KVM: Drop arch hardware (un)setup hooks
[linux-2.6-microblaze.git] / arch / arm64 / include / asm / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/percpu.h>
20 #include <linux/psci.h>
21 #include <asm/arch_gicv3.h>
22 #include <asm/barrier.h>
23 #include <asm/cpufeature.h>
24 #include <asm/cputype.h>
25 #include <asm/daifflags.h>
26 #include <asm/fpsimd.h>
27 #include <asm/kvm.h>
28 #include <asm/kvm_asm.h>
29
30 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
31
32 #define KVM_HALT_POLL_NS_DEFAULT 500000
33
34 #include <kvm/arm_vgic.h>
35 #include <kvm/arm_arch_timer.h>
36 #include <kvm/arm_pmu.h>
37
38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
39
40 #define KVM_VCPU_MAX_FEATURES 7
41
42 #define KVM_REQ_SLEEP \
43         KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44 #define KVM_REQ_IRQ_PENDING     KVM_ARCH_REQ(1)
45 #define KVM_REQ_VCPU_RESET      KVM_ARCH_REQ(2)
46 #define KVM_REQ_RECORD_STEAL    KVM_ARCH_REQ(3)
47 #define KVM_REQ_RELOAD_GICv4    KVM_ARCH_REQ(4)
48 #define KVM_REQ_RELOAD_PMU      KVM_ARCH_REQ(5)
49 #define KVM_REQ_SUSPEND         KVM_ARCH_REQ(6)
50
51 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
52                                      KVM_DIRTY_LOG_INITIALLY_SET)
53
54 #define KVM_HAVE_MMU_RWLOCK
55
56 /*
57  * Mode of operation configurable with kvm-arm.mode early param.
58  * See Documentation/admin-guide/kernel-parameters.txt for more information.
59  */
60 enum kvm_mode {
61         KVM_MODE_DEFAULT,
62         KVM_MODE_PROTECTED,
63         KVM_MODE_NONE,
64 };
65 enum kvm_mode kvm_get_mode(void);
66
67 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
68
69 extern unsigned int kvm_sve_max_vl;
70 int kvm_arm_init_sve(void);
71
72 u32 __attribute_const__ kvm_target_cpu(void);
73 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
74 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
75
76 struct kvm_hyp_memcache {
77         phys_addr_t head;
78         unsigned long nr_pages;
79 };
80
81 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
82                                      phys_addr_t *p,
83                                      phys_addr_t (*to_pa)(void *virt))
84 {
85         *p = mc->head;
86         mc->head = to_pa(p);
87         mc->nr_pages++;
88 }
89
90 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
91                                      void *(*to_va)(phys_addr_t phys))
92 {
93         phys_addr_t *p = to_va(mc->head);
94
95         if (!mc->nr_pages)
96                 return NULL;
97
98         mc->head = *p;
99         mc->nr_pages--;
100
101         return p;
102 }
103
104 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
105                                        unsigned long min_pages,
106                                        void *(*alloc_fn)(void *arg),
107                                        phys_addr_t (*to_pa)(void *virt),
108                                        void *arg)
109 {
110         while (mc->nr_pages < min_pages) {
111                 phys_addr_t *p = alloc_fn(arg);
112
113                 if (!p)
114                         return -ENOMEM;
115                 push_hyp_memcache(mc, p, to_pa);
116         }
117
118         return 0;
119 }
120
121 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
122                                        void (*free_fn)(void *virt, void *arg),
123                                        void *(*to_va)(phys_addr_t phys),
124                                        void *arg)
125 {
126         while (mc->nr_pages)
127                 free_fn(pop_hyp_memcache(mc, to_va), arg);
128 }
129
130 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
131 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
132
133 struct kvm_vmid {
134         atomic64_t id;
135 };
136
137 struct kvm_s2_mmu {
138         struct kvm_vmid vmid;
139
140         /*
141          * stage2 entry level table
142          *
143          * Two kvm_s2_mmu structures in the same VM can point to the same
144          * pgd here.  This happens when running a guest using a
145          * translation regime that isn't affected by its own stage-2
146          * translation, such as a non-VHE hypervisor running at vEL2, or
147          * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
148          * canonical stage-2 page tables.
149          */
150         phys_addr_t     pgd_phys;
151         struct kvm_pgtable *pgt;
152
153         /* The last vcpu id that ran on each physical CPU */
154         int __percpu *last_vcpu_ran;
155
156         struct kvm_arch *arch;
157 };
158
159 struct kvm_arch_memory_slot {
160 };
161
162 /**
163  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
164  *
165  * @std_bmap: Bitmap of standard secure service calls
166  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
167  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
168  */
169 struct kvm_smccc_features {
170         unsigned long std_bmap;
171         unsigned long std_hyp_bmap;
172         unsigned long vendor_hyp_bmap;
173 };
174
175 typedef unsigned int pkvm_handle_t;
176
177 struct kvm_protected_vm {
178         pkvm_handle_t handle;
179         struct kvm_hyp_memcache teardown_mc;
180 };
181
182 struct kvm_arch {
183         struct kvm_s2_mmu mmu;
184
185         /* VTCR_EL2 value for this VM */
186         u64    vtcr;
187
188         /* Interrupt controller */
189         struct vgic_dist        vgic;
190
191         /* Mandated version of PSCI */
192         u32 psci_version;
193
194         /*
195          * If we encounter a data abort without valid instruction syndrome
196          * information, report this to user space.  User space can (and
197          * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
198          * supported.
199          */
200 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER      0
201         /* Memory Tagging Extension enabled for the guest */
202 #define KVM_ARCH_FLAG_MTE_ENABLED                       1
203         /* At least one vCPU has ran in the VM */
204 #define KVM_ARCH_FLAG_HAS_RAN_ONCE                      2
205         /*
206          * The following two bits are used to indicate the guest's EL1
207          * register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT
208          * bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set.
209          * Otherwise, the guest's EL1 register width has not yet been
210          * determined yet.
211          */
212 #define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED              3
213 #define KVM_ARCH_FLAG_EL1_32BIT                         4
214         /* PSCI SYSTEM_SUSPEND enabled for the guest */
215 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED            5
216
217         unsigned long flags;
218
219         /*
220          * VM-wide PMU filter, implemented as a bitmap and big enough for
221          * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
222          */
223         unsigned long *pmu_filter;
224         struct arm_pmu *arm_pmu;
225
226         cpumask_var_t supported_cpus;
227
228         u8 pfr0_csv2;
229         u8 pfr0_csv3;
230         struct {
231                 u8 imp:4;
232                 u8 unimp:4;
233         } dfr0_pmuver;
234
235         /* Hypercall features firmware registers' descriptor */
236         struct kvm_smccc_features smccc_feat;
237
238         /*
239          * For an untrusted host VM, 'pkvm.handle' is used to lookup
240          * the associated pKVM instance in the hypervisor.
241          */
242         struct kvm_protected_vm pkvm;
243 };
244
245 struct kvm_vcpu_fault_info {
246         u64 esr_el2;            /* Hyp Syndrom Register */
247         u64 far_el2;            /* Hyp Fault Address Register */
248         u64 hpfar_el2;          /* Hyp IPA Fault Address Register */
249         u64 disr_el1;           /* Deferred [SError] Status Register */
250 };
251
252 enum vcpu_sysreg {
253         __INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
254         MPIDR_EL1,      /* MultiProcessor Affinity Register */
255         CSSELR_EL1,     /* Cache Size Selection Register */
256         SCTLR_EL1,      /* System Control Register */
257         ACTLR_EL1,      /* Auxiliary Control Register */
258         CPACR_EL1,      /* Coprocessor Access Control */
259         ZCR_EL1,        /* SVE Control */
260         TTBR0_EL1,      /* Translation Table Base Register 0 */
261         TTBR1_EL1,      /* Translation Table Base Register 1 */
262         TCR_EL1,        /* Translation Control Register */
263         ESR_EL1,        /* Exception Syndrome Register */
264         AFSR0_EL1,      /* Auxiliary Fault Status Register 0 */
265         AFSR1_EL1,      /* Auxiliary Fault Status Register 1 */
266         FAR_EL1,        /* Fault Address Register */
267         MAIR_EL1,       /* Memory Attribute Indirection Register */
268         VBAR_EL1,       /* Vector Base Address Register */
269         CONTEXTIDR_EL1, /* Context ID Register */
270         TPIDR_EL0,      /* Thread ID, User R/W */
271         TPIDRRO_EL0,    /* Thread ID, User R/O */
272         TPIDR_EL1,      /* Thread ID, Privileged */
273         AMAIR_EL1,      /* Aux Memory Attribute Indirection Register */
274         CNTKCTL_EL1,    /* Timer Control Register (EL1) */
275         PAR_EL1,        /* Physical Address Register */
276         MDSCR_EL1,      /* Monitor Debug System Control Register */
277         MDCCINT_EL1,    /* Monitor Debug Comms Channel Interrupt Enable Reg */
278         OSLSR_EL1,      /* OS Lock Status Register */
279         DISR_EL1,       /* Deferred Interrupt Status Register */
280
281         /* Performance Monitors Registers */
282         PMCR_EL0,       /* Control Register */
283         PMSELR_EL0,     /* Event Counter Selection Register */
284         PMEVCNTR0_EL0,  /* Event Counter Register (0-30) */
285         PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
286         PMCCNTR_EL0,    /* Cycle Counter Register */
287         PMEVTYPER0_EL0, /* Event Type Register (0-30) */
288         PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
289         PMCCFILTR_EL0,  /* Cycle Count Filter Register */
290         PMCNTENSET_EL0, /* Count Enable Set Register */
291         PMINTENSET_EL1, /* Interrupt Enable Set Register */
292         PMOVSSET_EL0,   /* Overflow Flag Status Set Register */
293         PMUSERENR_EL0,  /* User Enable Register */
294
295         /* Pointer Authentication Registers in a strict increasing order. */
296         APIAKEYLO_EL1,
297         APIAKEYHI_EL1,
298         APIBKEYLO_EL1,
299         APIBKEYHI_EL1,
300         APDAKEYLO_EL1,
301         APDAKEYHI_EL1,
302         APDBKEYLO_EL1,
303         APDBKEYHI_EL1,
304         APGAKEYLO_EL1,
305         APGAKEYHI_EL1,
306
307         ELR_EL1,
308         SP_EL1,
309         SPSR_EL1,
310
311         CNTVOFF_EL2,
312         CNTV_CVAL_EL0,
313         CNTV_CTL_EL0,
314         CNTP_CVAL_EL0,
315         CNTP_CTL_EL0,
316
317         /* Memory Tagging Extension registers */
318         RGSR_EL1,       /* Random Allocation Tag Seed Register */
319         GCR_EL1,        /* Tag Control Register */
320         TFSR_EL1,       /* Tag Fault Status Register (EL1) */
321         TFSRE0_EL1,     /* Tag Fault Status Register (EL0) */
322
323         /* 32bit specific registers. Keep them at the end of the range */
324         DACR32_EL2,     /* Domain Access Control Register */
325         IFSR32_EL2,     /* Instruction Fault Status Register */
326         FPEXC32_EL2,    /* Floating-Point Exception Control Register */
327         DBGVCR32_EL2,   /* Debug Vector Catch Register */
328
329         NR_SYS_REGS     /* Nothing after this line! */
330 };
331
332 struct kvm_cpu_context {
333         struct user_pt_regs regs;       /* sp = sp_el0 */
334
335         u64     spsr_abt;
336         u64     spsr_und;
337         u64     spsr_irq;
338         u64     spsr_fiq;
339
340         struct user_fpsimd_state fp_regs;
341
342         u64 sys_regs[NR_SYS_REGS];
343
344         struct kvm_vcpu *__hyp_running_vcpu;
345 };
346
347 struct kvm_host_data {
348         struct kvm_cpu_context host_ctxt;
349 };
350
351 struct kvm_host_psci_config {
352         /* PSCI version used by host. */
353         u32 version;
354
355         /* Function IDs used by host if version is v0.1. */
356         struct psci_0_1_function_ids function_ids_0_1;
357
358         bool psci_0_1_cpu_suspend_implemented;
359         bool psci_0_1_cpu_on_implemented;
360         bool psci_0_1_cpu_off_implemented;
361         bool psci_0_1_migrate_implemented;
362 };
363
364 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
365 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
366
367 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
368 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
369
370 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
371 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
372
373 struct vcpu_reset_state {
374         unsigned long   pc;
375         unsigned long   r0;
376         bool            be;
377         bool            reset;
378 };
379
380 struct kvm_vcpu_arch {
381         struct kvm_cpu_context ctxt;
382
383         /*
384          * Guest floating point state
385          *
386          * The architecture has two main floating point extensions,
387          * the original FPSIMD and SVE.  These have overlapping
388          * register views, with the FPSIMD V registers occupying the
389          * low 128 bits of the SVE Z registers.  When the core
390          * floating point code saves the register state of a task it
391          * records which view it saved in fp_type.
392          */
393         void *sve_state;
394         enum fp_type fp_type;
395         unsigned int sve_max_vl;
396         u64 svcr;
397
398         /* Stage 2 paging state used by the hardware on next switch */
399         struct kvm_s2_mmu *hw_mmu;
400
401         /* Values of trap registers for the guest. */
402         u64 hcr_el2;
403         u64 mdcr_el2;
404         u64 cptr_el2;
405
406         /* Values of trap registers for the host before guest entry. */
407         u64 mdcr_el2_host;
408
409         /* Exception Information */
410         struct kvm_vcpu_fault_info fault;
411
412         /* Ownership of the FP regs */
413         enum {
414                 FP_STATE_FREE,
415                 FP_STATE_HOST_OWNED,
416                 FP_STATE_GUEST_OWNED,
417         } fp_state;
418
419         /* Configuration flags, set once and for all before the vcpu can run */
420         u8 cflags;
421
422         /* Input flags to the hypervisor code, potentially cleared after use */
423         u8 iflags;
424
425         /* State flags for kernel bookkeeping, unused by the hypervisor code */
426         u8 sflags;
427
428         /*
429          * Don't run the guest (internal implementation need).
430          *
431          * Contrary to the flags above, this is set/cleared outside of
432          * a vcpu context, and thus cannot be mixed with the flags
433          * themselves (or the flag accesses need to be made atomic).
434          */
435         bool pause;
436
437         /*
438          * We maintain more than a single set of debug registers to support
439          * debugging the guest from the host and to maintain separate host and
440          * guest state during world switches. vcpu_debug_state are the debug
441          * registers of the vcpu as the guest sees them.  host_debug_state are
442          * the host registers which are saved and restored during
443          * world switches. external_debug_state contains the debug
444          * values we want to debug the guest. This is set via the
445          * KVM_SET_GUEST_DEBUG ioctl.
446          *
447          * debug_ptr points to the set of debug registers that should be loaded
448          * onto the hardware when running the guest.
449          */
450         struct kvm_guest_debug_arch *debug_ptr;
451         struct kvm_guest_debug_arch vcpu_debug_state;
452         struct kvm_guest_debug_arch external_debug_state;
453
454         struct user_fpsimd_state *host_fpsimd_state;    /* hyp VA */
455         struct task_struct *parent_task;
456
457         struct {
458                 /* {Break,watch}point registers */
459                 struct kvm_guest_debug_arch regs;
460                 /* Statistical profiling extension */
461                 u64 pmscr_el1;
462                 /* Self-hosted trace */
463                 u64 trfcr_el1;
464         } host_debug_state;
465
466         /* VGIC state */
467         struct vgic_cpu vgic_cpu;
468         struct arch_timer_cpu timer_cpu;
469         struct kvm_pmu pmu;
470
471         /*
472          * Guest registers we preserve during guest debugging.
473          *
474          * These shadow registers are updated by the kvm_handle_sys_reg
475          * trap handler if the guest accesses or updates them while we
476          * are using guest debug.
477          */
478         struct {
479                 u32     mdscr_el1;
480                 bool    pstate_ss;
481         } guest_debug_preserved;
482
483         /* vcpu power state */
484         struct kvm_mp_state mp_state;
485
486         /* Cache some mmu pages needed inside spinlock regions */
487         struct kvm_mmu_memory_cache mmu_page_cache;
488
489         /* Target CPU and feature flags */
490         int target;
491         DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
492
493         /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
494         u64 vsesr_el2;
495
496         /* Additional reset state */
497         struct vcpu_reset_state reset_state;
498
499         /* Guest PV state */
500         struct {
501                 u64 last_steal;
502                 gpa_t base;
503         } steal;
504 };
505
506 /*
507  * Each 'flag' is composed of a comma-separated triplet:
508  *
509  * - the flag-set it belongs to in the vcpu->arch structure
510  * - the value for that flag
511  * - the mask for that flag
512  *
513  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
514  * unpack_vcpu_flag() extract the flag value from the triplet for
515  * direct use outside of the flag accessors.
516  */
517 #define __vcpu_single_flag(_set, _f)    _set, (_f), (_f)
518
519 #define __unpack_flag(_set, _f, _m)     _f
520 #define unpack_vcpu_flag(...)           __unpack_flag(__VA_ARGS__)
521
522 #define __build_check_flag(v, flagset, f, m)                    \
523         do {                                                    \
524                 typeof(v->arch.flagset) *_fset;                 \
525                                                                 \
526                 /* Check that the flags fit in the mask */      \
527                 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
528                 /* Check that the flags fit in the type */      \
529                 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
530         } while (0)
531
532 #define __vcpu_get_flag(v, flagset, f, m)                       \
533         ({                                                      \
534                 __build_check_flag(v, flagset, f, m);           \
535                                                                 \
536                 v->arch.flagset & (m);                          \
537         })
538
539 #define __vcpu_set_flag(v, flagset, f, m)                       \
540         do {                                                    \
541                 typeof(v->arch.flagset) *fset;                  \
542                                                                 \
543                 __build_check_flag(v, flagset, f, m);           \
544                                                                 \
545                 fset = &v->arch.flagset;                        \
546                 if (HWEIGHT(m) > 1)                             \
547                         *fset &= ~(m);                          \
548                 *fset |= (f);                                   \
549         } while (0)
550
551 #define __vcpu_clear_flag(v, flagset, f, m)                     \
552         do {                                                    \
553                 typeof(v->arch.flagset) *fset;                  \
554                                                                 \
555                 __build_check_flag(v, flagset, f, m);           \
556                                                                 \
557                 fset = &v->arch.flagset;                        \
558                 *fset &= ~(m);                                  \
559         } while (0)
560
561 #define vcpu_get_flag(v, ...)   __vcpu_get_flag((v), __VA_ARGS__)
562 #define vcpu_set_flag(v, ...)   __vcpu_set_flag((v), __VA_ARGS__)
563 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
564
565 /* SVE exposed to guest */
566 #define GUEST_HAS_SVE           __vcpu_single_flag(cflags, BIT(0))
567 /* SVE config completed */
568 #define VCPU_SVE_FINALIZED      __vcpu_single_flag(cflags, BIT(1))
569 /* PTRAUTH exposed to guest */
570 #define GUEST_HAS_PTRAUTH       __vcpu_single_flag(cflags, BIT(2))
571
572 /* Exception pending */
573 #define PENDING_EXCEPTION       __vcpu_single_flag(iflags, BIT(0))
574 /*
575  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
576  * be set together with an exception...
577  */
578 #define INCREMENT_PC            __vcpu_single_flag(iflags, BIT(1))
579 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
580 #define EXCEPT_MASK             __vcpu_single_flag(iflags, GENMASK(3, 1))
581
582 /* Helpers to encode exceptions with minimum fuss */
583 #define __EXCEPT_MASK_VAL       unpack_vcpu_flag(EXCEPT_MASK)
584 #define __EXCEPT_SHIFT          __builtin_ctzl(__EXCEPT_MASK_VAL)
585 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
586
587 /*
588  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
589  * values:
590  *
591  * For AArch32 EL1:
592  */
593 #define EXCEPT_AA32_UND         __vcpu_except_flags(0)
594 #define EXCEPT_AA32_IABT        __vcpu_except_flags(1)
595 #define EXCEPT_AA32_DABT        __vcpu_except_flags(2)
596 /* For AArch64: */
597 #define EXCEPT_AA64_EL1_SYNC    __vcpu_except_flags(0)
598 #define EXCEPT_AA64_EL1_IRQ     __vcpu_except_flags(1)
599 #define EXCEPT_AA64_EL1_FIQ     __vcpu_except_flags(2)
600 #define EXCEPT_AA64_EL1_SERR    __vcpu_except_flags(3)
601 /* For AArch64 with NV (one day): */
602 #define EXCEPT_AA64_EL2_SYNC    __vcpu_except_flags(4)
603 #define EXCEPT_AA64_EL2_IRQ     __vcpu_except_flags(5)
604 #define EXCEPT_AA64_EL2_FIQ     __vcpu_except_flags(6)
605 #define EXCEPT_AA64_EL2_SERR    __vcpu_except_flags(7)
606 /* Guest debug is live */
607 #define DEBUG_DIRTY             __vcpu_single_flag(iflags, BIT(4))
608 /* Save SPE context if active  */
609 #define DEBUG_STATE_SAVE_SPE    __vcpu_single_flag(iflags, BIT(5))
610 /* Save TRBE context if active  */
611 #define DEBUG_STATE_SAVE_TRBE   __vcpu_single_flag(iflags, BIT(6))
612
613 /* SVE enabled for host EL0 */
614 #define HOST_SVE_ENABLED        __vcpu_single_flag(sflags, BIT(0))
615 /* SME enabled for EL0 */
616 #define HOST_SME_ENABLED        __vcpu_single_flag(sflags, BIT(1))
617 /* Physical CPU not in supported_cpus */
618 #define ON_UNSUPPORTED_CPU      __vcpu_single_flag(sflags, BIT(2))
619 /* WFIT instruction trapped */
620 #define IN_WFIT                 __vcpu_single_flag(sflags, BIT(3))
621 /* vcpu system registers loaded on physical CPU */
622 #define SYSREGS_ON_CPU          __vcpu_single_flag(sflags, BIT(4))
623 /* Software step state is Active-pending */
624 #define DBG_SS_ACTIVE_PENDING   __vcpu_single_flag(sflags, BIT(5))
625
626
627 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
628 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +      \
629                              sve_ffr_offset((vcpu)->arch.sve_max_vl))
630
631 #define vcpu_sve_max_vq(vcpu)   sve_vq_from_vl((vcpu)->arch.sve_max_vl)
632
633 #define vcpu_sve_state_size(vcpu) ({                                    \
634         size_t __size_ret;                                              \
635         unsigned int __vcpu_vq;                                         \
636                                                                         \
637         if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {          \
638                 __size_ret = 0;                                         \
639         } else {                                                        \
640                 __vcpu_vq = vcpu_sve_max_vq(vcpu);                      \
641                 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);              \
642         }                                                               \
643                                                                         \
644         __size_ret;                                                     \
645 })
646
647 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
648                                  KVM_GUESTDBG_USE_SW_BP | \
649                                  KVM_GUESTDBG_USE_HW | \
650                                  KVM_GUESTDBG_SINGLESTEP)
651
652 #define vcpu_has_sve(vcpu) (system_supports_sve() &&                    \
653                             vcpu_get_flag(vcpu, GUEST_HAS_SVE))
654
655 #ifdef CONFIG_ARM64_PTR_AUTH
656 #define vcpu_has_ptrauth(vcpu)                                          \
657         ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||                \
658           cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&               \
659           vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
660 #else
661 #define vcpu_has_ptrauth(vcpu)          false
662 #endif
663
664 #define vcpu_on_unsupported_cpu(vcpu)                                   \
665         vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
666
667 #define vcpu_set_on_unsupported_cpu(vcpu)                               \
668         vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
669
670 #define vcpu_clear_on_unsupported_cpu(vcpu)                             \
671         vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
672
673 #define vcpu_gp_regs(v)         (&(v)->arch.ctxt.regs)
674
675 /*
676  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
677  * memory backed version of a register, and not the one most recently
678  * accessed by a running VCPU.  For example, for userspace access or
679  * for system registers that are never context switched, but only
680  * emulated.
681  */
682 #define __ctxt_sys_reg(c,r)     (&(c)->sys_regs[(r)])
683
684 #define ctxt_sys_reg(c,r)       (*__ctxt_sys_reg(c,r))
685
686 #define __vcpu_sys_reg(v,r)     (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
687
688 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
689 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
690
691 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
692 {
693         /*
694          * *** VHE ONLY ***
695          *
696          * System registers listed in the switch are not saved on every
697          * exit from the guest but are only saved on vcpu_put.
698          *
699          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
700          * should never be listed below, because the guest cannot modify its
701          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
702          * thread when emulating cross-VCPU communication.
703          */
704         if (!has_vhe())
705                 return false;
706
707         switch (reg) {
708         case CSSELR_EL1:        *val = read_sysreg_s(SYS_CSSELR_EL1);   break;
709         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
710         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
711         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
712         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
713         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
714         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
715         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
716         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
717         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
718         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
719         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
720         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
721         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
722         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
723         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
724         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
725         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
726         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
727         case PAR_EL1:           *val = read_sysreg_par();               break;
728         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
729         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
730         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
731         default:                return false;
732         }
733
734         return true;
735 }
736
737 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
738 {
739         /*
740          * *** VHE ONLY ***
741          *
742          * System registers listed in the switch are not restored on every
743          * entry to the guest but are only restored on vcpu_load.
744          *
745          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
746          * should never be listed below, because the MPIDR should only be set
747          * once, before running the VCPU, and never changed later.
748          */
749         if (!has_vhe())
750                 return false;
751
752         switch (reg) {
753         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    break;
754         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
755         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
756         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
757         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
758         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
759         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
760         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
761         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
762         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
763         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
764         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
765         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
766         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
767         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
768         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
769         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
770         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
771         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
772         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
773         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
774         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
775         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
776         default:                return false;
777         }
778
779         return true;
780 }
781
782 struct kvm_vm_stat {
783         struct kvm_vm_stat_generic generic;
784 };
785
786 struct kvm_vcpu_stat {
787         struct kvm_vcpu_stat_generic generic;
788         u64 hvc_exit_stat;
789         u64 wfe_exit_stat;
790         u64 wfi_exit_stat;
791         u64 mmio_exit_user;
792         u64 mmio_exit_kernel;
793         u64 signal_exits;
794         u64 exits;
795 };
796
797 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
798 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
799 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
800 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
801 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
802
803 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
804 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
805
806 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
807                               struct kvm_vcpu_events *events);
808
809 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
810                               struct kvm_vcpu_events *events);
811
812 #define KVM_ARCH_WANT_MMU_NOTIFIER
813
814 void kvm_arm_halt_guest(struct kvm *kvm);
815 void kvm_arm_resume_guest(struct kvm *kvm);
816
817 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
818
819 #ifndef __KVM_NVHE_HYPERVISOR__
820 #define kvm_call_hyp_nvhe(f, ...)                                               \
821         ({                                                              \
822                 struct arm_smccc_res res;                               \
823                                                                         \
824                 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),               \
825                                   ##__VA_ARGS__, &res);                 \
826                 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);                   \
827                                                                         \
828                 res.a1;                                                 \
829         })
830
831 /*
832  * The couple of isb() below are there to guarantee the same behaviour
833  * on VHE as on !VHE, where the eret to EL1 acts as a context
834  * synchronization event.
835  */
836 #define kvm_call_hyp(f, ...)                                            \
837         do {                                                            \
838                 if (has_vhe()) {                                        \
839                         f(__VA_ARGS__);                                 \
840                         isb();                                          \
841                 } else {                                                \
842                         kvm_call_hyp_nvhe(f, ##__VA_ARGS__);            \
843                 }                                                       \
844         } while(0)
845
846 #define kvm_call_hyp_ret(f, ...)                                        \
847         ({                                                              \
848                 typeof(f(__VA_ARGS__)) ret;                             \
849                                                                         \
850                 if (has_vhe()) {                                        \
851                         ret = f(__VA_ARGS__);                           \
852                         isb();                                          \
853                 } else {                                                \
854                         ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);      \
855                 }                                                       \
856                                                                         \
857                 ret;                                                    \
858         })
859 #else /* __KVM_NVHE_HYPERVISOR__ */
860 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
861 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
862 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
863 #endif /* __KVM_NVHE_HYPERVISOR__ */
864
865 void force_vm_exit(const cpumask_t *mask);
866
867 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
868 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
869
870 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
871 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
872 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
873 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
874 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
875 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
876 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
877
878 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
879
880 int kvm_sys_reg_table_init(void);
881
882 /* MMIO helpers */
883 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
884 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
885
886 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
887 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
888
889 /*
890  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
891  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
892  * loaded is considered to be "in guest".
893  */
894 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
895 {
896         return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
897 }
898
899 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
900 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
901 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
902
903 bool kvm_arm_pvtime_supported(void);
904 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
905                             struct kvm_device_attr *attr);
906 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
907                             struct kvm_device_attr *attr);
908 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
909                             struct kvm_device_attr *attr);
910
911 extern unsigned int kvm_arm_vmid_bits;
912 int kvm_arm_vmid_alloc_init(void);
913 void kvm_arm_vmid_alloc_free(void);
914 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
915 void kvm_arm_vmid_clear_active(void);
916
917 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
918 {
919         vcpu_arch->steal.base = GPA_INVALID;
920 }
921
922 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
923 {
924         return (vcpu_arch->steal.base != GPA_INVALID);
925 }
926
927 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
928
929 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
930
931 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
932
933 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
934 {
935         /* The host's MPIDR is immutable, so let's set it up at boot time */
936         ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
937 }
938
939 static inline bool kvm_system_needs_idmapped_vectors(void)
940 {
941         return cpus_have_const_cap(ARM64_SPECTRE_V3A);
942 }
943
944 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
945
946 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
947 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
948
949 void kvm_arm_init_debug(void);
950 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
951 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
952 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
953 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
954
955 #define kvm_vcpu_os_lock_enabled(vcpu)          \
956         (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & SYS_OSLSR_OSLK))
957
958 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
959                                struct kvm_device_attr *attr);
960 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
961                                struct kvm_device_attr *attr);
962 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
963                                struct kvm_device_attr *attr);
964
965 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
966                                 struct kvm_arm_copy_mte_tags *copy_tags);
967
968 /* Guest/host FPSIMD coordination helpers */
969 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
970 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
971 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
972 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
973 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
974 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
975
976 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
977 {
978         return (!has_vhe() && attr->exclude_host);
979 }
980
981 /* Flags for host debug state */
982 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
983 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
984
985 #ifdef CONFIG_KVM
986 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
987 void kvm_clr_pmu_events(u32 clr);
988 #else
989 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
990 static inline void kvm_clr_pmu_events(u32 clr) {}
991 #endif
992
993 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
994 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
995
996 int kvm_set_ipa_limit(void);
997
998 #define __KVM_HAVE_ARCH_VM_ALLOC
999 struct kvm *kvm_arch_alloc_vm(void);
1000
1001 static inline bool kvm_vm_is_protected(struct kvm *kvm)
1002 {
1003         return false;
1004 }
1005
1006 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
1007
1008 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1009 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1010
1011 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1012
1013 #define kvm_has_mte(kvm)                                        \
1014         (system_supports_mte() &&                               \
1015          test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1016
1017 #define kvm_supports_32bit_el0()                                \
1018         (system_supports_32bit_el0() &&                         \
1019          !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1020
1021 int kvm_trng_call(struct kvm_vcpu *vcpu);
1022 #ifdef CONFIG_KVM
1023 extern phys_addr_t hyp_mem_base;
1024 extern phys_addr_t hyp_mem_size;
1025 void __init kvm_hyp_reserve(void);
1026 #else
1027 static inline void kvm_hyp_reserve(void) { }
1028 #endif
1029
1030 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1031 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1032
1033 #endif /* __ARM64_KVM_HOST_H__ */