4b5cceaecf6e3e2db4e80097a2cfa4e878024f01
[linux-2.6-microblaze.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/crash_dump.h>
24 #include <linux/sort.h>
25 #include <linux/stop_machine.h>
26 #include <linux/types.h>
27 #include <linux/mm.h>
28 #include <asm/cpu.h>
29 #include <asm/cpufeature.h>
30 #include <asm/cpu_ops.h>
31 #include <asm/fpsimd.h>
32 #include <asm/mmu_context.h>
33 #include <asm/processor.h>
34 #include <asm/sysreg.h>
35 #include <asm/traps.h>
36 #include <asm/virt.h>
37
38 unsigned long elf_hwcap __read_mostly;
39 EXPORT_SYMBOL_GPL(elf_hwcap);
40
41 #ifdef CONFIG_COMPAT
42 #define COMPAT_ELF_HWCAP_DEFAULT        \
43                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
44                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
45                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
46                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
47                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
48                                  COMPAT_HWCAP_LPAE)
49 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
50 unsigned int compat_elf_hwcap2 __read_mostly;
51 #endif
52
53 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
54 EXPORT_SYMBOL(cpu_hwcaps);
55 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
56
57 /*
58  * Flag to indicate if we have computed the system wide
59  * capabilities based on the boot time active CPUs. This
60  * will be used to determine if a new booting CPU should
61  * go through the verification process to make sure that it
62  * supports the system capabilities, without using a hotplug
63  * notifier.
64  */
65 static bool sys_caps_initialised;
66
67 static inline void set_sys_caps_initialised(void)
68 {
69         sys_caps_initialised = true;
70 }
71
72 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
73 {
74         /* file-wide pr_fmt adds "CPU features: " prefix */
75         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
76         return 0;
77 }
78
79 static struct notifier_block cpu_hwcaps_notifier = {
80         .notifier_call = dump_cpu_hwcaps
81 };
82
83 static int __init register_cpu_hwcaps_dumper(void)
84 {
85         atomic_notifier_chain_register(&panic_notifier_list,
86                                        &cpu_hwcaps_notifier);
87         return 0;
88 }
89 __initcall(register_cpu_hwcaps_dumper);
90
91 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
92 EXPORT_SYMBOL(cpu_hwcap_keys);
93
94 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
95         {                                               \
96                 .sign = SIGNED,                         \
97                 .visible = VISIBLE,                     \
98                 .strict = STRICT,                       \
99                 .type = TYPE,                           \
100                 .shift = SHIFT,                         \
101                 .width = WIDTH,                         \
102                 .safe_val = SAFE_VAL,                   \
103         }
104
105 /* Define a feature with unsigned values */
106 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
107         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
108
109 /* Define a feature with a signed value */
110 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
111         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
112
113 #define ARM64_FTR_END                                   \
114         {                                               \
115                 .width = 0,                             \
116         }
117
118 /* meta feature for alternatives */
119 static bool __maybe_unused
120 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
121
122 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
123
124 /*
125  * NOTE: Any changes to the visibility of features should be kept in
126  * sync with the documentation of the CPU feature register ABI.
127  */
128 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
129         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
136         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
137         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
138         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
139         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
140         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
141         ARM64_FTR_END,
142 };
143
144 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
145         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
146         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
147         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
148         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
149         ARM64_FTR_END,
150 };
151
152 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
153         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
154         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
155         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
156         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
157                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
158         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
159         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
160         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
161         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
162         /* Linux doesn't care about the EL3 */
163         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
164         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
165         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
166         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
167         ARM64_FTR_END,
168 };
169
170 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
171         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
172         ARM64_FTR_END,
173 };
174
175 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
176         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
177         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
178         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
179         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
180         /* Linux shouldn't care about secure memory */
181         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
182         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
183         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
184         /*
185          * Differing PARange is fine as long as all peripherals and memory are mapped
186          * within the minimum PARange of all CPUs
187          */
188         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
189         ARM64_FTR_END,
190 };
191
192 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
193         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
199         ARM64_FTR_END,
200 };
201
202 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
203         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
204         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
205         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
206         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
207         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
208         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
210         ARM64_FTR_END,
211 };
212
213 static const struct arm64_ftr_bits ftr_ctr[] = {
214         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
215         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
216         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
217         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
219         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
220         /*
221          * Linux can handle differing I-cache policies. Userspace JITs will
222          * make use of *minLine.
223          * If we have differing I-cache policies, report it as the weakest - VIPT.
224          */
225         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
226         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
227         ARM64_FTR_END,
228 };
229
230 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
231         .name           = "SYS_CTR_EL0",
232         .ftr_bits       = ftr_ctr
233 };
234
235 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
236         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
237         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
240         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
241         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
242         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
243         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
244         ARM64_FTR_END,
245 };
246
247 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
248         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
249         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
250         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
251         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
252         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
253         /*
254          * We can instantiate multiple PMU instances with different levels
255          * of support.
256          */
257         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
258         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
259         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
260         ARM64_FTR_END,
261 };
262
263 static const struct arm64_ftr_bits ftr_mvfr2[] = {
264         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
265         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
266         ARM64_FTR_END,
267 };
268
269 static const struct arm64_ftr_bits ftr_dczid[] = {
270         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
271         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
272         ARM64_FTR_END,
273 };
274
275
276 static const struct arm64_ftr_bits ftr_id_isar5[] = {
277         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
278         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
279         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
280         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
281         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
282         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
283         ARM64_FTR_END,
284 };
285
286 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
287         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
288         ARM64_FTR_END,
289 };
290
291 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
292         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
293         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
294         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
295         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
296         ARM64_FTR_END,
297 };
298
299 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
300         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
301         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
302         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
303         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
304         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
305         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
306         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
307         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
308         ARM64_FTR_END,
309 };
310
311 static const struct arm64_ftr_bits ftr_zcr[] = {
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
313                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
314         ARM64_FTR_END,
315 };
316
317 /*
318  * Common ftr bits for a 32bit register with all hidden, strict
319  * attributes, with 4bit feature fields and a default safe value of
320  * 0. Covers the following 32bit registers:
321  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
322  */
323 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
324         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
325         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
326         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
327         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
328         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
329         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
330         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
331         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
332         ARM64_FTR_END,
333 };
334
335 /* Table for a single 32bit feature value */
336 static const struct arm64_ftr_bits ftr_single32[] = {
337         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
338         ARM64_FTR_END,
339 };
340
341 static const struct arm64_ftr_bits ftr_raz[] = {
342         ARM64_FTR_END,
343 };
344
345 #define ARM64_FTR_REG(id, table) {              \
346         .sys_id = id,                           \
347         .reg =  &(struct arm64_ftr_reg){        \
348                 .name = #id,                    \
349                 .ftr_bits = &((table)[0]),      \
350         }}
351
352 static const struct __ftr_reg_entry {
353         u32                     sys_id;
354         struct arm64_ftr_reg    *reg;
355 } arm64_ftr_regs[] = {
356
357         /* Op1 = 0, CRn = 0, CRm = 1 */
358         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
359         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
360         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
361         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
362         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
363         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
364         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
365
366         /* Op1 = 0, CRn = 0, CRm = 2 */
367         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
368         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
369         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
370         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
371         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
372         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
373         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
374
375         /* Op1 = 0, CRn = 0, CRm = 3 */
376         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
377         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
378         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
379
380         /* Op1 = 0, CRn = 0, CRm = 4 */
381         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
382         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
383         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
384
385         /* Op1 = 0, CRn = 0, CRm = 5 */
386         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
387         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
388
389         /* Op1 = 0, CRn = 0, CRm = 6 */
390         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
391         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
392
393         /* Op1 = 0, CRn = 0, CRm = 7 */
394         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
395         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
396         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
397
398         /* Op1 = 0, CRn = 1, CRm = 2 */
399         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
400
401         /* Op1 = 3, CRn = 0, CRm = 0 */
402         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
403         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
404
405         /* Op1 = 3, CRn = 14, CRm = 0 */
406         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
407 };
408
409 static int search_cmp_ftr_reg(const void *id, const void *regp)
410 {
411         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
412 }
413
414 /*
415  * get_arm64_ftr_reg - Lookup a feature register entry using its
416  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
417  * ascending order of sys_id , we use binary search to find a matching
418  * entry.
419  *
420  * returns - Upon success,  matching ftr_reg entry for id.
421  *         - NULL on failure. It is upto the caller to decide
422  *           the impact of a failure.
423  */
424 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
425 {
426         const struct __ftr_reg_entry *ret;
427
428         ret = bsearch((const void *)(unsigned long)sys_id,
429                         arm64_ftr_regs,
430                         ARRAY_SIZE(arm64_ftr_regs),
431                         sizeof(arm64_ftr_regs[0]),
432                         search_cmp_ftr_reg);
433         if (ret)
434                 return ret->reg;
435         return NULL;
436 }
437
438 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
439                                s64 ftr_val)
440 {
441         u64 mask = arm64_ftr_mask(ftrp);
442
443         reg &= ~mask;
444         reg |= (ftr_val << ftrp->shift) & mask;
445         return reg;
446 }
447
448 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
449                                 s64 cur)
450 {
451         s64 ret = 0;
452
453         switch (ftrp->type) {
454         case FTR_EXACT:
455                 ret = ftrp->safe_val;
456                 break;
457         case FTR_LOWER_SAFE:
458                 ret = new < cur ? new : cur;
459                 break;
460         case FTR_HIGHER_SAFE:
461                 ret = new > cur ? new : cur;
462                 break;
463         default:
464                 BUG();
465         }
466
467         return ret;
468 }
469
470 static void __init sort_ftr_regs(void)
471 {
472         int i;
473
474         /* Check that the array is sorted so that we can do the binary search */
475         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
476                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
477 }
478
479 /*
480  * Initialise the CPU feature register from Boot CPU values.
481  * Also initiliases the strict_mask for the register.
482  * Any bits that are not covered by an arm64_ftr_bits entry are considered
483  * RES0 for the system-wide value, and must strictly match.
484  */
485 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
486 {
487         u64 val = 0;
488         u64 strict_mask = ~0x0ULL;
489         u64 user_mask = 0;
490         u64 valid_mask = 0;
491
492         const struct arm64_ftr_bits *ftrp;
493         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
494
495         BUG_ON(!reg);
496
497         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
498                 u64 ftr_mask = arm64_ftr_mask(ftrp);
499                 s64 ftr_new = arm64_ftr_value(ftrp, new);
500
501                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
502
503                 valid_mask |= ftr_mask;
504                 if (!ftrp->strict)
505                         strict_mask &= ~ftr_mask;
506                 if (ftrp->visible)
507                         user_mask |= ftr_mask;
508                 else
509                         reg->user_val = arm64_ftr_set_value(ftrp,
510                                                             reg->user_val,
511                                                             ftrp->safe_val);
512         }
513
514         val &= valid_mask;
515
516         reg->sys_val = val;
517         reg->strict_mask = strict_mask;
518         reg->user_mask = user_mask;
519 }
520
521 extern const struct arm64_cpu_capabilities arm64_errata[];
522 static const struct arm64_cpu_capabilities arm64_features[];
523
524 static void __init
525 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
526 {
527         for (; caps->matches; caps++) {
528                 if (WARN(caps->capability >= ARM64_NCAPS,
529                         "Invalid capability %d\n", caps->capability))
530                         continue;
531                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
532                         "Duplicate entry for capability %d\n",
533                         caps->capability))
534                         continue;
535                 cpu_hwcaps_ptrs[caps->capability] = caps;
536         }
537 }
538
539 static void __init init_cpu_hwcaps_indirect_list(void)
540 {
541         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
542         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
543 }
544
545 static void __init setup_boot_cpu_capabilities(void);
546
547 void __init init_cpu_features(struct cpuinfo_arm64 *info)
548 {
549         /* Before we start using the tables, make sure it is sorted */
550         sort_ftr_regs();
551
552         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
553         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
554         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
555         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
556         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
557         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
558         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
559         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
560         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
561         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
562         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
563         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
564         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
565
566         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
567                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
568                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
569                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
570                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
571                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
572                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
573                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
574                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
575                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
576                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
577                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
578                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
579                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
580                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
581                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
582                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
583         }
584
585         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
586                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
587                 sve_init_vq_map();
588         }
589
590         /*
591          * Initialize the indirect array of CPU hwcaps capabilities pointers
592          * before we handle the boot CPU below.
593          */
594         init_cpu_hwcaps_indirect_list();
595
596         /*
597          * Detect and enable early CPU capabilities based on the boot CPU,
598          * after we have initialised the CPU feature infrastructure.
599          */
600         setup_boot_cpu_capabilities();
601 }
602
603 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
604 {
605         const struct arm64_ftr_bits *ftrp;
606
607         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
608                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
609                 s64 ftr_new = arm64_ftr_value(ftrp, new);
610
611                 if (ftr_cur == ftr_new)
612                         continue;
613                 /* Find a safe value */
614                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
615                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
616         }
617
618 }
619
620 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
621 {
622         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
623
624         BUG_ON(!regp);
625         update_cpu_ftr_reg(regp, val);
626         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
627                 return 0;
628         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
629                         regp->name, boot, cpu, val);
630         return 1;
631 }
632
633 /*
634  * Update system wide CPU feature registers with the values from a
635  * non-boot CPU. Also performs SANITY checks to make sure that there
636  * aren't any insane variations from that of the boot CPU.
637  */
638 void update_cpu_features(int cpu,
639                          struct cpuinfo_arm64 *info,
640                          struct cpuinfo_arm64 *boot)
641 {
642         int taint = 0;
643
644         /*
645          * The kernel can handle differing I-cache policies, but otherwise
646          * caches should look identical. Userspace JITs will make use of
647          * *minLine.
648          */
649         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
650                                       info->reg_ctr, boot->reg_ctr);
651
652         /*
653          * Userspace may perform DC ZVA instructions. Mismatched block sizes
654          * could result in too much or too little memory being zeroed if a
655          * process is preempted and migrated between CPUs.
656          */
657         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
658                                       info->reg_dczid, boot->reg_dczid);
659
660         /* If different, timekeeping will be broken (especially with KVM) */
661         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
662                                       info->reg_cntfrq, boot->reg_cntfrq);
663
664         /*
665          * The kernel uses self-hosted debug features and expects CPUs to
666          * support identical debug features. We presently need CTX_CMPs, WRPs,
667          * and BRPs to be identical.
668          * ID_AA64DFR1 is currently RES0.
669          */
670         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
671                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
672         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
673                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
674         /*
675          * Even in big.LITTLE, processors should be identical instruction-set
676          * wise.
677          */
678         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
679                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
680         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
681                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
682
683         /*
684          * Differing PARange support is fine as long as all peripherals and
685          * memory are mapped within the minimum PARange of all CPUs.
686          * Linux should not care about secure memory.
687          */
688         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
689                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
690         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
691                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
692         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
693                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
694
695         /*
696          * EL3 is not our concern.
697          */
698         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
699                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
700         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
701                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
702
703         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
704                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
705
706         /*
707          * If we have AArch32, we care about 32-bit features for compat.
708          * If the system doesn't support AArch32, don't update them.
709          */
710         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
711                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
712
713                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
714                                         info->reg_id_dfr0, boot->reg_id_dfr0);
715                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
716                                         info->reg_id_isar0, boot->reg_id_isar0);
717                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
718                                         info->reg_id_isar1, boot->reg_id_isar1);
719                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
720                                         info->reg_id_isar2, boot->reg_id_isar2);
721                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
722                                         info->reg_id_isar3, boot->reg_id_isar3);
723                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
724                                         info->reg_id_isar4, boot->reg_id_isar4);
725                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
726                                         info->reg_id_isar5, boot->reg_id_isar5);
727
728                 /*
729                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
730                  * ACTLR formats could differ across CPUs and therefore would have to
731                  * be trapped for virtualization anyway.
732                  */
733                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
734                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
735                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
736                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
737                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
738                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
739                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
740                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
741                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
742                                         info->reg_id_pfr0, boot->reg_id_pfr0);
743                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
744                                         info->reg_id_pfr1, boot->reg_id_pfr1);
745                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
746                                         info->reg_mvfr0, boot->reg_mvfr0);
747                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
748                                         info->reg_mvfr1, boot->reg_mvfr1);
749                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
750                                         info->reg_mvfr2, boot->reg_mvfr2);
751         }
752
753         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
754                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
755                                         info->reg_zcr, boot->reg_zcr);
756
757                 /* Probe vector lengths, unless we already gave up on SVE */
758                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
759                     !sys_caps_initialised)
760                         sve_update_vq_map();
761         }
762
763         /*
764          * Mismatched CPU features are a recipe for disaster. Don't even
765          * pretend to support them.
766          */
767         if (taint) {
768                 pr_warn_once("Unsupported CPU feature variation detected.\n");
769                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
770         }
771 }
772
773 u64 read_sanitised_ftr_reg(u32 id)
774 {
775         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
776
777         /* We shouldn't get a request for an unsupported register */
778         BUG_ON(!regp);
779         return regp->sys_val;
780 }
781
782 #define read_sysreg_case(r)     \
783         case r:         return read_sysreg_s(r)
784
785 /*
786  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
787  * Read the system register on the current CPU
788  */
789 static u64 __read_sysreg_by_encoding(u32 sys_id)
790 {
791         switch (sys_id) {
792         read_sysreg_case(SYS_ID_PFR0_EL1);
793         read_sysreg_case(SYS_ID_PFR1_EL1);
794         read_sysreg_case(SYS_ID_DFR0_EL1);
795         read_sysreg_case(SYS_ID_MMFR0_EL1);
796         read_sysreg_case(SYS_ID_MMFR1_EL1);
797         read_sysreg_case(SYS_ID_MMFR2_EL1);
798         read_sysreg_case(SYS_ID_MMFR3_EL1);
799         read_sysreg_case(SYS_ID_ISAR0_EL1);
800         read_sysreg_case(SYS_ID_ISAR1_EL1);
801         read_sysreg_case(SYS_ID_ISAR2_EL1);
802         read_sysreg_case(SYS_ID_ISAR3_EL1);
803         read_sysreg_case(SYS_ID_ISAR4_EL1);
804         read_sysreg_case(SYS_ID_ISAR5_EL1);
805         read_sysreg_case(SYS_MVFR0_EL1);
806         read_sysreg_case(SYS_MVFR1_EL1);
807         read_sysreg_case(SYS_MVFR2_EL1);
808
809         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
810         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
811         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
812         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
813         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
814         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
815         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
816         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
817         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
818
819         read_sysreg_case(SYS_CNTFRQ_EL0);
820         read_sysreg_case(SYS_CTR_EL0);
821         read_sysreg_case(SYS_DCZID_EL0);
822
823         default:
824                 BUG();
825                 return 0;
826         }
827 }
828
829 #include <linux/irqchip/arm-gic-v3.h>
830
831 static bool
832 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
833 {
834         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
835
836         return val >= entry->min_field_value;
837 }
838
839 static bool
840 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
841 {
842         u64 val;
843
844         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
845         if (scope == SCOPE_SYSTEM)
846                 val = read_sanitised_ftr_reg(entry->sys_reg);
847         else
848                 val = __read_sysreg_by_encoding(entry->sys_reg);
849
850         return feature_matches(val, entry);
851 }
852
853 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
854 {
855         bool has_sre;
856
857         if (!has_cpuid_feature(entry, scope))
858                 return false;
859
860         has_sre = gic_enable_sre();
861         if (!has_sre)
862                 pr_warn_once("%s present but disabled by higher exception level\n",
863                              entry->desc);
864
865         return has_sre;
866 }
867
868 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
869 {
870         u32 midr = read_cpuid_id();
871
872         /* Cavium ThunderX pass 1.x and 2.x */
873         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
874                 MIDR_CPU_VAR_REV(0, 0),
875                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
876 }
877
878 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
879 {
880         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
881
882         return cpuid_feature_extract_signed_field(pfr0,
883                                         ID_AA64PFR0_FP_SHIFT) < 0;
884 }
885
886 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
887                           int scope)
888 {
889         u64 ctr;
890
891         if (scope == SCOPE_SYSTEM)
892                 ctr = arm64_ftr_reg_ctrel0.sys_val;
893         else
894                 ctr = read_cpuid_effective_cachetype();
895
896         return ctr & BIT(CTR_IDC_SHIFT);
897 }
898
899 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
900 {
901         /*
902          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
903          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
904          * to the CTR_EL0 on this CPU and emulate it with the real/safe
905          * value.
906          */
907         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
908                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
909 }
910
911 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
912                           int scope)
913 {
914         u64 ctr;
915
916         if (scope == SCOPE_SYSTEM)
917                 ctr = arm64_ftr_reg_ctrel0.sys_val;
918         else
919                 ctr = read_cpuid_cachetype();
920
921         return ctr & BIT(CTR_DIC_SHIFT);
922 }
923
924 static bool __maybe_unused
925 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
926 {
927         /*
928          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
929          * may share TLB entries with a CPU stuck in the crashed
930          * kernel.
931          */
932          if (is_kdump_kernel())
933                 return false;
934
935         return has_cpuid_feature(entry, scope);
936 }
937
938 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
939 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
940
941 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
942                                 int scope)
943 {
944         /* List of CPUs that are not vulnerable and don't need KPTI */
945         static const struct midr_range kpti_safe_list[] = {
946                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
947                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
948                 { /* sentinel */ }
949         };
950         char const *str = "command line option";
951
952         /*
953          * For reasons that aren't entirely clear, enabling KPTI on Cavium
954          * ThunderX leads to apparent I-cache corruption of kernel text, which
955          * ends as well as you might imagine. Don't even try.
956          */
957         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
958                 str = "ARM64_WORKAROUND_CAVIUM_27456";
959                 __kpti_forced = -1;
960         }
961
962         /* Forced? */
963         if (__kpti_forced) {
964                 pr_info_once("kernel page table isolation forced %s by %s\n",
965                              __kpti_forced > 0 ? "ON" : "OFF", str);
966                 return __kpti_forced > 0;
967         }
968
969         /* Useful for KASLR robustness */
970         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
971                 return true;
972
973         /* Don't force KPTI for CPUs that are not vulnerable */
974         if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
975                 return false;
976
977         /* Defer to CPU feature registers */
978         return !has_cpuid_feature(entry, scope);
979 }
980
981 static void
982 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
983 {
984         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
985         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
986         kpti_remap_fn *remap_fn;
987
988         static bool kpti_applied = false;
989         int cpu = smp_processor_id();
990
991         if (kpti_applied)
992                 return;
993
994         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
995
996         cpu_install_idmap();
997         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
998         cpu_uninstall_idmap();
999
1000         if (!cpu)
1001                 kpti_applied = true;
1002
1003         return;
1004 }
1005
1006 static int __init parse_kpti(char *str)
1007 {
1008         bool enabled;
1009         int ret = strtobool(str, &enabled);
1010
1011         if (ret)
1012                 return ret;
1013
1014         __kpti_forced = enabled ? 1 : -1;
1015         return 0;
1016 }
1017 early_param("kpti", parse_kpti);
1018 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1019
1020 #ifdef CONFIG_ARM64_HW_AFDBM
1021 static inline void __cpu_enable_hw_dbm(void)
1022 {
1023         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1024
1025         write_sysreg(tcr, tcr_el1);
1026         isb();
1027 }
1028
1029 static bool cpu_has_broken_dbm(void)
1030 {
1031         /* List of CPUs which have broken DBM support. */
1032         static const struct midr_range cpus[] = {
1033 #ifdef CONFIG_ARM64_ERRATUM_1024718
1034                 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1035 #endif
1036                 {},
1037         };
1038
1039         return is_midr_in_range_list(read_cpuid_id(), cpus);
1040 }
1041
1042 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1043 {
1044         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1045                !cpu_has_broken_dbm();
1046 }
1047
1048 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1049 {
1050         if (cpu_can_use_dbm(cap))
1051                 __cpu_enable_hw_dbm();
1052 }
1053
1054 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1055                        int __unused)
1056 {
1057         static bool detected = false;
1058         /*
1059          * DBM is a non-conflicting feature. i.e, the kernel can safely
1060          * run a mix of CPUs with and without the feature. So, we
1061          * unconditionally enable the capability to allow any late CPU
1062          * to use the feature. We only enable the control bits on the
1063          * CPU, if it actually supports.
1064          *
1065          * We have to make sure we print the "feature" detection only
1066          * when at least one CPU actually uses it. So check if this CPU
1067          * can actually use it and print the message exactly once.
1068          *
1069          * This is safe as all CPUs (including secondary CPUs - due to the
1070          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1071          * goes through the "matches" check exactly once. Also if a CPU
1072          * matches the criteria, it is guaranteed that the CPU will turn
1073          * the DBM on, as the capability is unconditionally enabled.
1074          */
1075         if (!detected && cpu_can_use_dbm(cap)) {
1076                 detected = true;
1077                 pr_info("detected: Hardware dirty bit management\n");
1078         }
1079
1080         return true;
1081 }
1082
1083 #endif
1084
1085 #ifdef CONFIG_ARM64_VHE
1086 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1087 {
1088         return is_kernel_in_hyp_mode();
1089 }
1090
1091 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1092 {
1093         /*
1094          * Copy register values that aren't redirected by hardware.
1095          *
1096          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1097          * this value to tpidr_el2 before we patch the code. Once we've done
1098          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1099          * do anything here.
1100          */
1101         if (!alternatives_applied)
1102                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1103 }
1104 #endif
1105
1106 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1107 {
1108         u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1109
1110         /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1111         WARN_ON(val & (7 << 27 | 7 << 21));
1112 }
1113
1114 #ifdef CONFIG_ARM64_SSBD
1115 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1116 {
1117         if (user_mode(regs))
1118                 return 1;
1119
1120         if (instr & BIT(PSTATE_Imm_shift))
1121                 regs->pstate |= PSR_SSBS_BIT;
1122         else
1123                 regs->pstate &= ~PSR_SSBS_BIT;
1124
1125         arm64_skip_faulting_instruction(regs, 4);
1126         return 0;
1127 }
1128
1129 static struct undef_hook ssbs_emulation_hook = {
1130         .instr_mask     = ~(1U << PSTATE_Imm_shift),
1131         .instr_val      = 0xd500401f | PSTATE_SSBS,
1132         .fn             = ssbs_emulation_handler,
1133 };
1134
1135 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1136 {
1137         static bool undef_hook_registered = false;
1138         static DEFINE_SPINLOCK(hook_lock);
1139
1140         spin_lock(&hook_lock);
1141         if (!undef_hook_registered) {
1142                 register_undef_hook(&ssbs_emulation_hook);
1143                 undef_hook_registered = true;
1144         }
1145         spin_unlock(&hook_lock);
1146
1147         if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1148                 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1149                 arm64_set_ssbd_mitigation(false);
1150         } else {
1151                 arm64_set_ssbd_mitigation(true);
1152         }
1153 }
1154 #endif /* CONFIG_ARM64_SSBD */
1155
1156 #ifdef CONFIG_ARM64_PAN
1157 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1158 {
1159         /*
1160          * We modify PSTATE. This won't work from irq context as the PSTATE
1161          * is discarded once we return from the exception.
1162          */
1163         WARN_ON_ONCE(in_interrupt());
1164
1165         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1166         asm(SET_PSTATE_PAN(1));
1167 }
1168 #endif /* CONFIG_ARM64_PAN */
1169
1170 #ifdef CONFIG_ARM64_RAS_EXTN
1171 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1172 {
1173         /* Firmware may have left a deferred SError in this register. */
1174         write_sysreg_s(0, SYS_DISR_EL1);
1175 }
1176 #endif /* CONFIG_ARM64_RAS_EXTN */
1177
1178 static const struct arm64_cpu_capabilities arm64_features[] = {
1179         {
1180                 .desc = "GIC system register CPU interface",
1181                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1182                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1183                 .matches = has_useable_gicv3_cpuif,
1184                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1185                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1186                 .sign = FTR_UNSIGNED,
1187                 .min_field_value = 1,
1188         },
1189 #ifdef CONFIG_ARM64_PAN
1190         {
1191                 .desc = "Privileged Access Never",
1192                 .capability = ARM64_HAS_PAN,
1193                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1194                 .matches = has_cpuid_feature,
1195                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1196                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1197                 .sign = FTR_UNSIGNED,
1198                 .min_field_value = 1,
1199                 .cpu_enable = cpu_enable_pan,
1200         },
1201 #endif /* CONFIG_ARM64_PAN */
1202 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1203         {
1204                 .desc = "LSE atomic instructions",
1205                 .capability = ARM64_HAS_LSE_ATOMICS,
1206                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1207                 .matches = has_cpuid_feature,
1208                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1209                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1210                 .sign = FTR_UNSIGNED,
1211                 .min_field_value = 2,
1212         },
1213 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1214         {
1215                 .desc = "Software prefetching using PRFM",
1216                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1217                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1218                 .matches = has_no_hw_prefetch,
1219         },
1220 #ifdef CONFIG_ARM64_UAO
1221         {
1222                 .desc = "User Access Override",
1223                 .capability = ARM64_HAS_UAO,
1224                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1225                 .matches = has_cpuid_feature,
1226                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1227                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1228                 .min_field_value = 1,
1229                 /*
1230                  * We rely on stop_machine() calling uao_thread_switch() to set
1231                  * UAO immediately after patching.
1232                  */
1233         },
1234 #endif /* CONFIG_ARM64_UAO */
1235 #ifdef CONFIG_ARM64_PAN
1236         {
1237                 .capability = ARM64_ALT_PAN_NOT_UAO,
1238                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1239                 .matches = cpufeature_pan_not_uao,
1240         },
1241 #endif /* CONFIG_ARM64_PAN */
1242 #ifdef CONFIG_ARM64_VHE
1243         {
1244                 .desc = "Virtualization Host Extensions",
1245                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1246                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1247                 .matches = runs_at_el2,
1248                 .cpu_enable = cpu_copy_el2regs,
1249         },
1250 #endif  /* CONFIG_ARM64_VHE */
1251         {
1252                 .desc = "32-bit EL0 Support",
1253                 .capability = ARM64_HAS_32BIT_EL0,
1254                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1255                 .matches = has_cpuid_feature,
1256                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1257                 .sign = FTR_UNSIGNED,
1258                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1259                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1260         },
1261 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1262         {
1263                 .desc = "Kernel page table isolation (KPTI)",
1264                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1265                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1266                 /*
1267                  * The ID feature fields below are used to indicate that
1268                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1269                  * more details.
1270                  */
1271                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1272                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1273                 .min_field_value = 1,
1274                 .matches = unmap_kernel_at_el0,
1275                 .cpu_enable = kpti_install_ng_mappings,
1276         },
1277 #endif
1278         {
1279                 /* FP/SIMD is not implemented */
1280                 .capability = ARM64_HAS_NO_FPSIMD,
1281                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1282                 .min_field_value = 0,
1283                 .matches = has_no_fpsimd,
1284         },
1285 #ifdef CONFIG_ARM64_PMEM
1286         {
1287                 .desc = "Data cache clean to Point of Persistence",
1288                 .capability = ARM64_HAS_DCPOP,
1289                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1290                 .matches = has_cpuid_feature,
1291                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1292                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1293                 .min_field_value = 1,
1294         },
1295 #endif
1296 #ifdef CONFIG_ARM64_SVE
1297         {
1298                 .desc = "Scalable Vector Extension",
1299                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1300                 .capability = ARM64_SVE,
1301                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1302                 .sign = FTR_UNSIGNED,
1303                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1304                 .min_field_value = ID_AA64PFR0_SVE,
1305                 .matches = has_cpuid_feature,
1306                 .cpu_enable = sve_kernel_enable,
1307         },
1308 #endif /* CONFIG_ARM64_SVE */
1309 #ifdef CONFIG_ARM64_RAS_EXTN
1310         {
1311                 .desc = "RAS Extension Support",
1312                 .capability = ARM64_HAS_RAS_EXTN,
1313                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1314                 .matches = has_cpuid_feature,
1315                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1316                 .sign = FTR_UNSIGNED,
1317                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1318                 .min_field_value = ID_AA64PFR0_RAS_V1,
1319                 .cpu_enable = cpu_clear_disr,
1320         },
1321 #endif /* CONFIG_ARM64_RAS_EXTN */
1322         {
1323                 .desc = "Data cache clean to the PoU not required for I/D coherence",
1324                 .capability = ARM64_HAS_CACHE_IDC,
1325                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1326                 .matches = has_cache_idc,
1327                 .cpu_enable = cpu_emulate_effective_ctr,
1328         },
1329         {
1330                 .desc = "Instruction cache invalidation not required for I/D coherence",
1331                 .capability = ARM64_HAS_CACHE_DIC,
1332                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1333                 .matches = has_cache_dic,
1334         },
1335         {
1336                 .desc = "Stage-2 Force Write-Back",
1337                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1338                 .capability = ARM64_HAS_STAGE2_FWB,
1339                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1340                 .sign = FTR_UNSIGNED,
1341                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1342                 .min_field_value = 1,
1343                 .matches = has_cpuid_feature,
1344                 .cpu_enable = cpu_has_fwb,
1345         },
1346 #ifdef CONFIG_ARM64_HW_AFDBM
1347         {
1348                 /*
1349                  * Since we turn this on always, we don't want the user to
1350                  * think that the feature is available when it may not be.
1351                  * So hide the description.
1352                  *
1353                  * .desc = "Hardware pagetable Dirty Bit Management",
1354                  *
1355                  */
1356                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1357                 .capability = ARM64_HW_DBM,
1358                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1359                 .sign = FTR_UNSIGNED,
1360                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1361                 .min_field_value = 2,
1362                 .matches = has_hw_dbm,
1363                 .cpu_enable = cpu_enable_hw_dbm,
1364         },
1365 #endif
1366 #ifdef CONFIG_ARM64_SSBD
1367         {
1368                 .desc = "CRC32 instructions",
1369                 .capability = ARM64_HAS_CRC32,
1370                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1371                 .matches = has_cpuid_feature,
1372                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1373                 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1374                 .min_field_value = 1,
1375         },
1376         {
1377                 .desc = "Speculative Store Bypassing Safe (SSBS)",
1378                 .capability = ARM64_SSBS,
1379                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1380                 .matches = has_cpuid_feature,
1381                 .sys_reg = SYS_ID_AA64PFR1_EL1,
1382                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1383                 .sign = FTR_UNSIGNED,
1384                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1385                 .cpu_enable = cpu_enable_ssbs,
1386         },
1387 #endif
1388 #ifdef CONFIG_ARM64_CNP
1389         {
1390                 .desc = "Common not Private translations",
1391                 .capability = ARM64_HAS_CNP,
1392                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1393                 .matches = has_useable_cnp,
1394                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1395                 .sign = FTR_UNSIGNED,
1396                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
1397                 .min_field_value = 1,
1398                 .cpu_enable = cpu_enable_cnp,
1399         },
1400 #endif
1401         {},
1402 };
1403
1404 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)      \
1405         {                                                       \
1406                 .desc = #cap,                                   \
1407                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,            \
1408                 .matches = has_cpuid_feature,                   \
1409                 .sys_reg = reg,                                 \
1410                 .field_pos = field,                             \
1411                 .sign = s,                                      \
1412                 .min_field_value = min_value,                   \
1413                 .hwcap_type = cap_type,                         \
1414                 .hwcap = cap,                                   \
1415         }
1416
1417 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1418         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1419         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1420         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1421         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1422         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1423         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1424         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1425         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1426         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1427         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1428         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1429         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1430         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1431         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1432         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1433         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1434         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1435         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1436         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1437         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1438         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1439         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1440         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1441         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1442         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1443 #ifdef CONFIG_ARM64_SVE
1444         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1445 #endif
1446         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, HWCAP_SSBS),
1447         {},
1448 };
1449
1450 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1451 #ifdef CONFIG_COMPAT
1452         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1453         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1454         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1455         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1456         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1457 #endif
1458         {},
1459 };
1460
1461 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1462 {
1463         switch (cap->hwcap_type) {
1464         case CAP_HWCAP:
1465                 elf_hwcap |= cap->hwcap;
1466                 break;
1467 #ifdef CONFIG_COMPAT
1468         case CAP_COMPAT_HWCAP:
1469                 compat_elf_hwcap |= (u32)cap->hwcap;
1470                 break;
1471         case CAP_COMPAT_HWCAP2:
1472                 compat_elf_hwcap2 |= (u32)cap->hwcap;
1473                 break;
1474 #endif
1475         default:
1476                 WARN_ON(1);
1477                 break;
1478         }
1479 }
1480
1481 /* Check if we have a particular HWCAP enabled */
1482 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1483 {
1484         bool rc;
1485
1486         switch (cap->hwcap_type) {
1487         case CAP_HWCAP:
1488                 rc = (elf_hwcap & cap->hwcap) != 0;
1489                 break;
1490 #ifdef CONFIG_COMPAT
1491         case CAP_COMPAT_HWCAP:
1492                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1493                 break;
1494         case CAP_COMPAT_HWCAP2:
1495                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1496                 break;
1497 #endif
1498         default:
1499                 WARN_ON(1);
1500                 rc = false;
1501         }
1502
1503         return rc;
1504 }
1505
1506 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1507 {
1508         /* We support emulation of accesses to CPU ID feature registers */
1509         elf_hwcap |= HWCAP_CPUID;
1510         for (; hwcaps->matches; hwcaps++)
1511                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1512                         cap_set_elf_hwcap(hwcaps);
1513 }
1514
1515 static void update_cpu_capabilities(u16 scope_mask)
1516 {
1517         int i;
1518         const struct arm64_cpu_capabilities *caps;
1519
1520         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1521         for (i = 0; i < ARM64_NCAPS; i++) {
1522                 caps = cpu_hwcaps_ptrs[i];
1523                 if (!caps || !(caps->type & scope_mask) ||
1524                     cpus_have_cap(caps->capability) ||
1525                     !caps->matches(caps, cpucap_default_scope(caps)))
1526                         continue;
1527
1528                 if (caps->desc)
1529                         pr_info("detected: %s\n", caps->desc);
1530                 cpus_set_cap(caps->capability);
1531         }
1532 }
1533
1534 static int __enable_cpu_capability(void *arg)
1535 {
1536         const struct arm64_cpu_capabilities *cap = arg;
1537
1538         cap->cpu_enable(cap);
1539         return 0;
1540 }
1541
1542 /*
1543  * Run through the enabled capabilities and enable() it on all active
1544  * CPUs
1545  */
1546 static void __init
1547 __enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1548                           u16 scope_mask)
1549 {
1550         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1551         for (; caps->matches; caps++) {
1552                 unsigned int num = caps->capability;
1553
1554                 if (!(caps->type & scope_mask) || !cpus_have_cap(num))
1555                         continue;
1556
1557                 /* Ensure cpus_have_const_cap(num) works */
1558                 static_branch_enable(&cpu_hwcap_keys[num]);
1559
1560                 if (caps->cpu_enable) {
1561                         /*
1562                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
1563                          * before any secondary CPU boots. Thus, each secondary
1564                          * will enable the capability as appropriate via
1565                          * check_local_cpu_capabilities(). The only exception is
1566                          * the boot CPU, for which the capability must be
1567                          * enabled here. This approach avoids costly
1568                          * stop_machine() calls for this case.
1569                          *
1570                          * Otherwise, use stop_machine() as it schedules the
1571                          * work allowing us to modify PSTATE, instead of
1572                          * on_each_cpu() which uses an IPI, giving us a PSTATE
1573                          * that disappears when we return.
1574                          */
1575                         if (scope_mask & SCOPE_BOOT_CPU)
1576                                 caps->cpu_enable(caps);
1577                         else
1578                                 stop_machine(__enable_cpu_capability,
1579                                              (void *)caps, cpu_online_mask);
1580                 }
1581         }
1582 }
1583
1584 static void __init enable_cpu_capabilities(u16 scope_mask)
1585 {
1586         __enable_cpu_capabilities(arm64_errata, scope_mask);
1587         __enable_cpu_capabilities(arm64_features, scope_mask);
1588 }
1589
1590 /*
1591  * Run through the list of capabilities to check for conflicts.
1592  * If the system has already detected a capability, take necessary
1593  * action on this CPU.
1594  *
1595  * Returns "false" on conflicts.
1596  */
1597 static bool verify_local_cpu_caps(u16 scope_mask)
1598 {
1599         int i;
1600         bool cpu_has_cap, system_has_cap;
1601         const struct arm64_cpu_capabilities *caps;
1602
1603         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1604
1605         for (i = 0; i < ARM64_NCAPS; i++) {
1606                 caps = cpu_hwcaps_ptrs[i];
1607                 if (!caps || !(caps->type & scope_mask))
1608                         continue;
1609
1610                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1611                 system_has_cap = cpus_have_cap(caps->capability);
1612
1613                 if (system_has_cap) {
1614                         /*
1615                          * Check if the new CPU misses an advertised feature,
1616                          * which is not safe to miss.
1617                          */
1618                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1619                                 break;
1620                         /*
1621                          * We have to issue cpu_enable() irrespective of
1622                          * whether the CPU has it or not, as it is enabeld
1623                          * system wide. It is upto the call back to take
1624                          * appropriate action on this CPU.
1625                          */
1626                         if (caps->cpu_enable)
1627                                 caps->cpu_enable(caps);
1628                 } else {
1629                         /*
1630                          * Check if the CPU has this capability if it isn't
1631                          * safe to have when the system doesn't.
1632                          */
1633                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1634                                 break;
1635                 }
1636         }
1637
1638         if (i < ARM64_NCAPS) {
1639                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1640                         smp_processor_id(), caps->capability,
1641                         caps->desc, system_has_cap, cpu_has_cap);
1642                 return false;
1643         }
1644
1645         return true;
1646 }
1647
1648 /*
1649  * Check for CPU features that are used in early boot
1650  * based on the Boot CPU value.
1651  */
1652 static void check_early_cpu_features(void)
1653 {
1654         verify_cpu_asid_bits();
1655         /*
1656          * Early features are used by the kernel already. If there
1657          * is a conflict, we cannot proceed further.
1658          */
1659         if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1660                 cpu_panic_kernel();
1661 }
1662
1663 static void
1664 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1665 {
1666
1667         for (; caps->matches; caps++)
1668                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1669                         pr_crit("CPU%d: missing HWCAP: %s\n",
1670                                         smp_processor_id(), caps->desc);
1671                         cpu_die_early();
1672                 }
1673 }
1674
1675 static void verify_sve_features(void)
1676 {
1677         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1678         u64 zcr = read_zcr_features();
1679
1680         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1681         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1682
1683         if (len < safe_len || sve_verify_vq_map()) {
1684                 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1685                         smp_processor_id());
1686                 cpu_die_early();
1687         }
1688
1689         /* Add checks on other ZCR bits here if necessary */
1690 }
1691
1692
1693 /*
1694  * Run through the enabled system capabilities and enable() it on this CPU.
1695  * The capabilities were decided based on the available CPUs at the boot time.
1696  * Any new CPU should match the system wide status of the capability. If the
1697  * new CPU doesn't have a capability which the system now has enabled, we
1698  * cannot do anything to fix it up and could cause unexpected failures. So
1699  * we park the CPU.
1700  */
1701 static void verify_local_cpu_capabilities(void)
1702 {
1703         /*
1704          * The capabilities with SCOPE_BOOT_CPU are checked from
1705          * check_early_cpu_features(), as they need to be verified
1706          * on all secondary CPUs.
1707          */
1708         if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1709                 cpu_die_early();
1710
1711         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1712
1713         if (system_supports_32bit_el0())
1714                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1715
1716         if (system_supports_sve())
1717                 verify_sve_features();
1718 }
1719
1720 void check_local_cpu_capabilities(void)
1721 {
1722         /*
1723          * All secondary CPUs should conform to the early CPU features
1724          * in use by the kernel based on boot CPU.
1725          */
1726         check_early_cpu_features();
1727
1728         /*
1729          * If we haven't finalised the system capabilities, this CPU gets
1730          * a chance to update the errata work arounds and local features.
1731          * Otherwise, this CPU should verify that it has all the system
1732          * advertised capabilities.
1733          */
1734         if (!sys_caps_initialised)
1735                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
1736         else
1737                 verify_local_cpu_capabilities();
1738 }
1739
1740 static void __init setup_boot_cpu_capabilities(void)
1741 {
1742         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1743         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1744         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1745         enable_cpu_capabilities(SCOPE_BOOT_CPU);
1746 }
1747
1748 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1749 EXPORT_SYMBOL(arm64_const_caps_ready);
1750
1751 static void __init mark_const_caps_ready(void)
1752 {
1753         static_branch_enable(&arm64_const_caps_ready);
1754 }
1755
1756 bool this_cpu_has_cap(unsigned int n)
1757 {
1758         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
1759                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
1760
1761                 if (cap)
1762                         return cap->matches(cap, SCOPE_LOCAL_CPU);
1763         }
1764
1765         return false;
1766 }
1767
1768 static void __init setup_system_capabilities(void)
1769 {
1770         /*
1771          * We have finalised the system-wide safe feature
1772          * registers, finalise the capabilities that depend
1773          * on it. Also enable all the available capabilities,
1774          * that are not enabled already.
1775          */
1776         update_cpu_capabilities(SCOPE_SYSTEM);
1777         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1778 }
1779
1780 void __init setup_cpu_features(void)
1781 {
1782         u32 cwg;
1783
1784         setup_system_capabilities();
1785         mark_const_caps_ready();
1786         setup_elf_hwcaps(arm64_elf_hwcaps);
1787
1788         if (system_supports_32bit_el0())
1789                 setup_elf_hwcaps(compat_elf_hwcaps);
1790
1791         if (system_uses_ttbr0_pan())
1792                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1793
1794         sve_setup();
1795         minsigstksz_setup();
1796
1797         /* Advertise that we have computed the system capabilities */
1798         set_sys_caps_initialised();
1799
1800         /*
1801          * Check for sane CTR_EL0.CWG value.
1802          */
1803         cwg = cache_type_cwg();
1804         if (!cwg)
1805                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
1806                         ARCH_DMA_MINALIGN);
1807 }
1808
1809 static bool __maybe_unused
1810 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1811 {
1812         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1813 }
1814
1815 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
1816 {
1817         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
1818 }
1819
1820 /*
1821  * We emulate only the following system register space.
1822  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1823  * See Table C5-6 System instruction encodings for System register accesses,
1824  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1825  */
1826 static inline bool __attribute_const__ is_emulated(u32 id)
1827 {
1828         return (sys_reg_Op0(id) == 0x3 &&
1829                 sys_reg_CRn(id) == 0x0 &&
1830                 sys_reg_Op1(id) == 0x0 &&
1831                 (sys_reg_CRm(id) == 0 ||
1832                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1833 }
1834
1835 /*
1836  * With CRm == 0, reg should be one of :
1837  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1838  */
1839 static inline int emulate_id_reg(u32 id, u64 *valp)
1840 {
1841         switch (id) {
1842         case SYS_MIDR_EL1:
1843                 *valp = read_cpuid_id();
1844                 break;
1845         case SYS_MPIDR_EL1:
1846                 *valp = SYS_MPIDR_SAFE_VAL;
1847                 break;
1848         case SYS_REVIDR_EL1:
1849                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1850                 *valp = 0;
1851                 break;
1852         default:
1853                 return -EINVAL;
1854         }
1855
1856         return 0;
1857 }
1858
1859 static int emulate_sys_reg(u32 id, u64 *valp)
1860 {
1861         struct arm64_ftr_reg *regp;
1862
1863         if (!is_emulated(id))
1864                 return -EINVAL;
1865
1866         if (sys_reg_CRm(id) == 0)
1867                 return emulate_id_reg(id, valp);
1868
1869         regp = get_arm64_ftr_reg(id);
1870         if (regp)
1871                 *valp = arm64_ftr_reg_user_value(regp);
1872         else
1873                 /*
1874                  * The untracked registers are either IMPLEMENTATION DEFINED
1875                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
1876                  */
1877                 *valp = 0;
1878         return 0;
1879 }
1880
1881 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
1882 {
1883         int rc;
1884         u64 val;
1885
1886         rc = emulate_sys_reg(sys_reg, &val);
1887         if (!rc) {
1888                 pt_regs_write_reg(regs, rt, val);
1889                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1890         }
1891         return rc;
1892 }
1893
1894 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1895 {
1896         u32 sys_reg, rt;
1897
1898         /*
1899          * sys_reg values are defined as used in mrs/msr instruction.
1900          * shift the imm value to get the encoding.
1901          */
1902         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1903         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1904         return do_emulate_mrs(regs, sys_reg, rt);
1905 }
1906
1907 static struct undef_hook mrs_hook = {
1908         .instr_mask = 0xfff00000,
1909         .instr_val  = 0xd5300000,
1910         .pstate_mask = PSR_AA32_MODE_MASK,
1911         .pstate_val = PSR_MODE_EL0t,
1912         .fn = emulate_mrs,
1913 };
1914
1915 static int __init enable_mrs_emulation(void)
1916 {
1917         register_undef_hook(&mrs_hook);
1918         return 0;
1919 }
1920
1921 core_initcall(enable_mrs_emulation);