557 } arm64_ftr_regs[] = {
558
559         /* Op1 = 0, CRn = 0, CRm = 1 */
560         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
561         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
562         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
563         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
564         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
565         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
566         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
567
568         /* Op1 = 0, CRn = 0, CRm = 2 */
569         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
570         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
571         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
572         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
573         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
574         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
575         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
576         ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
577
578         /* Op1 = 0, CRn = 0, CRm = 3 */
579         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
580         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
581         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
582         ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
583         ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
584         ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
585
586         /* Op1 = 0, CRn = 0, CRm = 4 */
587         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
588         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
589         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
590
591         /* Op1 = 0, CRn = 0, CRm = 5 */
592         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
593         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
594
595         /* Op1 = 0, CRn = 0, CRm = 6 */
596         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
597         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
598
599         /* Op1 = 0, CRn = 0, CRm = 7 */
600         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
601         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
602         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
603
604         /* Op1 = 0, CRn = 1, CRm = 2 */
605         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
606
607         /* Op1 = 3, CRn = 0, CRm = 0 */
608         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
609         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
610
611         /* Op1 = 3, CRn = 14, CRm = 0 */
612         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
613 };
614
615 static int search_cmp_ftr_reg(const void *id, const void *regp)
616 {
617         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
618 }
619
620 /*
621  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
622  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
623  * ascending order of sys_id, we use binary search to find a matching
624  * entry.
625  *
626  * returns - Upon success,  matching ftr_reg entry for id.
627  *         - NULL on failure. It is upto the caller to decide
628  *           the impact of a failure.
629  */
630 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
631 {
632         const struct __ftr_reg_entry *ret;
633
634         ret = bsearch((const void *)(unsigned long)sys_id,
635                         arm64_ftr_regs,
636                         ARRAY_SIZE(arm64_ftr_regs),
637                         sizeof(arm64_ftr_regs[0]),
638                         search_cmp_ftr_reg);
639         if (ret)
640                 return ret->reg;
641         return NULL;
642 }
643
644 /*
645  * get_arm64_ftr_reg - Looks up a feature register entry using
646  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
647  *
648  * returns - Upon success,  matching ftr_reg entry for id.
649  *         - NULL on failure but with an WARN_ON().
650  */
651 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
652 {
653         struct arm64_ftr_reg *reg;
654
655         reg = get_arm64_ftr_reg_nowarn(sys_id);
656
657         /*
658          * Requesting a non-existent register search is an error. Warn
659          * and let the caller handle it.
660          */
661         WARN_ON(!reg);
662         return reg;
663 }
664
665 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
666                                s64 ftr_val)
667 {
668         u64 mask = arm64_ftr_mask(ftrp);
669
670         reg &= ~mask;
671         reg |= (ftr_val << ftrp->shift) & mask;
672         return reg;
673 }
674
675 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
676                                 s64 cur)
677 {
678         s64 ret = 0;
679
680         switch (ftrp->type) {
681         case FTR_EXACT:
682                 ret = ftrp->safe_val;
683                 break;
684         case FTR_LOWER_SAFE:
685                 ret = new < cur ? new : cur;
686                 break;
687         case FTR_HIGHER_OR_ZERO_SAFE:
688                 if (!cur || !new)
689                         break;
690                 fallthrough;
691         case FTR_HIGHER_SAFE:
692                 ret = new > cur ? new : cur;
693                 break;
694         default:
695                 BUG();
696         }
697
698         return ret;
699 }
700
701 static void __init sort_ftr_regs(void)
702 {
703         unsigned int i;
704
705         for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
706                 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
707                 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
708                 unsigned int j = 0;
709
710                 /*
711                  * Features here must be sorted in descending order with respect
712                  * to their shift values and should not overlap with each other.
713                  */
714                 for (; ftr_bits->width != 0; ftr_bits++, j++) {
715                         unsigned int width = ftr_reg->ftr_bits[j].width;
716                         unsigned int shift = ftr_reg->ftr_bits[j].shift;
717                         unsigned int prev_shift;
718
719                         WARN((shift  + width) > 64,
720                                 "%s has invalid feature at shift %d\n",
721                                 ftr_reg->name, shift);
722
723                         /*
724                          * Skip the first feature. There is nothing to
725                          * compare against for now.
726                          */
727                         if (j == 0)
728                                 continue;
729
730                         prev_shift = ftr_reg->ftr_bits[j - 1].shift;
731                         WARN((shift + width) > prev_shift,
732                                 "%s has feature overlap at shift %d\n",
733                                 ftr_reg->name, shift);
734                 }
735
736                 /*
737                  * Skip the first register. There is nothing to
738                  * compare against for now.
739                  */
740                 if (i == 0)
741                         continue;
742                 /*
743                  * Registers here must be sorted in ascending order with respect
744                  * to sys_id for subsequent binary search in get_arm64_ftr_reg()
745                  * to work correctly.
746                  */
747                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
748         }
749 }
750
751 /*
752  * Initialise the CPU feature register from Boot CPU values.
753  * Also initiliases the strict_mask for the register.
754  * Any bits that are not covered by an arm64_ftr_bits entry are considered
755  * RES0 for the system-wide value, and must strictly match.
756  */
757 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
758 {
759         u64 val = 0;
760         u64 strict_mask = ~0x0ULL;
761         u64 user_mask = 0;
762         u64 valid_mask = 0;
763
764         const struct arm64_ftr_bits *ftrp;
765         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
766
767         if (!reg)
768                 return;
769
770         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
771                 u64 ftr_mask = arm64_ftr_mask(ftrp);
772                 s64 ftr_new = arm64_ftr_value(ftrp, new);
773
774                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
775
776                 valid_mask |= ftr_mask;
777                 if (!ftrp->strict)
778                         strict_mask &= ~ftr_mask;
779                 if (ftrp->visible)
780                         user_mask |= ftr_mask;
781                 else
782                         reg->user_val = arm64_ftr_set_value(ftrp,
783                                                             reg->user_val,
784                                                             ftrp->safe_val);
785         }
786
787         val &= valid_mask;
788
789         reg->sys_val = val;
790         reg->strict_mask = strict_mask;
791         reg->user_mask = user_mask;
792 }
793
794 extern const struct arm64_cpu_capabilities arm64_errata[];
795 static const struct arm64_cpu_capabilities arm64_features[];
796
797 static void __init
798 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
799 {
800         for (; caps->matches; caps++) {
801                 if (WARN(caps->capability >= ARM64_NCAPS,
802                         "Invalid capability %d\n", caps->capability))
803                         continue;
804                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
805                         "Duplicate entry for capability %d\n",
806                         caps->capability))
807                         continue;
808                 cpu_hwcaps_ptrs[caps->capability] = caps;
809         }
810 }
811
812 static void __init init_cpu_hwcaps_indirect_list(void)
813 {
814         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
815         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
816 }
817
818 static void __init setup_boot_cpu_capabilities(void);
819
820 void __init init_cpu_features(struct cpuinfo_arm64 *info)
821 {
822         /* Before we start using the tables, make sure it is sorted */
823         sort_ftr_regs();
824
825         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
826         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
827         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
828         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
829         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
830         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
831         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
832         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
833         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
834         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
835         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
836         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
837         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
838
839         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
840                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
841                 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
842                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
843                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
844                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
845                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
846                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
847                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
848                 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
849                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
850                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
851                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
852                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
853                 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
854                 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
855                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
856                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
857                 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
858                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
859                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
860                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
861         }
862
863         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
864                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
865                 sve_init_vq_map();
866         }
867
868         /*
869          * Initialize the indirect array of CPU hwcaps capabilities pointers
870          * before we handle the boot CPU below.
871          */
872         init_cpu_hwcaps_indirect_list();
873
874         /*
875          * Detect and enable early CPU capabilities based on the boot CPU,
876          * after we have initialised the CPU feature infrastructure.
877          */
878         setup_boot_cpu_capabilities();
879 }
880
881 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
882 {
883         const struct arm64_ftr_bits *ftrp;
884
885         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
886                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
887                 s64 ftr_new = arm64_ftr_value(ftrp, new);
888
889                 if (ftr_cur == ftr_new)
890                         continue;
891                 /* Find a safe value */
892                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
893                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
894         }
895
896 }
897
898 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
899 {
900         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
901
902         if (!regp)
903                 return 0;
904
905         update_cpu_ftr_reg(regp, val);
906         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
907                 return 0;
908         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
909                         regp->name, boot, cpu, val);
910         return 1;
911 }
912
913 static void relax_cpu_ftr_reg(u32 sys_id, int field)
914 {
915         const struct arm64_ftr_bits *ftrp;
916         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
917
918         if (!regp)
919                 return;
920
921         for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
922                 if (ftrp->shift == field) {
923                         regp->strict_mask &= ~arm64_ftr_mask(ftrp);
924                         break;
925                 }
926         }
927
928         /* Bogus field? */
929         WARN_ON(!ftrp->width);
930 }
931
932 static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info,
933                                      struct cpuinfo_arm64 *boot)
934 {
935         int taint = 0;
936         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
937
938         /*
939          * If we don't have AArch32 at all then skip the checks entirely
940          * as the register values may be UNKNOWN and we're not going to be
941          * using them for anything.
942          */
943         if (!id_aa64pfr0_32bit_el0(pfr0))
944                 return taint;
945
946         /*
947          * If we don't have AArch32 at EL1, then relax the strictness of
948          * EL1-dependent register fields to avoid spurious sanity check fails.
949          */
950         if (!id_aa64pfr0_32bit_el1(pfr0)) {
951                 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
952                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
953                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
954                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
955                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
956                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
957         }
958
959         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
960                                       info->reg_id_dfr0, boot->reg_id_dfr0);
961         taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
962                                       info->reg_id_dfr1, boot->reg_id_dfr1);
963         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
964                                       info->reg_id_isar0, boot->reg_id_isar0);
965         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
966                                       info->reg_id_isar1, boot->reg_id_isar1);
967         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
968                                       info->reg_id_isar2, boot->reg_id_isar2);
969         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
970                                       info->reg_id_isar3, boot->reg_id_isar3);
971         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
972                                       info->reg_id_isar4, boot->reg_id_isar4);
973         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
974                                       info->reg_id_isar5, boot->reg_id_isar5);
975         taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
976                                       info->reg_id_isar6, boot->reg_id_isar6);
977
978         /*
979          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
980          * ACTLR formats could differ across CPUs and therefore would have to
981          * be trapped for virtualization anyway.
982          */
983         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
984                                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
985         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
986                                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
987         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
988                                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
989         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
990                                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
991         taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
992                                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
993         taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
994                                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
995         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
996                                       info->reg_id_pfr0, boot->reg_id_pfr0);
997         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
998                                       info->reg_id_pfr1, boot->reg_id_pfr1);
999         taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1000                                       info->reg_id_pfr2, boot->reg_id_pfr2);
1001         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1002                                       info->reg_mvfr0, boot->reg_mvfr0);
1003         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1004                                       info->reg_mvfr1, boot->reg_mvfr1);
1005         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1006                                       info->reg_mvfr2, boot->reg_mvfr2);
1007
1008         return taint;
1009 }
1010
1011 /*
1012  * Update system wide CPU feature registers with the values from a
1013  * non-boot CPU. Also performs SANITY checks to make sure that there
1014  * aren't any insane variations from that of the boot CPU.
1015  */
1016 void update_cpu_features(int cpu,
1017                          struct cpuinfo_arm64 *info,
1018                          struct cpuinfo_arm64 *boot)
1019 {
1020         int taint = 0;
1021
1022         /*
1023          * The kernel can handle differing I-cache policies, but otherwise
1024          * caches should look identical. Userspace JITs will make use of
1025          * *minLine.
1026          */
1027         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1028                                       info->reg_ctr, boot->reg_ctr);
1029
1030         /*
1031          * Userspace may perform DC ZVA instructions. Mismatched block sizes
1032          * could result in too much or too little memory being zeroed if a
1033          * process is preempted and migrated between CPUs.
1034          */
1035         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1036                                       info->reg_dczid, boot->reg_dczid);
1037
1038         /* If different, timekeeping will be broken (especially with KVM) */
1039         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1040                                       info->reg_cntfrq, boot->reg_cntfrq);
1041
1042         /*
1043          * The kernel uses self-hosted debug features and expects CPUs to
1044          * support identical debug features. We presently need CTX_CMPs, WRPs,
1045          * and BRPs to be identical.
1046          * ID_AA64DFR1 is currently RES0.
1047          */
1048         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1049                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1050         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1051                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1052         /*
1053          * Even in big.LITTLE, processors should be identical instruction-set
1054          * wise.
1055          */
1056         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1057                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1058         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1059                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1060
1061         /*
1062          * Differing PARange support is fine as long as all peripherals and
1063          * memory are mapped within the minimum PARange of all CPUs.
1064          * Linux should not care about secure memory.
1065          */
1066         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1067                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1068         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1069                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1070         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1071                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1072
1073         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1074                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1075         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1076                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1077
1078         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1079                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1080
1081         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1082                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1083                                         info->reg_zcr, boot->reg_zcr);
1084
1085                 /* Probe vector lengths, unless we already gave up on SVE */
1086                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1087                     !system_capabilities_finalized())
1088                         sve_update_vq_map();
1089         }
1090
1091         /*
1092          * This relies on a sanitised view of the AArch64 ID registers
1093          * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1094          */
1095         taint |= update_32bit_cpu_features(cpu, info, boot);
1096
1097         /*
1098          * Mismatched CPU features are a recipe for disaster. Don't even
1099          * pretend to support them.
1100          */
1101         if (taint) {
1102                 pr_warn_once("Unsupported CPU feature variation detected.\n");
1103                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1104         }
1105 }
1106
1107 u64 read_sanitised_ftr_reg(u32 id)
1108 {
1109         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1110
1111         if (!regp)
1112                 return 0;
1113         return regp->sys_val;
1114 }
1115 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1116
1117 #define read_sysreg_case(r)     \
1118         case r:         return read_sysreg_s(r)
1119
1120 /*
1121  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1122  * Read the system register on the current CPU
1123  */
1124 static u64 __read_sysreg_by_encoding(u32 sys_id)
1125 {
1126         switch (sys_id) {
1127         read_sysreg_case(SYS_ID_PFR0_EL1);
1128         read_sysreg_case(SYS_ID_PFR1_EL1);
1129         read_sysreg_case(SYS_ID_PFR2_EL1);
1130         read_sysreg_case(SYS_ID_DFR0_EL1);
1131         read_sysreg_case(SYS_ID_DFR1_EL1);
1132         read_sysreg_case(SYS_ID_MMFR0_EL1);
1133         read_sysreg_case(SYS_ID_MMFR1_EL1);
1134         read_sysreg_case(SYS_ID_MMFR2_EL1);
1135         read_sysreg_case(SYS_ID_MMFR3_EL1);
1136         read_sysreg_case(SYS_ID_MMFR4_EL1);
1137         read_sysreg_case(SYS_ID_MMFR5_EL1);
1138         read_sysreg_case(SYS_ID_ISAR0_EL1);
1139         read_sysreg_case(SYS_ID_ISAR1_EL1);
1140         read_sysreg_case(SYS_ID_ISAR2_EL1);
1141         read_sysreg_case(SYS_ID_ISAR3_EL1);
1142         read_sysreg_case(SYS_ID_ISAR4_EL1);
1143         read_sysreg_case(SYS_ID_ISAR5_EL1);
1144         read_sysreg_case(SYS_ID_ISAR6_EL1);
1145         read_sysreg_case(SYS_MVFR0_EL1);
1146         read_sysreg_case(SYS_MVFR1_EL1);
1147         read_sysreg_case(SYS_MVFR2_EL1);
1148
1149         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1150         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1151         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1152         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1153         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1154         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1155         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1156         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1157         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1158         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1159
1160         read_sysreg_case(SYS_CNTFRQ_EL0);
1161         read_sysreg_case(SYS_CTR_EL0);
1162         read_sysreg_case(SYS_DCZID_EL0);
1163
1164         default:
1165                 BUG();
1166                 return 0;
1167         }
1168 }
1169
1170 #include <linux/irqchip/arm-gic-v3.h>
1171
1172 static bool
1173 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1174 {
1175         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1176
1177         return val >= entry->min_field_value;
1178 }
1179
1180 static bool
1181 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1182 {
1183         u64 val;
1184
1185         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1186         if (scope == SCOPE_SYSTEM)
1187                 val = read_sanitised_ftr_reg(entry->sys_reg);
1188         else
1189                 val = __read_sysreg_by_encoding(entry->sys_reg);
1190
1191         return feature_matches(val, entry);
1192 }
1193
1194 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1195 {
1196         bool has_sre;
1197
1198         if (!has_cpuid_feature(entry, scope))
1199                 return false;
1200
1201         has_sre = gic_enable_sre();
1202         if (!has_sre)
1203                 pr_warn_once("%s present but disabled by higher exception level\n",
1204                              entry->desc);
1205
1206         return has_sre;
1207 }
1208
1209 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1210 {
1211         u32 midr = read_cpuid_id();
1212
1213         /* Cavium ThunderX pass 1.x and 2.x */
1214         return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1215                 MIDR_CPU_VAR_REV(0, 0),
1216                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1217 }
1218
1219 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1220 {
1221         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1222
1223         return cpuid_feature_extract_signed_field(pfr0,
1224                                         ID_AA64PFR0_FP_SHIFT) < 0;
1225 }
1226
1227 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1228                           int scope)
1229 {
1230         u64 ctr;
1231
1232         if (scope == SCOPE_SYSTEM)
1233                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1234         else
1235                 ctr = read_cpuid_effective_cachetype();
1236
1237         return ctr & BIT(CTR_IDC_SHIFT);
1238 }
1239
1240 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1241 {
1242         /*
1243          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1244          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1245          * to the CTR_EL0 on this CPU and emulate it with the real/safe
1246          * value.
1247          */
1248         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1249                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1250 }
1251
1252 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1253                           int scope)
1254 {
1255         u64 ctr;
1256
1257         if (scope == SCOPE_SYSTEM)
1258                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1259         else
1260                 ctr = read_cpuid_cachetype();
1261
1262         return ctr & BIT(CTR_DIC_SHIFT);
1263 }
1264
1265 static bool __maybe_unused
1266 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1267 {
1268         /*
1269          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1270          * may share TLB entries with a CPU stuck in the crashed
1271          * kernel.
1272          */
1273          if (is_kdump_kernel())
1274                 return false;
1275
1276         return has_cpuid_feature(entry, scope);
1277 }
1278
1279 /*
1280  * This check is triggered during the early boot before the cpufeature
1281  * is initialised. Checking the status on the local CPU allows the boot
1282  * CPU to detect the need for non-global mappings and thus avoiding a
1283  * pagetable re-write after all the CPUs are booted. This check will be
1284  * anyway run on individual CPUs, allowing us to get the consistent
1285  * state once the SMP CPUs are up and thus make the switch to non-global
1286  * mappings if required.
1287  */
1288 bool kaslr_requires_kpti(void)
1289 {
1290         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1291                 return false;
1292
1293         /*
1294          * E0PD does a similar job to KPTI so can be used instead
1295          * where available.
1296          */
1297         if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1298                 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1299                 if (cpuid_feature_extract_unsigned_field(mmfr2,
1300                                                 ID_AA64MMFR2_E0PD_SHIFT))
1301                         return false;
1302         }
1303
1304         /*
1305          * Systems affected by Cavium erratum 24756 are incompatible
1306          * with KPTI.
1307          */
1308         if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1309                 extern const struct midr_range cavium_erratum_27456_cpus[];
1310
1311                 if (is_midr_in_range_list(read_cpuid_id(),
1312                                           cavium_erratum_27456_cpus))
1313                         return false;
1314         }
1315
1316         return kaslr_offset() > 0;
1317 }
1318
1319 static bool __meltdown_safe = true;
1320 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1321
1322 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1323                                 int scope)
1324 {
1325         /* List of CPUs that are not vulnerable and don't need KPTI */
1326         static const struct midr_range kpti_safe_list[] = {
1327                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1328                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1329                 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1330                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1331                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1332                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1333                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1334                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1335                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1336                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1337                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1338                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1339                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1340                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1341                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1342                 { /* sentinel */ }
1343         };
1344         char const *str = "kpti command line option";
1345         bool meltdown_safe;
1346
1347         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1348
1349         /* Defer to CPU feature registers */
1350         if (has_cpuid_feature(entry, scope))
1351                 meltdown_safe = true;
1352
1353         if (!meltdown_safe)
1354                 __meltdown_safe = false;
1355
1356         /*
1357          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1358          * ThunderX leads to apparent I-cache corruption of kernel text, which
1359          * ends as well as you might imagine. Don't even try.
1360          */
1361         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1362                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1363                 __kpti_forced = -1;
1364         }
1365
1366         /* Useful for KASLR robustness */
1367         if (kaslr_requires_kpti()) {
1368                 if (!__kpti_forced) {
1369                         str = "KASLR";
1370                         __kpti_forced = 1;
1371                 }
1372         }
1373
1374         if (cpu_mitigations_off() && !__kpti_forced) {
1375                 str = "mitigations=off";
1376                 __kpti_forced = -1;
1377         }
1378
1379         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1380                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1381                 return false;
1382         }
1383
1384         /* Forced? */
1385         if (__kpti_forced) {
1386                 pr_info_once("kernel page table isolation forced %s by %s\n",
1387                              __kpti_forced > 0 ? "ON" : "OFF", str);
1388                 return __kpti_forced > 0;
1389         }
1390
1391         return !meltdown_safe;
1392 }
1393
1394 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1395 static void
1396 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1397 {
1398         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1399         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1400         kpti_remap_fn *remap_fn;
1401
1402         int cpu = smp_processor_id();
1403
1404         /*
1405          * We don't need to rewrite the page-tables if either we've done
1406          * it already or we have KASLR enabled and therefore have not
1407          * created any global mappings at all.
1408          */
1409         if (arm64_use_ng_mappings)
1410                 return;
1411
1412         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1413
1414         cpu_install_idmap();
1415         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1416         cpu_uninstall_idmap();
1417
1418         if (!cpu)
1419                 arm64_use_ng_mappings = true;
1420
1421         return;
1422 }
1423 #else
1424 static void
1425 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1426 {
1427 }
1428 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1429
1430 static int __init parse_kpti(char *str)
1431 {
1432         bool enabled;
1433         int ret = strtobool(str, &enabled);
1434
1435         if (ret)
1436                 return ret;
1437
1438         __kpti_forced = enabled ? 1 : -1;
1439         return 0;
1440 }
1441 early_param("kpti", parse_kpti);
1442
1443 #ifdef CONFIG_ARM64_HW_AFDBM
1444 static inline void __cpu_enable_hw_dbm(void)
1445 {
1446         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1447
1448         write_sysreg(tcr, tcr_el1);
1449         isb();
1450         local_flush_tlb_all();
1451 }
1452
1453 static bool cpu_has_broken_dbm(void)
1454 {
1455         /* List of CPUs which have broken DBM support. */
1456         static const struct midr_range cpus[] = {
1457 #ifdef CONFIG_ARM64_ERRATUM_1024718
1458                 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1459                 /* Kryo4xx Silver (rdpe => r1p0) */
1460                 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1461 #endif
1462                 {},
1463         };
1464
1465         return is_midr_in_range_list(read_cpuid_id(), cpus);
1466 }
1467
1468 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1469 {
1470         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1471                !cpu_has_broken_dbm();
1472 }
1473
1474 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1475 {
1476         if (cpu_can_use_dbm(cap))
1477                 __cpu_enable_hw_dbm();
1478 }
1479
1480 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1481                        int __unused)
1482 {
1483         static bool detected = false;
1484         /*
1485          * DBM is a non-conflicting feature. i.e, the kernel can safely
1486          * run a mix of CPUs with and without the feature. So, we
1487          * unconditionally enable the capability to allow any late CPU
1488          * to use the feature. We only enable the control bits on the
1489          * CPU, if it actually supports.
1490          *
1491          * We have to make sure we print the "feature" detection only
1492          * when at least one CPU actually uses it. So check if this CPU
1493          * can actually use it and print the message exactly once.
1494          *
1495          * This is safe as all CPUs (including secondary CPUs - due to the
1496          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1497          * goes through the "matches" check exactly once. Also if a CPU
1498          * matches the criteria, it is guaranteed that the CPU will turn
1499          * the DBM on, as the capability is unconditionally enabled.
1500          */
1501         if (!detected && cpu_can_use_dbm(cap)) {
1502                 detected = true;
1503                 pr_info("detected: Hardware dirty bit management\n");
1504         }
1505
1506         return true;
1507 }
1508
1509 #endif
1510
1511 #ifdef CONFIG_ARM64_AMU_EXTN
1512
1513 /*
1514  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1515  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1516  * information regarding all the events that it supports. When a CPU bit is
1517  * set in the cpumask, the user of this feature can only rely on the presence
1518  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1519  * counters are enabled or access to these counters is enabled by code
1520  * executed at higher exception levels (firmware).
1521  */
1522 static struct cpumask amu_cpus __read_mostly;
1523
1524 bool cpu_has_amu_feat(int cpu)
1525 {
1526         return cpumask_test_cpu(cpu, &amu_cpus);
1527 }
1528
1529 int get_cpu_with_amu_feat(void)
1530 {
1531         return cpumask_any(&amu_cpus);
1532 }
1533
1534 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1535 {
1536         if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1537                 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1538                         smp_processor_id());
1539                 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1540                 update_freq_counters_refs();
1541         }
1542 }
1543
1544 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1545                     int __unused)
1546 {
1547         /*
1548          * The AMU extension is a non-conflicting feature: the kernel can
1549          * safely run a mix of CPUs with and without support for the
1550          * activity monitors extension. Therefore, unconditionally enable
1551          * the capability to allow any late CPU to use the feature.
1552          *
1553          * With this feature unconditionally enabled, the cpu_enable
1554          * function will be called for all CPUs that match the criteria,
1555          * including secondary and hotplugged, marking this feature as
1556          * present on that respective CPU. The enable function will also
1557          * print a detection message.
1558          */
1559
1560         return true;
1561 }
1562 #else
1563 int get_cpu_with_amu_feat(void)
1564 {
1565         return nr_cpu_ids;
1566 }
1567 #endif
1568
1569 #ifdef CONFIG_ARM64_VHE
1570 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1571 {
1572         return is_kernel_in_hyp_mode();
1573 }
1574
1575 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1576 {
1577         /*
1578          * Copy register values that aren't redirected by hardware.
1579          *
1580          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1581          * this value to tpidr_el2 before we patch the code. Once we've done
1582          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1583          * do anything here.
1584          */
1585         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1586                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1587 }
1588 #endif
1589
1590 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1591 {
1592         u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1593
1594         /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1595         WARN_ON(val & (7 << 27 | 7 << 21));
1596 }
1597
1598 #ifdef CONFIG_ARM64_PAN
1599 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1600 {
1601         /*
1602          * We modify PSTATE. This won't work from irq context as the PSTATE
1603          * is discarded once we return from the exception.
1604          */
1605         WARN_ON_ONCE(in_interrupt());
1606
1607         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1608         set_pstate_pan(1);
1609 }
1610 #endif /* CONFIG_ARM64_PAN */
1611
1612 #ifdef CONFIG_ARM64_RAS_EXTN
1613 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1614 {
1615         /* Firmware may have left a deferred SError in this register. */
1616         write_sysreg_s(0, SYS_DISR_EL1);
1617 }
1618 #endif /* CONFIG_ARM64_RAS_EXTN */
1619
1620 #ifdef CONFIG_ARM64_PTR_AUTH
1621 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1622 {
1623         int boot_val, sec_val;
1624
1625         /* We don't expect to be called with SCOPE_SYSTEM */
1626         WARN_ON(scope == SCOPE_SYSTEM);
1627         /*
1628          * The ptr-auth feature levels are not intercompatible with lower
1629          * levels. Hence we must match ptr-auth feature level of the secondary
1630          * CPUs with that of the boot CPU. The level of boot cpu is fetched
1631          * from the sanitised register whereas direct register read is done for
1632          * the secondary CPUs.
1633          * The sanitised feature state is guaranteed to match that of the
1634          * boot CPU as a mismatched secondary CPU is parked before it gets
1635          * a chance to update the state, with the capability.
1636          */
1637         boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1638                                                entry->field_pos, entry->sign);
1639         if (scope & SCOPE_BOOT_CPU)
1640                 return boot_val >= entry->min_field_value;
1641         /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1642         sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1643                                               entry->field_pos, entry->sign);
1644         return sec_val == boot_val;
1645 }
1646
1647 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1648                                      int scope)
1649 {
1650         return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
1651                has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1652 }
1653
1654 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1655                              int __unused)
1656 {
1657         return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1658                __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1659 }
1660 #endif /* CONFIG_ARM64_PTR_AUTH */
1661
1662 #ifdef CONFIG_ARM64_E0PD
1663 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1664 {
1665         if (this_cpu_has_cap(ARM64_HAS_E0PD))
1666                 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1667 }
1668 #endif /* CONFIG_ARM64_E0PD */
1669
1670 #ifdef CONFIG_ARM64_PSEUDO_NMI
1671 static bool enable_pseudo_nmi;
1672
1673 static int __init early_enable_pseudo_nmi(char *p)
1674 {
1675         return strtobool(p, &enable_pseudo_nmi);
1676 }
1677 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1678
1679 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1680                                    int scope)
1681 {
1682         return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1683 }
1684 #endif
1685
1686 #ifdef CONFIG_ARM64_BTI
1687 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1688 {
1689         /*
1690          * Use of X16/X17 for tail-calls and trampolines that jump to
1691          * function entry points using BR is a requirement for
1692          * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1693          * So, be strict and forbid other BRs using other registers to
1694          * jump onto a PACIxSP instruction:
1695          */
1696         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1697         isb();
1698 }
1699 #endif /* CONFIG_ARM64_BTI */
1700
1701 #ifdef CONFIG_ARM64_MTE
1702 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1703 {
1704         static bool cleared_zero_page = false;
1705
1706         /*
1707          * Clear the tags in the zero page. This needs to be done via the
1708          * linear map which has the Tagged attribute.
1709          */
1710         if (!cleared_zero_page) {
1711                 cleared_zero_page = true;
1712                 mte_clear_page_tags(lm_alias(empty_zero_page));
1713         }
1714
1715         kasan_init_hw_tags_cpu();
1716 }
1717 #endif /* CONFIG_ARM64_MTE */
1718
1719 #ifdef CONFIG_KVM
1720 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1721 {
1722         if (kvm_get_mode() != KVM_MODE_PROTECTED)
1723                 return false;
1724
1725         if (is_kernel_in_hyp_mode()) {
1726                 pr_warn("Protected KVM not available with VHE\n");
1727                 return false;
1728         }
1729
1730         return true;
1731 }
1732 #endif /* CONFIG_KVM */
1733
1734 /* Internal helper functions to match cpu capability type */
1735 static bool
1736 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1737 {
1738         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1739 }
1740
1741 static bool
1742 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1743 {
1744         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1745 }
1746
1747 static bool
1748 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1749 {
1750         return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1751 }
1752
1753 static const struct arm64_cpu_capabilities arm64_features[] = {
1754         {
1755                 .desc = "GIC system register CPU interface",
1756                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1757                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1758                 .matches = has_useable_gicv3_cpuif,
1759                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1760                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1761                 .sign = FTR_UNSIGNED,
1762                 .min_field_value = 1,
1763         },
1764 #ifdef CONFIG_ARM64_PAN
1765         {
1766                 .desc = "Privileged Access Never",
1767                 .capability = ARM64_HAS_PAN,
1768                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1769                 .matches = has_cpuid_feature,
1770                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1771                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1772                 .sign = FTR_UNSIGNED,
1773                 .min_field_value = 1,
1774                 .cpu_enable = cpu_enable_pan,
1775         },
1776 #endif /* CONFIG_ARM64_PAN */
1777 #ifdef CONFIG_ARM64_LSE_ATOMICS
1778         {
1779                 .desc = "LSE atomic instructions",
1780                 .capability = ARM64_HAS_LSE_ATOMICS,
1781                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1782                 .matches = has_cpuid_feature,
1783                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1784                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1785                 .sign = FTR_UNSIGNED,
1786                 .min_field_value = 2,
1787         },
1788 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1789         {
1790                 .desc = "Software prefetching using PRFM",
1791                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1792                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1793                 .matches = has_no_hw_prefetch,
1794         },
1795 #ifdef CONFIG_ARM64_VHE
1796         {
1797                 .desc = "Virtualization Host Extensions",
1798                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1799                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1800                 .matches = runs_at_el2,
1801                 .cpu_enable = cpu_copy_el2regs,
1802         },
1803 #endif  /* CONFIG_ARM64_VHE */
1804         {
1805                 .desc = "32-bit EL0 Support",
1806                 .capability = ARM64_HAS_32BIT_EL0,
1807                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1808                 .matches = has_cpuid_feature,
1809                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1810                 .sign = FTR_UNSIGNED,
1811                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1812                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1813         },
1814 #ifdef CONFIG_KVM
1815         {
1816                 .desc = "32-bit EL1 Support",
1817                 .capability = ARM64_HAS_32BIT_EL1,
1818                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1819                 .matches = has_cpuid_feature,
1820                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1821                 .sign = FTR_UNSIGNED,
1822                 .field_pos = ID_AA64PFR0_EL1_SHIFT,
1823                 .min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
1824         },
1825         {
1826                 .desc = "Protected KVM",
1827                 .capability = ARM64_KVM_PROTECTED_MODE,
1828                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1829                 .matches = is_kvm_protected_mode,
1830         },
1831 #endif
1832         {
1833                 .desc = "Kernel page table isolation (KPTI)",
1834                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1835                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1836                 /*
1837                  * The ID feature fields below are used to indicate that
1838                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1839                  * more details.
1840                  */
1841                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1842                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1843                 .min_field_value = 1,
1844                 .matches = unmap_kernel_at_el0,
1845                 .cpu_enable = kpti_install_ng_mappings,
1846         },
1847         {
1848                 /* FP/SIMD is not implemented */
1849                 .capability = ARM64_HAS_NO_FPSIMD,
1850                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1851                 .min_field_value = 0,
1852                 .matches = has_no_fpsimd,
1853         },
1854 #ifdef CONFIG_ARM64_PMEM
1855         {
1856                 .desc = "Data cache clean to Point of Persistence",
1857                 .capability = ARM64_HAS_DCPOP,
1858                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1859                 .matches = has_cpuid_feature,
1860                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1861                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1862                 .min_field_value = 1,
1863         },
1864         {
1865                 .desc = "Data cache clean to Point of Deep Persistence",
1866                 .capability = ARM64_HAS_DCPODP,
1867                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1868                 .matches = has_cpuid_feature,
1869                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1870                 .sign = FTR_UNSIGNED,
1871                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1872                 .min_field_value = 2,
1873         },
1874 #endif
1875 #ifdef CONFIG_ARM64_SVE
1876         {
1877                 .desc = "Scalable Vector Extension",
1878                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1879                 .capability = ARM64_SVE,
1880                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1881                 .sign = FTR_UNSIGNED,
1882                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1883                 .min_field_value = ID_AA64PFR0_SVE,
1884                 .matches = has_cpuid_feature,
1885                 .cpu_enable = sve_kernel_enable,
1886         },
1887 #endif /* CONFIG_ARM64_SVE */
1888 #ifdef CONFIG_ARM64_RAS_EXTN
1889         {
1890                 .desc = "RAS Extension Support",
1891                 .capability = ARM64_HAS_RAS_EXTN,
1892                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1893                 .matches = has_cpuid_feature,
1894                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1895                 .sign = FTR_UNSIGNED,
1896                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1897                 .min_field_value = ID_AA64PFR0_RAS_V1,
1898                 .cpu_enable = cpu_clear_disr,
1899         },
1900 #endif /* CONFIG_ARM64_RAS_EXTN */
1901 #ifdef CONFIG_ARM64_AMU_EXTN
1902         {
1903                 /*
1904                  * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1905                  * Therefore, don't provide .desc as we don't want the detection
1906                  * message to be shown until at least one CPU is detected to
1907                  * support the feature.
1908                  */
1909                 .capability = ARM64_HAS_AMU_EXTN,
1910                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1911                 .matches = has_amu,
1912                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1913                 .sign = FTR_UNSIGNED,
1914                 .field_pos = ID_AA64PFR0_AMU_SHIFT,
1915                 .min_field_value = ID_AA64PFR0_AMU,
1916                 .cpu_enable = cpu_amu_enable,
1917         },
1918 #endif /* CONFIG_ARM64_AMU_EXTN */
1919         {
1920                 .desc = "Data cache clean to the PoU not required for I/D coherence",
1921                 .capability = ARM64_HAS_CACHE_IDC,
1922                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1923                 .matches = has_cache_idc,
1924                 .cpu_enable = cpu_emulate_effective_ctr,
1925         },
1926         {
1927                 .desc = "Instruction cache invalidation not required for I/D coherence",
1928                 .capability = ARM64_HAS_CACHE_DIC,
1929                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1930                 .matches = has_cache_dic,
1931         },
1932         {
1933                 .desc = "Stage-2 Force Write-Back",
1934                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1935                 .capability = ARM64_HAS_STAGE2_FWB,
1936                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1937                 .sign = FTR_UNSIGNED,
1938                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1939                 .min_field_value = 1,
1940                 .matches = has_cpuid_feature,
1941                 .cpu_enable = cpu_has_fwb,
1942         },
1943         {
1944                 .desc = "ARMv8.4 Translation Table Level",
1945                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1946                 .capability = ARM64_HAS_ARMv8_4_TTL,
1947                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1948                 .sign = FTR_UNSIGNED,
1949                 .field_pos = ID_AA64MMFR2_TTL_SHIFT,
1950                 .min_field_value = 1,
1951                 .matches = has_cpuid_feature,
1952         },
1953         {
1954                 .desc = "TLB range maintenance instructions",
1955                 .capability = ARM64_HAS_TLB_RANGE,
1956                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1957                 .matches = has_cpuid_feature,
1958                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1959                 .field_pos = ID_AA64ISAR0_TLB_SHIFT,
1960                 .sign = FTR_UNSIGNED,
1961                 .min_field_value = ID_AA64ISAR0_TLB_RANGE,
1962         },
1963 #ifdef CONFIG_ARM64_HW_AFDBM
1964         {
1965                 /*
1966                  * Since we turn this on always, we don't want the user to
1967                  * think that the feature is available when it may not be.
1968                  * So hide the description.
1969                  *
1970                  * .desc = "Hardware pagetable Dirty Bit Management",
1971                  *
1972                  */
1973                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1974                 .capability = ARM64_HW_DBM,
1975                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1976                 .sign = FTR_UNSIGNED,
1977                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1978                 .min_field_value = 2,
1979                 .matches = has_hw_dbm,
1980                 .cpu_enable = cpu_enable_hw_dbm,
1981         },
1982 #endif
1983         {
1984                 .desc = "CRC32 instructions",
1985                 .capability = ARM64_HAS_CRC32,
1986                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1987                 .matches = has_cpuid_feature,
1988                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1989                 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1990                 .min_field_value = 1,
1991         },
1992         {
1993                 .desc = "Speculative Store Bypassing Safe (SSBS)",
1994                 .capability = ARM64_SSBS,
1995                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1996                 .matches = has_cpuid_feature,
1997                 .sys_reg = SYS_ID_AA64PFR1_EL1,
1998                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1999                 .sign = FTR_UNSIGNED,
2000                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
2001         },
2002 #ifdef CONFIG_ARM64_CNP
2003         {
2004                 .desc = "Common not Private translations",
2005                 .capability = ARM64_HAS_CNP,
2006                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2007                 .matches = has_useable_cnp,
2008                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2009                 .sign = FTR_UNSIGNED,
2010                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2011                 .min_field_value = 1,
2012                 .cpu_enable = cpu_enable_cnp,
2013         },
2014 #endif
2015         {
2016                 .desc = "Speculation barrier (SB)",
2017                 .capability = ARM64_HAS_SB,
2018                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2019                 .matches = has_cpuid_feature,
2020                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2021                 .field_pos = ID_AA64ISAR1_SB_SHIFT,
2022                 .sign = FTR_UNSIGNED,
2023                 .min_field_value = 1,
2024         },
2025 #ifdef CONFIG_ARM64_PTR_AUTH
2026         {
2027                 .desc = "Address authentication (architected algorithm)",
2028                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
2029                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2030                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2031                 .sign = FTR_UNSIGNED,
2032                 .field_pos = ID_AA64ISAR1_APA_SHIFT,
2033                 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2034                 .matches = has_address_auth_cpucap,
2035         },
2036         {
2037                 .desc = "Address authentication (IMP DEF algorithm)",
2038                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2039                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2040                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2041                 .sign = FTR_UNSIGNED,
2042                 .field_pos = ID_AA64ISAR1_API_SHIFT,
2043                 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2044                 .matches = has_address_auth_cpucap,
2045         },
2046         {
2047                 .capability = ARM64_HAS_ADDRESS_AUTH,
2048                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2049                 .matches = has_address_auth_metacap,
2050         },
2051         {
2052                 .desc = "Generic authentication (architected algorithm)",
2053                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2054                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2055                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2056                 .sign = FTR_UNSIGNED,
2057                 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2058                 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2059                 .matches = has_cpuid_feature,
2060         },
2061         {
2062                 .desc = "Generic authentication (IMP DEF algorithm)",
2063                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2064                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2065                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2066                 .sign = FTR_UNSIGNED,
2067                 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2068                 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2069                 .matches = has_cpuid_feature,
2070         },
2071         {
2072                 .capability = ARM64_HAS_GENERIC_AUTH,
2073                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2074                 .matches = has_generic_auth,
2075         },
2076 #endif /* CONFIG_ARM64_PTR_AUTH */
2077 #ifdef CONFIG_ARM64_PSEUDO_NMI
2078         {
2079                 /*
2080                  * Depends on having GICv3
2081                  */
2082                 .desc = "IRQ priority masking",
2083                 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2084                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2085                 .matches = can_use_gic_priorities,
2086                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2087                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2088                 .sign = FTR_UNSIGNED,
2089                 .min_field_value = 1,
2090         },
2091 #endif
2092 #ifdef CONFIG_ARM64_E0PD
2093         {
2094                 .desc = "E0PD",
2095                 .capability = ARM64_HAS_E0PD,
2096                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2097                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2098                 .sign = FTR_UNSIGNED,
2099                 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2100                 .matches = has_cpuid_feature,
2101                 .min_field_value = 1,
2102                 .cpu_enable = cpu_enable_e0pd,
2103         },
2104 #endif
2105 #ifdef CONFIG_ARCH_RANDOM
2106         {
2107                 .desc = "Random Number Generator",
2108                 .capability = ARM64_HAS_RNG,
2109                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2110                 .matches = has_cpuid_feature,
2111                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2112                 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2113                 .sign = FTR_UNSIGNED,
2114                 .min_field_value = 1,
2115         },
2116 #endif
2117 #ifdef CONFIG_ARM64_BTI
2118         {
2119                 .desc = "Branch Target Identification",
2120                 .capability = ARM64_BTI,
2121 #ifdef CONFIG_ARM64_BTI_KERNEL
2122                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2123 #else
2124                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2125 #endif
2126                 .matches = has_cpuid_feature,
2127                 .cpu_enable = bti_enable,
2128                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2129                 .field_pos = ID_AA64PFR1_BT_SHIFT,
2130                 .min_field_value = ID_AA64PFR1_BT_BTI,
2131                 .sign = FTR_UNSIGNED,
2132         },
2133 #endif
2134 #ifdef CONFIG_ARM64_MTE
2135         {
2136                 .desc = "Memory Tagging Extension",
2137                 .capability = ARM64_MTE,
2138                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2139                 .matches = has_cpuid_feature,
2140                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2141                 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2142                 .min_field_value = ID_AA64PFR1_MTE,
2143                 .sign = FTR_UNSIGNED,
2144                 .cpu_enable = cpu_enable_mte,
2145         },
2146 #endif /* CONFIG_ARM64_MTE */
2147         {
2148                 .desc = "RCpc load-acquire (LDAPR)",
2149                 .capability = ARM64_HAS_LDAPR,
2150                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2151                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2152                 .sign = FTR_UNSIGNED,
2153                 .field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2154                 .matches = has_cpuid_feature,
2155                 .min_field_value = 1,
2156         },
2157         {},
2158 };
2159
2160 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
2161                 .matches = has_cpuid_feature,                                   \
2162                 .sys_reg = reg,                                                 \
2163                 .field_pos = field,                                             \
2164                 .sign = s,                                                      \
2165                 .min_field_value = min_value,
2166
2167 #define __HWCAP_CAP(name, cap_type, cap)                                        \
2168                 .desc = name,                                                   \
2169                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2170                 .hwcap_type = cap_type,                                         \
2171                 .hwcap = cap,                                                   \
2172
2173 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
2174         {                                                                       \
2175                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2176                 HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
2177         }
2178
2179 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2180         {                                                                       \
2181                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2182                 .matches = cpucap_multi_entry_cap_matches,                      \
2183                 .match_list = list,                                             \
2184         }
2185
2186 #define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2187         {                                                                       \
2188                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2189                 .matches = match,                                               \
2190         }
2191
2192 #ifdef CONFIG_ARM64_PTR_AUTH
2193 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2194         {
2195                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2196                                   FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2197         },
2198         {
2199                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2200                                   FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2201         },
2202         {},
2203 };
2204
2205 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2206         {
2207                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2208                                   FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2209         },
2210         {
2211                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2212                                   FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2213         },
2214         {},
2215 };
2216 #endif
2217
2218 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2219         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2220         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2221         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2222         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2223         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2224         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2225         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2226         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2227         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2228         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2229         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2230         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2231         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2232         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2233         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2234         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2235         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2236         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2237         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2238         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2239         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2240         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2241         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2242         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2243         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2244         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2245         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2246         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2247         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2248         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2249         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2250         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2251         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2252 #ifdef CONFIG_ARM64_SVE
2253         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2254         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2255         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2256         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2257         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2258         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2259         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2260         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2261         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2262         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2263         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2264 #endif
2265         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2266 #ifdef CONFIG_ARM64_BTI
2267         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2268 #endif
2269 #ifdef CONFIG_ARM64_PTR_AUTH
2270         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2271         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2272 #endif
2273 #ifdef CONFIG_ARM64_MTE
2274         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2275 #endif /* CONFIG_ARM64_MTE */
2276         {},
2277 };
2278
2279 #ifdef CONFIG_COMPAT
2280 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2281 {
2282         /*
2283          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2284          * in line with that of arm32 as in vfp_init(). We make sure that the
2285          * check is future proof, by making sure value is non-zero.
2286          */
2287         u32 mvfr1;
2288
2289         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2290         if (scope == SCOPE_SYSTEM)
2291                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2292         else
2293                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2294
2295         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2296                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2297                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2298 }
2299 #endif
2300
2301 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2302 #ifdef CONFIG_COMPAT
2303         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2304         HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2305         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2306         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2307         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2308         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2309         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2310         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2311         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2312         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2313 #endif
2314         {},
2315 };
2316
2317 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2318 {
2319         switch (cap->hwcap_type) {
2320         case CAP_HWCAP:
2321                 cpu_set_feature(cap->hwcap);
2322                 break;
2323 #ifdef CONFIG_COMPAT
2324         case CAP_COMPAT_HWCAP:
2325                 compat_elf_hwcap |= (u32)cap->hwcap;
2326                 break;
2327         case CAP_COMPAT_HWCAP2:
2328                 compat_elf_hwcap2 |= (u32)cap->hwcap;
2329                 break;
2330 #endif
2331         default:
2332                 WARN_ON(1);
2333                 break;
2334         }
2335 }
2336
2337 /* Check if we have a particular HWCAP enabled */
2338 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2339 {
2340         bool rc;
2341
2342         switch (cap->hwcap_type) {
2343         case CAP_HWCAP:
2344                 rc = cpu_have_feature(cap->hwcap);
2345                 break;
2346 #ifdef CONFIG_COMPAT
2347         case CAP_COMPAT_HWCAP:
2348                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2349                 break;
2350         case CAP_COMPAT_HWCAP2:
2351                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2352                 break;
2353 #endif
2354         default:
2355                 WARN_ON(1);
2356                 rc = false;
2357         }
2358
2359         return rc;
2360 }
2361
2362 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2363 {
2364         /* We support emulation of accesses to CPU ID feature registers */
2365         cpu_set_named_feature(CPUID);
2366         for (; hwcaps->matches; hwcaps++)
2367                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2368                         cap_set_elf_hwcap(hwcaps);
2369 }
2370
2371 static void update_cpu_capabilities(u16 scope_mask)
2372 {
2373         int i;
2374         const struct arm64_cpu_capabilities *caps;
2375
2376         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2377         for (i = 0; i < ARM64_NCAPS; i++) {
2378                 caps = cpu_hwcaps_ptrs[i];
2379                 if (!caps || !(caps->type & scope_mask) ||
2380                     cpus_have_cap(caps->capability) ||
2381                     !caps->matches(caps, cpucap_default_scope(caps)))
2382                         continue;
2383
2384                 if (caps->desc)
2385                         pr_info("detected: %s\n", caps->desc);
2386                 cpus_set_cap(caps->capability);
2387
2388                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2389                         set_bit(caps->capability, boot_capabilities);
2390         }
2391 }
2392
2393 /*
2394  * Enable all the available capabilities on this CPU. The capabilities
2395  * with BOOT_CPU scope are handled separately and hence skipped here.
2396  */
2397 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2398 {
2399         int i;
2400         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2401
2402         for_each_available_cap(i) {
2403                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2404
2405                 if (WARN_ON(!cap))
2406                         continue;
2407
2408                 if (!(cap->type & non_boot_scope))
2409                         continue;
2410
2411                 if (cap->cpu_enable)
2412                         cap->cpu_enable(cap);
2413         }
2414         return 0;
2415 }
2416
2417 /*
2418  * Run through the enabled capabilities and enable() it on all active
2419  * CPUs
2420  */
2421 static void __init enable_cpu_capabilities(u16 scope_mask)
2422 {
2423         int i;
2424         const struct arm64_cpu_capabilities *caps;
2425         bool boot_scope;
2426
2427         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2428         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2429
2430         for (i = 0; i < ARM64_NCAPS; i++) {
2431                 unsigned int num;
2432
2433                 caps = cpu_hwcaps_ptrs[i];
2434                 if (!caps || !(caps->type & scope_mask))
2435                         continue;
2436                 num = caps->capability;
2437                 if (!cpus_have_cap(num))
2438                         continue;
2439
2440                 /* Ensure cpus_have_const_cap(num) works */
2441                 static_branch_enable(&cpu_hwcap_keys[num]);
2442
2443                 if (boot_scope && caps->cpu_enable)
2444                         /*
2445                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
2446                          * before any secondary CPU boots. Thus, each secondary
2447                          * will enable the capability as appropriate via
2448                          * check_local_cpu_capabilities(). The only exception is
2449                          * the boot CPU, for which the capability must be
2450                          * enabled here. This approach avoids costly
2451                          * stop_machine() calls for this case.
2452                          */
2453                         caps->cpu_enable(caps);
2454         }
2455
2456         /*
2457          * For all non-boot scope capabilities, use stop_machine()
2458          * as it schedules the work allowing us to modify PSTATE,
2459          * instead of on_each_cpu() which uses an IPI, giving us a
2460          * PSTATE that disappears when we return.
2461          */
2462         if (!boot_scope)
2463                 stop_machine(cpu_enable_non_boot_scope_capabilities,
2464                              NULL, cpu_online_mask);
2465 }
2466
2467 /*
2468  * Run through the list of capabilities to check for conflicts.
2469  * If the system has already detected a capability, take necessary
2470  * action on this CPU.
2471  */
2472 static void verify_local_cpu_caps(u16 scope_mask)
2473 {
2474         int i;
2475         bool cpu_has_cap, system_has_cap;
2476         const struct arm64_cpu_capabilities *caps;
2477
2478         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2479
2480         for (i = 0; i < ARM64_NCAPS; i++) {
2481                 caps = cpu_hwcaps_ptrs[i];
2482                 if (!caps || !(caps->type & scope_mask))
2483                         continue;
2484
2485                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2486                 system_has_cap = cpus_have_cap(caps->capability);
2487
2488                 if (system_has_cap) {
2489                         /*
2490                          * Check if the new CPU misses an advertised feature,
2491                          * which is not safe to miss.
2492                          */
2493                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2494                                 break;
2495                         /*
2496                          * We have to issue cpu_enable() irrespective of
2497                          * whether the CPU has it or not, as it is enabeld
2498                          * system wide. It is upto the call back to take
2499                          * appropriate action on this CPU.
2500                          */
2501                         if (caps->cpu_enable)
2502                                 caps->cpu_enable(caps);
2503                 } else {
2504                         /*
2505                          * Check if the CPU has this capability if it isn't
2506                          * safe to have when the system doesn't.
2507                          */
2508                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2509                                 break;
2510                 }
2511         }
2512
2513         if (i < ARM64_NCAPS) {
2514                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2515                         smp_processor_id(), caps->capability,
2516                         caps->desc, system_has_cap, cpu_has_cap);
2517
2518                 if (cpucap_panic_on_conflict(caps))
2519                         cpu_panic_kernel();
2520                 else
2521                         cpu_die_early();
2522         }
2523 }
2524
2525 /*
2526  * Check for CPU features that are used in early boot
2527  * based on the Boot CPU value.
2528  */
2529 static void check_early_cpu_features(void)
2530 {
2531         verify_cpu_asid_bits();
2532
2533         verify_local_cpu_caps(SCOPE_BOOT_CPU);
2534 }
2535
2536 static void
2537 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2538 {
2539
2540         for (; caps->matches; caps++)
2541                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2542                         pr_crit("CPU%d: missing HWCAP: %s\n",
2543                                         smp_processor_id(), caps->desc);
2544                         cpu_die_early();
2545                 }
2546 }
2547
2548 static void verify_sve_features(void)
2549 {
2550         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2551         u64 zcr = read_zcr_features();
2552
2553         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2554         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2555
2556         if (len < safe_len || sve_verify_vq_map()) {
2557                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2558                         smp_processor_id());
2559                 cpu_die_early();
2560         }
2561
2562         /* Add checks on other ZCR bits here if necessary */
2563 }
2564
2565 static void verify_hyp_capabilities(void)
2566 {
2567         u64 safe_mmfr1, mmfr0, mmfr1;
2568         int parange, ipa_max;
2569         unsigned int safe_vmid_bits, vmid_bits;
2570
2571         if (!IS_ENABLED(CONFIG_KVM) || !IS_ENABLED(CONFIG_KVM_ARM_HOST))
2572                 return;
2573
2574         safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2575         mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2576         mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2577
2578         /* Verify VMID bits */
2579         safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2580         vmid_bits = get_vmid_bits(mmfr1);
2581         if (vmid_bits < safe_vmid_bits) {
2582                 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2583                 cpu_die_early();
2584         }
2585
2586         /* Verify IPA range */
2587         parange = cpuid_feature_extract_unsigned_field(mmfr0,
2588                                 ID_AA64MMFR0_PARANGE_SHIFT);
2589         ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2590         if (ipa_max < get_kvm_ipa_limit()) {
2591                 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2592                 cpu_die_early();
2593         }
2594 }
2595
2596 /*
2597  * Run through the enabled system capabilities and enable() it on this CPU.
2598  * The capabilities were decided based on the available CPUs at the boot time.
2599  * Any new CPU should match the system wide status of the capability. If the
2600  * new CPU doesn't have a capability which the system now has enabled, we
2601  * cannot do anything to fix it up and could cause unexpected failures. So
2602  * we park the CPU.
2603  */
2604 static void verify_local_cpu_capabilities(void)
2605 {
2606         /*
2607          * The capabilities with SCOPE_BOOT_CPU are checked from
2608          * check_early_cpu_features(), as they need to be verified
2609          * on all secondary CPUs.
2610          */
2611         verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2612
2613         verify_local_elf_hwcaps(arm64_elf_hwcaps);
2614
2615         if (system_supports_32bit_el0())
2616                 verify_local_elf_hwcaps(compat_elf_hwcaps);
2617
2618         if (system_supports_sve())
2619                 verify_sve_features();
2620
2621         if (is_hyp_mode_available())
2622                 verify_hyp_capabilities();
2623 }
2624
2625 void check_local_cpu_capabilities(void)
2626 {
2627         /*
2628          * All secondary CPUs should conform to the early CPU features
2629          * in use by the kernel based on boot CPU.
2630          */
2631         check_early_cpu_features();
2632
2633         /*
2634          * If we haven't finalised the system capabilities, this CPU gets
2635          * a chance to update the errata work arounds and local features.
2636          * Otherwise, this CPU should verify that it has all the system
2637          * advertised capabilities.
2638          */
2639         if (!system_capabilities_finalized())
2640                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2641         else
2642                 verify_local_cpu_capabilities();
2643 }
2644
2645 static void __init setup_boot_cpu_capabilities(void)
2646 {
2647         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2648         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2649         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2650         enable_cpu_capabilities(SCOPE_BOOT_CPU);
2651 }
2652
2653 bool this_cpu_has_cap(unsigned int n)
2654 {
2655         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2656                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2657
2658                 if (cap)
2659                         return cap->matches(cap, SCOPE_LOCAL_CPU);
2660         }
2661
2662         return false;
2663 }
2664
2665 /*
2666  * This helper function is used in a narrow window when,
2667  * - The system wide safe registers are set with all the SMP CPUs and,
2668  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2669  * In all other cases cpus_have_{const_}cap() should be used.
2670  */
2671 static bool __maybe_unused __system_matches_cap(unsigned int n)
2672 {
2673         if (n < ARM64_NCAPS) {
2674                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2675
2676                 if (cap)
2677                         return cap->matches(cap, SCOPE_SYSTEM);
2678         }
2679         return false;
2680 }
2681
2682 void cpu_set_feature(unsigned int num)
2683 {
2684         WARN_ON(num >= MAX_CPU_FEATURES);
2685         elf_hwcap |= BIT(num);
2686 }
2687 EXPORT_SYMBOL_GPL(cpu_set_feature);
2688
2689 bool cpu_have_feature(unsigned int num)
2690 {
2691         WARN_ON(num >= MAX_CPU_FEATURES);
2692         return elf_hwcap & BIT(num);
2693 }
2694 EXPORT_SYMBOL_GPL(cpu_have_feature);
2695
2696 unsigned long cpu_get_elf_hwcap(void)
2697 {
2698         /*
2699          * We currently only populate the first 32 bits of AT_HWCAP. Please
2700          * note that for userspace compatibility we guarantee that bits 62
2701          * and 63 will always be returned as 0.
2702          */
2703         return lower_32_bits(elf_hwcap);
2704 }
2705
2706 unsigned long cpu_get_elf_hwcap2(void)
2707 {
2708         return upper_32_bits(elf_hwcap);
2709 }
2710
2711 static void __init setup_system_capabilities(void)
2712 {
2713         /*
2714          * We have finalised the system-wide safe feature
2715          * registers, finalise the capabilities that depend
2716          * on it. Also enable all the available capabilities,
2717          * that are not enabled already.
2718          */
2719         update_cpu_capabilities(SCOPE_SYSTEM);
2720         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2721 }
2722
2723 void __init setup_cpu_features(void)
2724 {
2725         u32 cwg;
2726
2727         setup_system_capabilities();
2728         setup_elf_hwcaps(arm64_elf_hwcaps);
2729
2730         if (system_supports_32bit_el0())
2731                 setup_elf_hwcaps(compat_elf_hwcaps);
2732
2733         if (system_uses_ttbr0_pan())
2734                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2735
2736         sve_setup();
2737         minsigstksz_setup();
2738
2739         /* Advertise that we have computed the system capabilities */
2740         finalize_system_capabilities();
2741
2742         /*
2743          * Check for sane CTR_EL0.CWG value.
2744          */
2745         cwg = cache_type_cwg();
2746         if (!cwg)
2747                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2748                         ARCH_DMA_MINALIGN);
2749 }
2750
2751 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2752 {
2753         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2754 }
2755
2756 /*
2757  * We emulate only the following system register space.
2758  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2759  * See Table C5-6 System instruction encodings for System register accesses,
2760  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2761  */
2762 static inline bool __attribute_const__ is_emulated(u32 id)
2763 {
2764         return (sys_reg_Op0(id) == 0x3 &&
2765                 sys_reg_CRn(id) == 0x0 &&
2766                 sys_reg_Op1(id) == 0x0 &&
2767                 (sys_reg_CRm(id) == 0 ||
2768                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2769 }
2770
2771 /*
2772  * With CRm == 0, reg should be one of :
2773  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2774  */
2775 static inline int emulate_id_reg(u32 id, u64 *valp)
2776 {
2777         switch (id) {
2778         case SYS_MIDR_EL1:
2779                 *valp = read_cpuid_id();
2780                 break;
2781         case SYS_MPIDR_EL1:
2782                 *valp = SYS_MPIDR_SAFE_VAL;
2783                 break;
2784         case SYS_REVIDR_EL1:
2785                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2786                 *valp = 0;
2787                 break;
2788         default:
2789                 return -EINVAL;
2790         }
2791
2792         return 0;
2793 }
2794
2795 static int emulate_sys_reg(u32 id, u64 *valp)
2796 {
2797         struct arm64_ftr_reg *regp;
2798
2799         if (!is_emulated(id))
2800                 return -EINVAL;
2801
2802         if (sys_reg_CRm(id) == 0)
2803                 return emulate_id_reg(id, valp);
2804
2805         regp = get_arm64_ftr_reg_nowarn(id);
2806         if (regp)
2807                 *valp = arm64_ftr_reg_user_value(regp);
2808         else
2809                 /*
2810                  * The untracked registers are either IMPLEMENTATION DEFINED
2811                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
2812                  */
2813                 *valp = 0;
2814         return 0;
2815 }
2816
2817 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2818 {
2819         int rc;
2820         u64 val;
2821
2822         rc = emulate_sys_reg(sys_reg, &val);
2823         if (!rc) {
2824                 pt_regs_write_reg(regs, rt, val);
2825                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2826         }
2827         return rc;
2828 }
2829
2830 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2831 {
2832         u32 sys_reg, rt;
2833
2834         /*
2835          * sys_reg values are defined as used in mrs/msr instruction.
2836          * shift the imm value to get the encoding.
2837          */
2838         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2839         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2840         return do_emulate_mrs(regs, sys_reg, rt);
2841 }
2842
2843 static struct undef_hook mrs_hook = {
2844         .instr_mask = 0xfff00000,
2845         .instr_val  = 0xd5300000,
2846         .pstate_mask = PSR_AA32_MODE_MASK,
2847         .pstate_val = PSR_MODE_EL0t,
2848         .fn = emulate_mrs,
2849 };
2850
2851 static int __init enable_mrs_emulation(void)
2852 {
2853         register_undef_hook(&mrs_hook);
2854         return 0;
2855 }
2856
2857 core_initcall(enable_mrs_emulation);
2858
2859 enum mitigation_state arm64_get_meltdown_state(void)
2860 {
2861         if (__meltdown_safe)
2862                 return SPECTRE_UNAFFECTED;
2863
2864         if (arm64_kernel_unmapped_at_el0())
2865                 return SPECTRE_MITIGATED;
2866
2867         return SPECTRE_VULNERABLE;
2868 }
2869
2870 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2871                           char *buf)
2872 {
2873         switch (arm64_get_meltdown_state()) {
2874         case SPECTRE_UNAFFECTED:
2875                 return sprintf(buf, "Not affected\n");
2876
2877         case SPECTRE_MITIGATED:
2878                 return sprintf(buf, "Mitigation: PTI\n");
2879
2880         default:
2881                 return sprintf(buf, "Vulnerable\n");
2882         }
2883 }