powerpc/mm: Pass node id into create_section_mapping
[linux-2.6-microblaze.git] / arch / arm64 / include / asm / kvm_mmu.h
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24
25 /*
26  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27  * "negative" addresses. This makes it impossible to directly share
28  * mappings with the kernel.
29  *
30  * Instead, give the HYP mode its own VA region at a fixed offset from
31  * the kernel by just masking the top bits (which are all ones for a
32  * kernel address). We need to find out how many bits to mask.
33  *
34  * We want to build a set of page tables that cover both parts of the
35  * idmap (the trampoline page used to initialize EL2), and our normal
36  * runtime VA space, at the same time.
37  *
38  * Given that the kernel uses VA_BITS for its entire address space,
39  * and that half of that space (VA_BITS - 1) is used for the linear
40  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41  *
42  * The main question is "Within the VA_BITS space, does EL2 use the
43  * top or the bottom half of that space to shadow the kernel's linear
44  * mapping?". As we need to idmap the trampoline page, this is
45  * determined by the range in which this page lives.
46  *
47  * If the page is in the bottom half, we have to use the top half. If
48  * the page is in the top half, we have to use the bottom half:
49  *
50  * T = __pa_symbol(__hyp_idmap_text_start)
51  * if (T & BIT(VA_BITS - 1))
52  *      HYP_VA_MIN = 0  //idmap in upper half
53  * else
54  *      HYP_VA_MIN = 1 << (VA_BITS - 1)
55  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56  *
57  * This of course assumes that the trampoline page exists within the
58  * VA_BITS range. If it doesn't, then it means we're in the odd case
59  * where the kernel idmap (as well as HYP) uses more levels than the
60  * kernel runtime page tables (as seen when the kernel is configured
61  * for 4k pages, 39bits VA, and yet memory lives just above that
62  * limit, forcing the idmap to use 4 levels of page tables while the
63  * kernel itself only uses 3). In this particular case, it doesn't
64  * matter which side of VA_BITS we use, as we're guaranteed not to
65  * conflict with anything.
66  *
67  * When using VHE, there are no separate hyp mappings and all KVM
68  * functionality is already mapped as part of the main kernel
69  * mappings, and none of this applies in that case.
70  */
71
72 #define HYP_PAGE_OFFSET_HIGH_MASK       ((UL(1) << VA_BITS) - 1)
73 #define HYP_PAGE_OFFSET_LOW_MASK        ((UL(1) << (VA_BITS - 1)) - 1)
74
75 #ifdef __ASSEMBLY__
76
77 #include <asm/alternative.h>
78 #include <asm/cpufeature.h>
79
80 /*
81  * Convert a kernel VA into a HYP VA.
82  * reg: VA to be converted.
83  *
84  * This generates the following sequences:
85  * - High mask:
86  *              and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
87  *              nop
88  * - Low mask:
89  *              and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
90  *              and x0, x0, #HYP_PAGE_OFFSET_LOW_MASK
91  * - VHE:
92  *              nop
93  *              nop
94  *
95  * The "low mask" version works because the mask is a strict subset of
96  * the "high mask", hence performing the first mask for nothing.
97  * Should be completely invisible on any viable CPU.
98  */
99 .macro kern_hyp_va      reg
100 alternative_if_not ARM64_HAS_VIRT_HOST_EXTN
101         and     \reg, \reg, #HYP_PAGE_OFFSET_HIGH_MASK
102 alternative_else_nop_endif
103 alternative_if ARM64_HYP_OFFSET_LOW
104         and     \reg, \reg, #HYP_PAGE_OFFSET_LOW_MASK
105 alternative_else_nop_endif
106 .endm
107
108 #else
109
110 #include <asm/pgalloc.h>
111 #include <asm/cache.h>
112 #include <asm/cacheflush.h>
113 #include <asm/mmu_context.h>
114 #include <asm/pgtable.h>
115
116 static inline unsigned long __kern_hyp_va(unsigned long v)
117 {
118         asm volatile(ALTERNATIVE("and %0, %0, %1",
119                                  "nop",
120                                  ARM64_HAS_VIRT_HOST_EXTN)
121                      : "+r" (v)
122                      : "i" (HYP_PAGE_OFFSET_HIGH_MASK));
123         asm volatile(ALTERNATIVE("nop",
124                                  "and %0, %0, %1",
125                                  ARM64_HYP_OFFSET_LOW)
126                      : "+r" (v)
127                      : "i" (HYP_PAGE_OFFSET_LOW_MASK));
128         return v;
129 }
130
131 #define kern_hyp_va(v)  ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
132
133 /*
134  * We currently only support a 40bit IPA.
135  */
136 #define KVM_PHYS_SHIFT  (40)
137 #define KVM_PHYS_SIZE   (1UL << KVM_PHYS_SHIFT)
138 #define KVM_PHYS_MASK   (KVM_PHYS_SIZE - 1UL)
139
140 #include <asm/stage2_pgtable.h>
141
142 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
143 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
144 void free_hyp_pgds(void);
145
146 void stage2_unmap_vm(struct kvm *kvm);
147 int kvm_alloc_stage2_pgd(struct kvm *kvm);
148 void kvm_free_stage2_pgd(struct kvm *kvm);
149 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
150                           phys_addr_t pa, unsigned long size, bool writable);
151
152 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
153
154 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
155
156 phys_addr_t kvm_mmu_get_httbr(void);
157 phys_addr_t kvm_get_idmap_vector(void);
158 int kvm_mmu_init(void);
159 void kvm_clear_hyp_idmap(void);
160
161 #define kvm_set_pte(ptep, pte)          set_pte(ptep, pte)
162 #define kvm_set_pmd(pmdp, pmd)          set_pmd(pmdp, pmd)
163
164 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
165 {
166         pte_val(pte) |= PTE_S2_RDWR;
167         return pte;
168 }
169
170 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
171 {
172         pmd_val(pmd) |= PMD_S2_RDWR;
173         return pmd;
174 }
175
176 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
177 {
178         pte_val(pte) &= ~PTE_S2_XN;
179         return pte;
180 }
181
182 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
183 {
184         pmd_val(pmd) &= ~PMD_S2_XN;
185         return pmd;
186 }
187
188 static inline void kvm_set_s2pte_readonly(pte_t *pte)
189 {
190         pteval_t old_pteval, pteval;
191
192         pteval = READ_ONCE(pte_val(*pte));
193         do {
194                 old_pteval = pteval;
195                 pteval &= ~PTE_S2_RDWR;
196                 pteval |= PTE_S2_RDONLY;
197                 pteval = cmpxchg_relaxed(&pte_val(*pte), old_pteval, pteval);
198         } while (pteval != old_pteval);
199 }
200
201 static inline bool kvm_s2pte_readonly(pte_t *pte)
202 {
203         return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
204 }
205
206 static inline bool kvm_s2pte_exec(pte_t *pte)
207 {
208         return !(pte_val(*pte) & PTE_S2_XN);
209 }
210
211 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
212 {
213         kvm_set_s2pte_readonly((pte_t *)pmd);
214 }
215
216 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
217 {
218         return kvm_s2pte_readonly((pte_t *)pmd);
219 }
220
221 static inline bool kvm_s2pmd_exec(pmd_t *pmd)
222 {
223         return !(pmd_val(*pmd) & PMD_S2_XN);
224 }
225
226 static inline bool kvm_page_empty(void *ptr)
227 {
228         struct page *ptr_page = virt_to_page(ptr);
229         return page_count(ptr_page) == 1;
230 }
231
232 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
233
234 #ifdef __PAGETABLE_PMD_FOLDED
235 #define hyp_pmd_table_empty(pmdp) (0)
236 #else
237 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
238 #endif
239
240 #ifdef __PAGETABLE_PUD_FOLDED
241 #define hyp_pud_table_empty(pudp) (0)
242 #else
243 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
244 #endif
245
246 struct kvm;
247
248 #define kvm_flush_dcache_to_poc(a,l)    __flush_dcache_area((a), (l))
249
250 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
251 {
252         return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
253 }
254
255 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
256 {
257         void *va = page_address(pfn_to_page(pfn));
258
259         kvm_flush_dcache_to_poc(va, size);
260 }
261
262 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
263                                                   unsigned long size)
264 {
265         if (icache_is_aliasing()) {
266                 /* any kind of VIPT cache */
267                 __flush_icache_all();
268         } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
269                 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
270                 void *va = page_address(pfn_to_page(pfn));
271
272                 invalidate_icache_range((unsigned long)va,
273                                         (unsigned long)va + size);
274         }
275 }
276
277 static inline void __kvm_flush_dcache_pte(pte_t pte)
278 {
279         struct page *page = pte_page(pte);
280         kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
281 }
282
283 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
284 {
285         struct page *page = pmd_page(pmd);
286         kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
287 }
288
289 static inline void __kvm_flush_dcache_pud(pud_t pud)
290 {
291         struct page *page = pud_page(pud);
292         kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
293 }
294
295 #define kvm_virt_to_phys(x)             __pa_symbol(x)
296
297 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
298 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
299
300 static inline bool __kvm_cpu_uses_extended_idmap(void)
301 {
302         return __cpu_uses_extended_idmap_level();
303 }
304
305 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
306 {
307         return idmap_ptrs_per_pgd;
308 }
309
310 /*
311  * Can't use pgd_populate here, because the extended idmap adds an extra level
312  * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
313  * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
314  */
315 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
316                                        pgd_t *hyp_pgd,
317                                        pgd_t *merged_hyp_pgd,
318                                        unsigned long hyp_idmap_start)
319 {
320         int idmap_idx;
321         u64 pgd_addr;
322
323         /*
324          * Use the first entry to access the HYP mappings. It is
325          * guaranteed to be free, otherwise we wouldn't use an
326          * extended idmap.
327          */
328         VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
329         pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
330         merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
331
332         /*
333          * Create another extended level entry that points to the boot HYP map,
334          * which contains an ID mapping of the HYP init code. We essentially
335          * merge the boot and runtime HYP maps by doing so, but they don't
336          * overlap anyway, so this is fine.
337          */
338         idmap_idx = hyp_idmap_start >> VA_BITS;
339         VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
340         pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
341         merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
342 }
343
344 static inline unsigned int kvm_get_vmid_bits(void)
345 {
346         int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
347
348         return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
349 }
350
351 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
352 #include <asm/mmu.h>
353
354 static inline void *kvm_get_hyp_vector(void)
355 {
356         struct bp_hardening_data *data = arm64_get_bp_hardening_data();
357         void *vect = kvm_ksym_ref(__kvm_hyp_vector);
358
359         if (data->fn) {
360                 vect = __bp_harden_hyp_vecs_start +
361                        data->hyp_vectors_slot * SZ_2K;
362
363                 if (!has_vhe())
364                         vect = lm_alias(vect);
365         }
366
367         return vect;
368 }
369
370 static inline int kvm_map_vectors(void)
371 {
372         return create_hyp_mappings(kvm_ksym_ref(__bp_harden_hyp_vecs_start),
373                                    kvm_ksym_ref(__bp_harden_hyp_vecs_end),
374                                    PAGE_HYP_EXEC);
375 }
376
377 #else
378 static inline void *kvm_get_hyp_vector(void)
379 {
380         return kvm_ksym_ref(__kvm_hyp_vector);
381 }
382
383 static inline int kvm_map_vectors(void)
384 {
385         return 0;
386 }
387 #endif
388
389 #define kvm_phys_to_vttbr(addr)         phys_to_ttbr(addr)
390
391 #endif /* __ASSEMBLY__ */
392 #endif /* __ARM64_KVM_MMU_H__ */